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A dual method for some class of systems
of variational inequalities

by Zdzistaw Naniewicz (Warszawa)

Abstract. The purpose of this paper is to give some necessary and sufficient conditions for
the existence of solutions for a class of systems of variational inequalities. Dual methods are the
main analytical tool of the paper.

1. Introduction. In the paper we establish some class of systems of
variational inequalities. This problem arises from theory of solid mechanics
with constraints where restrictions are imposed independently on deform-
ations and stresses, [14]-[17]. The dual problem for this system is proposed
and a relationship between solutions of these two problems is examined. The
results are then applied to obtain some existence theorems and to formulate
necessary conditions for the existence of solutions of the system under
consideration. Some known theorems for monotone-type multivalued map-
pings are employed, [1]-[3], [5]-[6].

2. Notations. Throughout the paper the following conventions are used:

(A1) V and Y are reflexive Banach spaces with dual V* and Y¥*
respectively. The norms on V and Y, the bilinear canonical pairings over
V*xV and Y*xY will be denoted by ||y, Il-lly, <5 Dvs <45 Dvs
respectively;

(A.2) Le(V—Y) is a linear continuous operator from V into Y with
domain D(L)=V. The adjoint operator is denoted by I*: Y* - V*
Moreover, we suppose that there exists positive constant ¢ > 0 such that
| Lully 2 cllully, YueV;

(A3) A: Y* - 2" is multivalued mapping from Y* into 2*. The set of all
ne Y* such that An # @ will be denoted by D(A);

(A4) ¢: Vo (—00, 0] and ¢: Y* »(—o0, 0] are convex lower
semicontinuous functions with domains D(¢) = {veV: ¢(v) < 0} # @ and
DW)={neY*: y(n) <o} #@. By ¢*: V*¥>(—ow, o] we denote the
conjugate function of ¢, dp: V— 2"" and ay: Y* — 2¥ are subdifferentials of
¢ and ¥ with effective domains

D(d¢) = {veV: dp(v) # @} and D(oY) = {neY*: dy(n) # O},
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respectively (dp(v) and ady(n) stand for the subgradients of ¢ at v and
of Y at n, respectively);
(A.5) feV* is any fixed element of V*.

3. The primal problem and the dual problem. We are concerned with the
following system of variational inequalities:

(u, o)e Vx Y¥
3.1 Ko—f,v—udy+o()—@l) =0, VeV,
‘n—o, Ao—Lu)y+y(n)—y(0) =0, VneY*.

DeriNITION 3.1. An element (u, 6)e Vx Y* is called a solution of system
(3.1) if the following three conditions are satisfied:

(3.2) ueD(dp), oeD(A)nD(W),
(33) (Lro—fiv—udy+o()—e@u)=0 forevery velV, ie.
Oel*o—f+0¢p(u) = Xo—f+u*: u*edp(u)},
(3.4) there exists ye Ao such that
n—a,y—Ludy+y(n)—yY(6) =20 forevery neY?® ie.
Oe Ao —Lu+ 0y (o) = \w—Lu+z: we Aa, ze 0y (o).

The primal problem (P) consists in finding solutions of system (3.1),
meant in the sense of Definition 3.1.

LEMMA 3.2. An element (u, 6)e Vx Y* is a solution of (P) if and only if the
following conditions:

(3.5) —I¥o+feD(0p*), oceD(A)nD(d),
(3.6) ucop*(—I*a+f),
3.7) Lue oy (c)+ A(o)

are satisfied.

