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On certain generalized close-to-star functions in the umit disc

by K. S. PADMANABHAN and R. PARVATHAM (Madras, India)

Abstract. A new olass W}, of functions f(¢) = s+ ag2? +... analytic in the unit
dise D is introduced in this paper. This generalizes the class of close-to-star functions
of M. O. Reade in the same way as the class of functions of bounded boundary rota-
tion generalizes the class of convex functions. The radius of starlikeness and radius
of convexity of W, are determined. A subclass of Wy, is also considered and similar
problems are solved.

1. Introduction. Let M, denote the class of rcal valued functions
m(t) of bounded variation on [—A4, 1] which satisfy the conditions,

(1.1) fdm(t) =2, f ldm(t)| < k.

A function f(z) is said to be in the class U, if f(z) is amalytic in
D = {z: |2/ <1} and

(1.2) f(z) = zexp f —log(1 —ze *)dm(t)

for some m(t) e M. For k = 2, U, reduces to the familiar class of uni-
valent starlike functions. Let P, denote the class of functions which are
analytic in D and have the representation

F1ze o |
(1.3) pe) =} f lt—::,dm(t)', where m(t) € M,.

In this paper a new class of analytic functions W, is defined as follows.

DEFINITION. A function f(z) analytioc in D belongs to Wy if and only
if there exists a g(z) belonging to U, such that

fe) _ .
(1.4) o p(2), where p(2)€P,.

A function f(z) e W, shall be tbd 1b éeaeralized close-to-star function.
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This is justified by the observation that the class W} reduces to the class
of close-to-star functions introduced by M. O. Reade in Michigan Mathe-
matical Journal for ¥ = 2. The principal aim of this paper is to determine
the radius of convexity for this class for all ¥ > 2 and precisely determine
the radius of starlikeness (which is also the radius of univalence) for
this class for all k> 4. When 2 < k < 4 an estimate is obtained for the
radius of starlikeness is obtained which is not sharp.
Further a subclass of W} consisting of functions f(z) which satisfy
)
z

(1.5) eP,

is also considered, the radius of convexity is determined for all ¥ > 2
and the radius of starlikeness (same as radius of univalence) is also deter-
mined for all k> 4. When 2 <k <4 an estimate is obtained for the
radius of starlikeness which is not sharp. The problem of finding coeffi-
cient estimates for the class W) is open.

2. Lemmas. We need the following lemmas for our discussion.
LEMMA 1. Suppose p(z) € Py; then

zp’ (2) —r(k—4r+ kr?)
. =
@1 R%pm} A=—r)aA—kr+79’
—Viri—
k=>4 and |2| =r < R, =-k—2k——4. The above inequality is sharp.
. _ 2 __
For 2<k<4 and |2 =r< R, =#,
zp’ (z)} —2kr + (8 — 4k + k%) r2 — 2kr®
2.2 RO > - .
@2 e 2(—P)(d—kr+7)

However, inequality (2.2) 18 not sharp.
Proof. Suppose p(z) € P,. Then there exists a function f(2) € V, [4]
such that p(2) =1+42f"(2)/f'(2) which gives,

7@ @w)@m u @) (p)—1)?
@ {5 - (e -5
Algo it is known [2] when f(z) e V,

l:4_ k>4
1@ 1rEy | 2a-En o

(2.4) IUJN=,. ;
'@y 21/ (z)} 2(k—1) r< 4

(1— 2122’
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First let us consider the case k¥ > 4. From (2.3) and (2.4) we get
@' @)=(p()=1) _(p@)-1P|__ ¥ —4

P 22 | 2(1—[?)F
whence we get

. —4) 2/
(2.5) |20’ (2) +3 (1 —p*(2)| < 2—(1_1712)2'

Since Rep(z) > 0 for 2| < R, = }(k— —Vkr—4 )y [4]; p(2) # 0 for |2| < R,.
Therefore, for 2| < R,, we have from (2. 5)

P (k2 —4) Jo|2
‘z (z) ple )),

2@ T 2(1— o)) p(2)]
and so
P’ (2) ( )} — (k2 —4) 2|2
R — — ;
"’{ o THoE P97 ai— e
that is,

1 (B—d)pp
2Rep(z) 2(1— 2122 p(2)!’

