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On a theorem of inversive geometry

by HmosHl HArRUKkI (Waterloo, Canada)

Abstract. This paper proves a metrical theorem of inversive geometry by con-
formal mapping. Furthermore, this paper gives a proof that the above property char-
acterizes orthogonal pencils of coaxal circles from the standpoint of conformal map-
ping by solving a functional equation

1. Throughout this paper we include, unless otherwise stated, straight
lines and line segments among circles and circular arcs, respectively.

We denote orthogonal pencils of coaxal circles by F,, F,. Let two
arbitrary members of F, and two arbitrary members of ¥, be C,,, C,,
and C,,, C,,, respectively. Furthermore, let a curvilinear rectangle formed
by €1y, C1sy Coyy €y, be PP, Py P,. Here we put Py, = C};NCyy, Py = C13NCy,,
Py = 013NCy,y Py = 01,N0,;.

The following theorem of inversive geometry plays an important
role in the present note:

THEOREM A. (a) There exists exactly one member K, of F, such that
the opposite sides (circular arcs) P,P,, P,P; of the curvilinear rectamgle
P,P,P,P, are inverse with respect to K,.

(b) There exists exactly one member K, of F, such that the opposite
sides (circular arcs) P,P,, P,P, of P,P,P,P, are inverse with respect to K ,.

(e) If we denote by V the point of inlersection of the two orthogonal
circles K., K, which lies inside P,P,P,P,, then

1 1 1 1
= = -
P,V*  P,v* P,V P,V

holds.

In Section 2 we shall give a proof of Theorem A from the standpoint
of conformal mapping in analytic function theory (see [3]). Conversely,
in Section 3 we shall prove that property (c¢) in Theorem A characterizes
orthogonal pencils of coaxal circles from the standpoint of conformal
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mapping by solving a functional equation (see [1], [3] and [5], p. 106-112).
The purpose of the present note is to give this characterization of ortho-
gonal pencils of coaxal circles.

2. We shall give a proof of Theorem A. We put aside the degenerate
cases of orthogonal pencils of coaxal cireles, i.e., orthogonal pencils of
concentric circles (not straight lines) and concurrent straight lines passing
through the common centre, and orthogonal pencils of parallel straight
lines (see [6], p- 155). We discuss two cases.

Case 1. Consider orthogonal elliptic and hyperbolic pencils of coaxal
-circles. -

We may assume that the two pencils lie on the w-plane.. Furthermore,
we may assume that the two limiting points of the two pencils are at 1
and —1. Let C be a curvilinear rectangle formed by any four members
arbitrarily chosen from the two pencils. Consider the function w = f(2)
= tanhz. Then, there exist a non-empty simply connected domain D.
and four points 4,, 4,, 45, A, on the z-plane satisfying the following three
conditions:

(i) f is regular and univalent in D.

(ii) The four points 4,, 4,, 43, A, form the four vertices of a rec-
tangle which is contained entirely in D and whose sides are parallel to
the real and imaginary axes on the z-plane. Here the vertices 4,, 4,,
A,, A, are listed consecutively.

(iii) The four points f(4,), f(4.), f(4,), f(4,) coincide with the four
vertices of the curvilinear rectangle C on the w-plane.

The above facts result from the following mapping property of f(z)
= tanhz:

The horizontal and vertical lines Im(z) = const and Re(z) = const:
on the z-plane are transformed by the function w = f(2) = tanhz into
orthogonal elliptic and hyperbolic pencils of coaxal circles on the w-plane
whose two limiting points are at 1 and —1.

Let A,,A4,,A,, A, represent the complex numbers z+y,z—¥y,
x—1y, z+ ¥, respectively, # denoting the centre M of the rectangle 4,4,
Az A,. Furthermore, let M,, M,, M,, M, be the midpoints of the four
sides A,4,, A,4,, A;A,, A, A,, respectively. '

(a) The two points 4,, A, and the two points A,, A; are inverse,
respectively, with respect to the line segment M,M,. We denote the
straight line M,M, by L,. Since w = f(2) = tanhz, f carries L, into
a circle on the w-plane. Let this circle be K,. Since the images of the two
pides A,4,, A, A, are the opposite sides P,P,, P, P, of P,P,P,P, on
the w-planc, by the Reflection Principle of Analytic Functions (see [4],
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Pp. 221) the opposite sides P,P,, P,P, are inverse with respect to K,.
"The proof of the uniqueness of K, is clear.