Proof. Under assumptions (A.4) the equivalence between (3.2)-(3.4) and
(3.5)—(3.7) follows immediately from the fact that de* is the inverse mapping
of do, [5], [10]. W

Now, let us consider the following variational inequality:
oceY*,
{n—0, (o) +Ac)y+o*(—L'n+f)—@*(—*a+f) 20, VneY*

DeFiniTION 3.3. An element o€ Y* will be called a solution of the
variational inequality (3.8) if the following two conditions are satisfied:

(39) —I*c+feD(3¢*), oeD(A)nD(dY),

(38)
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(3.10) there exists yedy (a)+ Ao such that
=0, yy+o*(—L*n+f)—*(—-L*c+/) 20,
VYneY* ie. 0Oedy(o)+ Ao+ da(o),

where a: Y* —»(—o0, 0] is the function defined by
(3.11) a(n) = @*(—L*n+f), neY™

with domain D(x) = {neY*: —L*n+feD(p*)} (under assumptions (A.2)
and (A.4) it is convex lower semicontinuous and proper function).

The dual problem (P*) of the primal problem (P) consists in finding
solutions of the variational inequality (3.8), meant in the sense of Defini-
tion 3.3.

The following theorem establishes a relation between solutions of prob-
lem (P) and those of the dual problem (P*).

THEOREM 3.4. Let us assume that hypotheses (A.1}+(A.4) are satisfied and
let ¢ be an element of Y*. Then the following two conditions are equivalent to
each other:

(i) There exists ueV such that (u, c)e Vx Y* is a solution of problem (P);

(ii) o is a solution of problem (P¥*).

Proof. If e Y* is a solution of (P*), then (3.5) is satisfied immediately.
From (3.10) it follows that there exists yedy (g)+ A(o) such that

(12) (n—oa, y)y+o*(—L*n+f)—*(—L*o+f) 20, VneY™*
Let us define Ker I* = {neY*: L*n =0}, Im L={yeY: y = Lv for some
veV}. Setting in (3.12), n =o0+0, where 8eKer L*, we obtain

{0, y>y =20, V@eKer L*.

Hence ye(Ker L*)', where (Ker L*)* is an annihilator of Ker L*. Under
assumption (A.2), Im Lis a closed subspace of Y and in this case (Ker L*)*
=Im L, [10]. It follows that there exists ueV such that y = Lu. Hence
Luedy(c)+ A(o) and it implies that (3.7) holds. Now, we shall prove that
uedop*(—L*o+f). To this aid, let us consider inequality (3.12) by using the
fact that y = Lu:
 n—a, Lupy+o*(—L*n+f)—@*(—L*a+f) 20, Vnel*

Hence

(L*q—L*a, wyy +@* (= L*n+f)—@*(—L*o+f) 20, VneY*,

(=L*n~f—(—L*a+f), —udp+@*(—L*n+f)-

—@*(—L*0+/)=20, VneY*

Under assumption (A.2), L* is surjective, [6]. It implies that

(o*—(=L*c+f), —udy+*(v)—*(—L*6+f) >0, Vo*eV*
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Hence ue dp*(—L*a+f), ie. (3.6) holds. Finally, by virtue of Lemma 3.2 it
follows that (u, 6)e Vx Y* is a solution of (P). Conversely, if (u, o) is a
solution of (P) then, due to Lemma 3.2, conditions (3.5)—-(3.7) hold and (3.9) is
satisfied immediately. From (3.6) we have

(*=(=L*0+f), —udy+@* (") —9*(-L*c+f) 20, Vo*eV™
Setting v* = —L*n+f, ne Y* and taking into account that L* is surjective,
we obtain:

{I*n—L*¥c,u)y+o@*(—L*6+f)—@*(—L*o+f) 20, Vnel*
Hence

n—o, Lupy+o*(—L*n+f)—o*(—L*c+f) 20, Vnel™

It is equivalent to — Lue da(o). Using (3.7) we conclude that (3.10) holds.
This proves the assertion. l

4. Potential case. In this section, in addition to hypotheses (A.1)—(A.4),
we shall assume that A is a singlevalued monotone operator with the
potential F: Y* —»(— o0, ).