(2.6) Re { ”“} }Rop(z) —

where we have used the fact that Re1l/p(?) <1/Rep(z) when Rep(z) > 0.
Also since p(2) € P, we have [4]

1—kr+r? 14 Fkr+1r?

(2.7) 1 < Rep(2) < {2 where |2| = r.

Inequalities (2.6) and (2.7) lead to

e{zp’(z) S 1—kr+1r? 1—72 (k*—4)r?
p@) |7 1—rt  2(l—kr+r) 2@ —r)(1—kr+13)
that is,
P’ (?) —r(k—4r+ kr?) _k,_— kr—4
Re{z 2(2) } > A=) AT 7% where r < By = 2 .

This is sharp for the function

o= () (- )

For 2 <k <4, using the other estimate in (2.4) and arguing: similarly
we get, inequality (2.2). For 2 < k < 4 inequality (2.2) is not sharp because
the estimate in (2.4) for 2 < k < 4 is not sharp. For k¥ = 2, though the
estimates in (2.4) and (2.7) are sharp, individually, equality is not attained




4 K. S. Padmanabhan and R. Paravatham

simultaneously in both of them. Hence the lemma fails to be sharp in
the case 2 < k < 4. The proof of the lemma is complete.

LEMMA 2. [7). Let h(z) = 3 c¢,2" be regular and single valued on

e —00

|2| = 1 and let Reh(z) > 0 for |2| = 1. Then |e,+o_,| < 2Recy,n =1,2.
LEMMA 3. Suppose f(z) € W;. Then we have

4’ (2) —4R,r+1* _k—Vkr—4
Rl | > R:—r*' y whers By = —

Proof. Since f(z) € W}, there exists a g(z) € U, such that

f(2)/g(2) = p(2) € P,. Also Rep(z) > 0 for |z| < Ry= }(k—Vk2—4), [4]
Let a be any complex number such that |e| < R,. Then

Ri(2+a)
P(z) = p( Bra ) = p(a)+p'(a) (1——) Z+...
is regular in |2| < R, and ReP(z) >0 in [7| < R,. Hence, [3], p. 170,
we have
al? 2(p(a
‘p(a)( le| )< Izz(o)l
which implies
p'(a) 2R,
= .
?(a)l|  Ej—|af*
Since a is any complex number such that |a| < R,, we can rewrite this as
zp’ (2) 2rR, _
22 — where |z] = r < R,.

Hence we get

#f'(2) g'(2) 2rE,
f@ o |SE=A
whence we have,
J'(2) g'(2) 27R,
e =

Since
Be{zg-(—zl >0 and g(0) =1 for |s| <Ry [4].

we have by [3], p. 173,

{zg’(z) > Ro—”_
g(z) Ry+r
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Hence we have

(2 Rl —4rRy 42
Reler) > Hon

completing the proof of the lemma.
LEMMA 4. If f(z) belongs to the subolass of W, satisfying (1.5), then

PR rep, EVP
Re {f(z)} R;‘;—ra y where |z2| =r< B, = 5 .

The proof of this lemma is similar to that of Lemma 3 and is hence
omitted.

3. Theorems,

THEORBM 1. Let f(2) € W;. Then f(2) is starlike univalent in |2| < r,,
" where r, 18 the least positive root of the equalion

(3.1) 1-3kr+(6+k)r2—3kr*+r* =0 for k>4

and this bound r, is sharp. For 2 < k < 4, f(2) is starlike univalent in
|2] < r,, where r, i8 the least positive rool of the equation

(3.2) 2 —6kr+ (12 — 4k + 3k%) 72 —6kr24-2r* = 0.