(b) The proof is similar to that given for (a).

(c) Since f(M) = V and M represents the complex number z, we
have f(x) = V. By the identities

lcosh (2 +y)|* + |cosh (2 —y)|* = [cosh(z -+ )|*+ |cosh (z —7){

and
inh
|sinhy| = |sinhy|, f(2) = tanhz = Z:)nshzz
satisfies
1 " 1
If(z+y)—f(z)®  |f(z—y)—f(x)?
1 1

ford) —F@F  fe—9—f@F

Hence we have
1 1 1 1
+ = + ==
P,V P,V P,V? P, V?

Thus Theorem A is proved in this case.
Case 2. Consider orthogonal parabolic pencils of coaxal circles.

If we consider the mapping funection w = f(2) = 1/2, then we can
similarly prove the desired result in this case. To this end we use the fol-
lowing mapping property of f(2) = 1/z:

The horizontal and vertical lines Im(2) = const and Re(2) = const
on the z-plane are transformed by the function w = f(2) = 1/z into ortho-
gonal parabolic pencils of coaxal circles on the w-plane whose limiting
point is at the origin and whose two common radical axes coincide with
the real and imaginary axes. For the proof of (¢c) we use the identity
|z +y2+ v —y|® = |+ Y|+ | —¥|% Thus the theorem is proved.

3. We shall state the main theorem and prove it.

Let f = f(2) be a non-constant meromorphic function of a complex
variable zin |2| < + oo and let D be a non-empty simply connected domain,
where f is regular and univalent. Let A, 4,454, be an arbitrary rectangle
which is contained entirely in D and whose sides are parallel to the real
and imaginary axes on the z-plane. We denote by § the set of all domains
D satisfying the above conditions. Let a curvilinear rectangle formed by
the images of the four sides of A4,4,A4;4, under the mapping function
[ =f(2),ie, f(4;4,)0f(Ad.45)Vf(A;4,)Vf(A,A,) be P, P,P,P,. Here
we put P, = f(4,4,)Nnf(A,4,), P, = f(A,4,)nf(4,4,), Py = f(A,45)N
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Nf(Ad;4,), P, = f(A;4,)nf(A,4,). Furthermore, let V = f(M), where
M is the centre of the rectangle 4,4,4,4,.

Remark. Let M,, M,, M,, M, be the midpoints of the four sides
A, Ay, A, A;, A3 A,, A, A,, Tespectively, and let the line segments M, M,,
M,M, be L,, L,, respectively. Then V is, by the univalence of f = f(2)
in D, the only point of intersection of the two ares f(L,), f(L,) which lies
inside the curvilinear rectangle P,P,P,;P, on the w-plane. Here, by the
definition of generalized inversion (see [2], p. 87) we see that the opposite
sides P,P,, P,P; and the opposite sides P,P,,P,P, are inverse with
respect to L,, L,, respectively, on the w-plane.

The purpose of the present note is, as stated in Section 1, to prove
the following theorem:

THEOREM. Let D be an arbitrary domain belonging to S. Suppose that
w = f(2) (F const) is meromorphic in |2| < + oo. Then

1 1 1 1
+ = + ==
PV' P,V: P,V PV

holds for an arbitrary rectangle which is contained entirely in D and whose
sides are parallel to the real and imaginary axes on the z-plane if and only if

az+b __aexp(k2)+b

fle) = ce+d or f&) = cexp(ke)+d ’

where a,b,c,d are arbitrary complex constants and k is an arbitrary real
or purely imaginary constant with (ad —bec)k + 0.

Remark. By the following two facts we see that the property in
Theorem A characterizes orthogonal pencils of coaxal cireles.

(i) The horizontal and vertical lines Im(z) = const and Re(2) = const

aexp(kz)+b
 cexp(kz)+d
((ad —be)k + 0, k real or purely imaginary) into orthogonal elliptic and
hyperbolic pencils of coaxal circles on the w-plane, including the degener-
ate case, i.e., orthogonal pencils of concentric circles (not straight lines)
and concurrent straight lines passing through the common centre.