Let us define a function @: VxY* - [ —o0, 0] by

@1 @@, n=-Fm-vm+o, Loyy+e@—(f, )y, veV, net*

We recall that (u, 6)e Vx Y* is said to be a saddle point of a function @
if the following conditions are satisfied [5]:

(k) ®(u, o) is finite (in our case it is equivalent to ue D(¢), o€ D(¥)),

(kk) P(u, n) < P(u, 0) < P(v, 0), YVveV, VneY*

ProposiTiON 4.1. Let A: Y* — Y be a potential monotone operator and let
® be defined by (4.1). Then the following conditions are equivalent:

(i) (u, 0) is a solution of problem (P);

(i) (u, o) is a saddle point of P.

Proof. Let (¥, 0)e VxY* be a solution (P); then due to (3.2) we have
ueD(0¢p) < D(¢), ceD(0y) =< D), [10]. From (3.3) we obtain

4.2) (L*o—f,v)y+o@®) 2 (L*o—f,udy+o), VveV.

Under the assumption that 4 is a potential monotone operator from (3.4) it
follows that ¢ is a solution of the minimization problem [5]:

il}{ {Fm+¥(m—{n, Ludy}.
Hence
43)  Fm+ym—<, Ludy =2 F(o)+y(9)— <o, Lu)y, VneY*

Using (4.1) and taking into account inequalities (4.2) and (4.3), we arrive to
inequalities (kk).
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Conversely, if (u, 0)e Vx Y* is a saddle point of @, then from (kk) it is
easy to see that inequalities (4.2) and (4.3) hold (see (4.1)). From (4.3) it
follows that oceY* is a solution of (34), [S], ie. —Ao+ Luedy(o).
According to (4.2) we have —L*c+fe€dp(u)<ucdp*(—L*c+f), ie.
—L*o+feD(0p*). Taking into -account the above relations we arrive at
(3.9) and (3.10). Thus ¢ is a solution of (P*). Due to Theorem 3.4, (u, 0) is a
solution. of (P). W

Remark 4.2. Under the assumptions of this section problem (P) can be
written as follows:

44) inf sup @(v, n).
veV neY*
Now, let us consider the dual problem of (44) in the sense of minimax
problems [5]:
4.5) sup inf &(v, ).

neY* veV
Using (4.1), we get the following form of (4.5):
(4.6) — inf {F(n)+y (1) +a(m)},

ney*

where a is defined by (3.11).

PropPosITION 4.3. Let A be a potential monotone operator and let hy-
potheses (A.1)~(A.4) be satisfied. Then every solution of (4.6) is also a solution
of problem (P*). If, in addition,

oY +a) =0y +0a,

then o is a solution of (P*) if and only if ¢ is a solution of (4.6).
The simple proof of Proposition 4.3 is omitted.

5. Existence theorems. Using Theorem 3.4, we can formulate the fol-
lowing existence theorem for the system of variational inequalities (3.1)

THEOREM 5.1. Let hypotheses (A.1)-(A.4) be satisfied. Then the system of
variational inequalities (3.1) has at least one solution if and only if Oe
Range (A4 + oy + o).

Theorem 5.2 below is related to the problem whether Oe
Range(A4+ 0y + dax). This theorem we use in the next section. Its proof
follows directly from our Theorem 5.1 and Browder—Hess, Theorem 7, [3].
For further discussion concerning the problem Oe Range(T), where T is a
multivalued mapping, we refer the reader to [1]-[4], [71-[9], [12] (below
we use terminology of [4]).

~ THEOREM 5.2. Let hypotheses (A.1)(A.4) be satisfied. Let o+ dx be a
maximal monotone mapping from Y* into 2 with 0eD(0y +0a). Let,
moreover, A be a generalized pseudo-monotone mapping from Y* into 2¥ which
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is .coercive and has the property that for each bounded maximal monotone
mapping T from Y* into 2¥ with D(T) = Y* Range(A+T) =Y. Then the
system of variational inequalities (3.1) has at least one solution.