However, this bound r, 8 mot sharp.
Proof. Since f(z) € Wy, 3g(2) € U, such that

I(2)

7 = p(z) € P,.

Therefore
o’ (2) 29’ (2) 2p (z)
Re Re—— +R
{f( ) } @ T e
For k>4 by Lemma 1 and [4] we get
' (@) 1—kr+nr? r(k—4r 1)
{f(z) }/ 1—rr (1= (1 —kr+1Y)

—_ 2 _
where 2| =7 < R, =%i.

"Hence
f'(2) (1—kr4r2)2—r(k—4r+kr?)
Re{ f(z)}> A—rmQ—Frtr)
provided 7'(r)=1—3kr+(6 +k’)r’—3kr’+r‘ > 0.7(0) > 0and T(R,) <0
[ f(2)
7

and hence Re.z

}> 0 provided r<r, where 7, is the least
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positive root of the equation I'(r) =0, lying in (0, B,). For

B z(l_z)k/z_l _ k l 1-— k 1+z
g(2) = Q2T and  p(2) _(4 +2) 1_+2) (Z—E) 1_‘"')

and choosing f(2) = g(2)p(2) we have
 of'(8)  1—8ke+(6+k)a?—3ke? 4
T fle) -1 —ket2)
-for z =r,. Hence this result is sharp.

If 2 <k < 4 and |¢| < B, = (k—V/%*—4)/2, then by [4] and Lemma 1
we have

{zf (2) 1—kr+r2 —2kr + (8 — 4k + k2)r? —2kr®
Re > ‘
- f(e) } 1—7r? 2(1=r3)(1 —kr+r?)
_ 2—6kr+ (12 — 4k + 3k%)r2 — 6 kr® 4 21
B 2(1 =13 (1 —kr+1?)
for |2| =r <r,, where r, is the least positive root of the equation,
2 —6kr + (12 — 4k + 3k2)r2 —6kr3 +27* = 0.

=0

>0

The bound 7, is not sharp since inequality (2.2) in Lemma 1 is not sharp.
For k = 2, r, turns out to be the smallest positive root of the equation
Y(r) =1—6r+8r2—6r3+r* = 0.

¥(r) decreases with #in (0,'}) and vamshes atr =7, where0 < r, < .
And we find by actual computation ¥(2—)/3) < 0. Also (2—V3) < }-
This implies * < 2—V¥3 which is the gsharp estimate for the radius of
starlikeness of the class of close-to-star functions W3, [1].

THEOREM 2. Suppose f(z) € W;. Then f(2) i8 convex in 2| < (B —2]/3-) R,,
where By = (k~Vk*—4)/2 for alb k> 2.

Proof. Since p(2) € P, Rep(2) > 0 for 2| < R,, [4]. Consider, for

any complex number a such that Ial < R, functions f,, g, and p, defined
as follows

Rz(z+a) __[Ri(z+a)
filz) = f( R taz 0z =g Rra
and
_ . [B+a)
P1(2) =p (m
Then _ ’
. (Rﬁ(z"+a)
Y\ RBre ] BE—-1

o {zy (z)} — Re
9(2) Ri(z+a)\ (R{+az)?
Ri+az
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Putting { = R}(2z+ a)/(R}+ az), we have

2g,(2 R 14 (4 z
o] = (B Re e e
R:—|a|® !
- Bram el T P am] =T
> 0.
Now define
g1(2) = 291(2)/(a +2) (R + az).
Hence

(2 _29l(z) | (eRi—ax)
7:(2)  g:1(2)  (Bi+az)(a+2)

and

W@ {zy;(z) .
R"{g,(z)}‘m’ yl(z)}>0 for le| < Ko

Since f(2) € Wy, dag(z) € U, such that f(z)/g(z) = p(z), where p(2) € P,.
Let fi(2) = a(1+a,2+.:.) and g,(2) = b(2+by22+...). We have

(R} + az)(a+2) _fl(z)