(i) The horizontal and vertical lines Im(z) = const and Re(z)
az-+ b
 cz+d
(ad —bc + 0) into orthogonal parabolic pencils of coaxal circles on the
w-plane, including the degenerate case, i.e., orthogonal pencils of parallel
straight lines.
Proof of the Theorem. By the above remark and by Theorem A
we have only to prove the “only if” part of the theorem.

on the z-plane are transformed by the function w = f(2)

= const on the z-plane are transformed by the function w = f(2)
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Let A, 4,4,4, be an arbitrary rectangle which is contained entirely
in D and whose sides are parallel to the real and imaginary axes on the
z-plane and let A4,, A,, A;, A, represent the complex numbers x -+,
x—yY,x—y,x+7y, respectively,  denoting the centre of the rectangle
A, A,A,A,. By hypothesis we have

1 1 \
fetn—f@rF = fe—y)—f@P
_ 1 n 1
@t —f@F  Ife—9)—f@)’
where v +y,x—¥,x—y,x+y €D with y + 0.
Clearing the denominators of both sides of (1) yields
(2) fw+y)—f(@)?If(@+7) —f@)?fle—9) —f@)® +|f(z—y)—
—f(@) P If(x+y) —Ff(@)P1f(e—7)—f(®)® = [f(z+7)—f(@)f(e+y)—
—f@) P f@—y)—f(@) 1+ f(@—y) — (@) f(@+y)—f(@) | f(e—y)—f ().
Rewriting (2) by repeated application of the formula |4 — B
—=(4—B)(4—B) (A, B complex), putting y = texp(ip), where %,

are real and ¢ is arbitrarily fixed, differentiating both sides of the resulting
equation eight times with respect to ¢ and putting ¢ = 0 yields

(1)

(3)  6720(exp (2ip)(2f" (x)f (2)f (@) * +-4f " (@)f (@) |f (@)[* —
—3f" (@)*f (2)2|f" () 12) + exp ( —2ip) (4" (2)f (@)If" (@)* +
+2f 7 (@)f (@)If (2)[* —3f” (@)2f (@) |f (@) %) +31f" (@) * " (2)1°)

= 6720 (exp (2ig) (41" (@) (@)If (2)I*+2f " (@) (&) If (@)I* —
—3f" (@)°f (@) |f (@)]*) + exp ( —2ip) (2" (@)F (@)f (@)1* +
+4" (@)f (@)1 (@)1 =31 @)f (@) |f (@)13) +31f (@) 1f* (@) %)

Since the representation of a trigonometric polynomial is unique,
we can equate the coefficients of exp(2ip) of both sides of (3). Hence
we have in D

2f" (2)f (@) If (@)* +4F" (@) f (@) (@)[* —3f" (@)2f (2)2|F" ()2
= 4f"" (@) f (@)If (@) * +-2f"" (@) f ()| f' (x) I‘—sf"(wVWV \f (@)]?

or
(4)  f@f @I @)= @F @) f (=
=J" (@) f (@) f'( -’v)l4 3 @) (@) If ()12
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Since f = f(z) is regular and univalent in D, we have in D

(5) If (@) * 0.
By (4), (5) we have in D
) @ (f"(m))z _ (fﬁ _, (f”(w))z)_
@)y *\f(x) fie) *\f'(e)
By (6) we infer that the regular function
(@) (f"(w) YD
f@ “\f@] 7

is real in D. Hence, by a well-known theorem in analytic function theory
we have in D

(7)

- )

f7@) (f”(w))2
f@ *\f(
where K is a real constant.

By the Identity Theorem, (7) holds at every point », where f = f(2)
is regular with f'(xz) + 0.

The left-hand side of (7) is the Schwarzian derivative of f = f(2)
(see [3]). Solving (7), we have, according as K =0 or K <0 or K > 0,

b k b
f(?) =::j__d or f(2) = :Zzizk:;j:d (k is & real constant), or f(2)
k b
— ‘::;II:((k:))i y) (k is a purely imaginary constant), where &, b, ¢, d

are complex constants with (ad —bc)k + 0. Thus the theorem is proved.
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