2 D:1(2)= 7:(2)

Also Rep,(z) > 0 for 2| < R,. Since (R:+ az)(a+2)/z is real and positive
for |2z| = Ry, we have Re{f;(2)/g9.(2)} > 0 for |z| < R,. Putting & = z/R,,

1 :
= —Z‘{;"‘(‘h‘bz)"‘(b;—ba—bzal‘l‘aa)z'l‘-u}-

'3 1
(3.3) ';:((5)) = %{m + (a, _b2)+(bg—ba-bs%'l'as)Rof'l'---}
and
Re{ f‘“)}> 0 for |8 <1.
92(&)
Also g,(Bo£)/& = b{E+byRy&2+...) is starlike in | < 1. Hence
(3.4) |be Ry| < 2

and by Carathéodory-Toeplitz theorem
(3.5) by R} — b3 R} < 1.
Applying Lemma 2 to (3.3) we have
|Bo(ag—bya; — b3+ b7) +1/R,| < 2|a; — by.
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From (3.4) and (3.5) we get

(3.6) R} las] < 4R, |a,|+6.
We have

. =(R3—Ial’)f'(a)

' B} | f(a)’

Rzﬁ_ 3 Rﬁ— ’ '
o = {(2FT) 1@ -2 (2H) 1 @l era).
Therefore from (3.6) we get
a Ry — |al?\ _,
B 1w -2a(B ) ra)
27 (@)

LA R:—lal) L8
R fa\ B )R

Since a is any complex number such that || < R,, we can replace a by 2z
and rewrite the above inequality as follows:
2Ry (4r(R:—r2) 4 6r2! f(2) }
®—ri B B |+ @)’

where o] =r < R,. Using Lemma 3 we now have, for |2| = r < BR,,

f"(z) 22
oy " B—r|S

f "(2) 2r2 2R} !4T(R: —1r?) + 6r2 R:_p }
f () Rﬁ — 2| (Rg —17r2)2 Rg Rg .Rg 'y
2R, (4Rir—10R,r?+ 4r® .
B (R _o"a){ Ry — 4:.R,,0r+1'a }’ if Rj—4R,r+72> 0.
Therefore
Re {1 ol "(”)} 5 Botrt 2B, 4Byr—10B.ri+4r?
f'(z) /-R:—'ra R%_ra 13%_41_30’._‘”’.a

_ B{—12R}r+22Rjr* —12R,r*4-r*

(B —r) (B —4Rer +77) ©

provided R:—10R,r4-72> 0, i.e. r < (5—-2|/§)R°.

When & = 2, R, = 1 we obtain as a special case the result of Saka-
guchi which is sharp. Therefore the| constant (5 —2)/6) cannot be im-
proved.

THEOREM 3. Suppose f(z) i3 analytio in D and f(2)[z € P,. Then f(2)
18 starlike univalent in |2| < r,, where r, 18 the least positive root of the equa-
tion 1 —2kr+4r2—2* =0, for k> 4.
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The bound r, i8 sharp. For 2 < k< 4, f(2) is starlike univalent in
|2} < r,, where r, i3 the least positive root of the equation

2—4kr+(8—4k+k)r2—20* = 0.

However, the bound r, is mot sharp.
Proof. Since f(2)/z = p(2) € P, we have

f'(2) {zp' (z)}
Re{z— =1+Re .
f(2) p(2)
For k> 4, applying Lemma 1 we have, for [¢] = r < By= (k—Vk*—4)/2,
I'(2) r(k — 4r + kr?) 1—2kr 4472 — o4

>1— = >
f(2) L—r)1—kr+r3) (Q—r)(A—kr+r?)

" provided T(r) =1—2kr+4r2—7*> 0. T(0)> 0 and T(R,) < 0. Let r,
be the least positive root of 7'(r) = 0 lying in (0, R,). Then Re {zf’ (2)/f(2)}
> 0 provided r < r,. Consider the function

o=+ 359 -2

Then zf'(2)/f(z) = 0 for z = r,. Hence the result is sharp for k > 4. For

2 < k<4, by applying Lemma 1 we get
Re{zi—(ﬁ)-} >1 —2kr + (8 — 4k + k2)r2 —2kr3
f(2) 21— —Fr+r?)
2 —4kr+ (8 — 4k -+ k2)r2 —2r*
T 2(1—r)(1—kr41?)

provided Ty(r) = 2 —4kr+ (8 —4k+k2)r*—2r* > 0 and r < R,. T,(0) > 0,

T,(E,) <0 and hence Re{zf'(2)/f(2)} >0 for |2|] <r,, where r, is the

smallest positive root of the equation T,(r) = 0. The bound », is not

sharp since inequality (2.2) in Lemma 1 is not sharp. For k = 2, », turns

out to be the smallest positive root of the equation ¥;(r) =1—4r+

+2r2—7* = 0.

¥,(r) decreases with r in (0, 1) and vanishes at »r = r,, where 0 < 7,

< 3. And we find by actual computation Y’l(]/2 —1)< 0 and (1/2 —1)< %

This implies 7, < (1/2 —1), which is known to be the sharp estimate for

the radius of starlikeness of the class of functions f(2) such that f(z)/z e P, [1].

THEOREM 4. Let f(2) be as in Theorem 3. Then f(2) 18 convew for |z|
<1y = (0.179...)R,, where r, i8 the least positive root of

Ry —BRir—3Ryr2—r® =0
and R, = (k—Vk*—4)/2.

Re {z

>0
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Proof. Since f(z)/z € P,, we have Ref(z)/z> 0 for |z| < R,, [4].
Now consider the funection f, for any complex number a satisfying |a| < R,

_ J(0) By (2 + a) (B +a2)
Si(e) = ¢ { z ’
where { = Rﬁ(z+a)l(R§+dé). Let G(2) = 29,(2) = f({)(R:+az)*. Hence
i
hH(z) = ‘(ﬂﬁ = i“ +ao+6,2+..

Since f(2)/zeP,, we have Re{f({)/(}>0 for |{|<R, and since
(24 a) (R4 az)/z is positive real for [2| = R,, it follows that Ref,(2) > 0
for |z] < R,. Putting £R, = 2, for |&| <1, we have Ref,(R,&) > 0. Also
* Ji(Boé) = a_,/RBoé+ay+a,Ré+... By Lemma 2 we have |a,+@_,]
< 2Rea,. Also

= Byf(a), @ = B[(RS— lal*)f'(a) +2af(a)]

and

R2 3)2
{(—Igif"( a)+a(R;— laI’)f'(a)+¢‘f(d)}

a,_ =.Ro

Hence we have

[ (a) 2a 4R, 8|a| R, f(a)
@ "B SE=jar T @E—1e) @) T
L 2let |1 °R: | f(a)
®—1a |f@| T @E—a |f @]

Since e is any complex number such that |a] < R,, we can replace a by 2
and rewrite the above and using Lemma 4 we obtain for || < R,

f”(z)+ 272 4R,r 2(Rir?+4R,r2 +1%)
f'(2) " Ri—r| T Ri-22 " (BI—1r?)(RI—2R,r—1r?)’

where |2| =7 < (V2 —1)R,. Hence

f" (z) R’ + f’ m:f —_— GRgf’ + 4Ro” +2f‘
f'(z )}/ Bj—r  (Bi—r)(R}—2Ryr—1?)

provided T'(r) = B3 —B5R:r —3R,r*—r* > 0 and r < (/2 —1)R,. Oonsider
the equation 1 —6r/R,—3r/R) —r*/R} = 0.

Let 7, be the smallest positive root of this equation. Then 7,
= (0.179...)R,. Hence for [z| <r,, f(2) is convex. For k = 2 this
reduces to a result of M. O. Reade and others [6] which is sharp. Hence
the constant (0.179...) cannot be improved.

>0

Re{1+z
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