6. An example. In this section we shall formulate some necessary and
sufficient conditions for the existence of solutions of (3.1) under the
assumptions:

(A.5) ¢ =indg, where indg;: V- (— 0, co] is an indicator function of
a closed linear subspace K of V;

(A.6) ¢ = ind;, where ind;: Y* —»(— o0, oo] is an indicator function of a
closed linear subspace X of Y*;

(A7) A: Y* > Y is a singlevalued mapping with D(4) = Y*.

Under assumptions (A.5}HA6), ¢*=ind,,: V* —>(—o0, ©], where
K* = {v*eV*: (v*, v);, =0for all veK}. It is easy to see that the function
a: Y* »(—o0, o] defined by (3.11) is the indicator function of

Ly~ " (KY) = {neY*: —L*n+feK"},
ie. a= ind,_;—n(xl,.
Let us define the sets
* Y (KY)=i{neY* L*neK'}, Zt=lyeY: (4, y)y=0, Vnel}.

The subdifferentials dy: Y* —» 2" and da: Y* — 2" are multivalued mappings
with effective domains Z and L}~ '(K'), respectively, defined by

o: Zan—-ZXt,  da: L} Y(KYan-(L* 1 (KY),
where (L"“‘(K*))l =1{yeY: (4, y>yr =0, Vyel* 1(KY)}.

Using the above relations, the primal problem (P) can be written as

6.1) (u,0)eKxZ, —L*o+fecK', —Ao+Luelt
and its dual problem (P*) takes the form
(6.2) ceL¥ Y(KYnZ, Ocdo+Z*+(L* '(KY).

From (6.1) immeditely follows the following propositions:

PROPOSITION 6.1. A necessary condition for the existence of solutions of
(6.1) has the form ’

(63) fel*>+K-
ProposiTION 6.2. Let fe L*a. If (u, 0)e Vx Y* is a solution of (6.1), then
(6.4) (6—g, Aa)y =0

holds for any ge X such that L*g = f.
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Proof. Let (u, 0)e VxY* be a solution of (6.1). By Theorem 3.4 it
follows that (6.2) holds. Thus there exist ye X+ and ze(L*~'(K 1)*such that
Ao +y+z = 0. From (6.1) it follows that for any ge 2 such that L*g = f we
have 6 —geL* ' (K*)n XZ. Hence

(o—g, Ad)y = {(6—g, —y—2)y =0. u

ProrosiTION 6.3. Ler fe K*. If (u, 6)e Vx Y* is a solution of (6.1), then
the following condition is satisfied:

(6.5) (o, Acdy = 0.

Proof. From Theorem 3.4 it follows that (6.2) is satisfied and we have
ceX, —L*oc+feK*, Ac+y+z =0 for some yeZ! and ze(L““(Kl))l. By
the assumption feK' and due to the above conditions we obtain
—L*6eK*—f < K*. Hence ceL* ' (KY)nX. Thus

<Us Aa)y = (0, “y_2>y = 0. [ ]

The case where feL*X+ K", ie. f = f,+f,, where fieL*Z, f, = K*
leads to the following system:

(u,0)eKxZ, —IL*o+fieK*, —Aoc+LueX'

It is the case considered in Proposition 6.2.
Finally, using Theorem 5.2 we shall formulate some sufficient conditions
for the existence of solutions of (6.1).

THEOREM 6.4. Let hypotheses (A.1)-(A.7) be satisfied. Let, moreover, A be
a generalized pseudo-monotone operator from Y* into Y which is coercive and
has property that, for each bounded maximal monotone mapping T from Y*
into 2¥ with D(T) = Y*, Range(A+ T) = Y. Suppose that Z*+(L* "' (K%)) isa
closed subspace of Y and fe L*X. Then system (6.1) has ar least one solution.

Proof. By Theorem 5.2 it suffices to prove that the multivalued
mapping oy +d0a is maximal monotone. For closed subspaces X2 and
L* 1(K%) of Y* we have

(Z4+ (L YKY)) = Z L1 (K.
By assumption, 2*+(L*"(kl))l is a closed subspace of Y and therefore
S Y KY) = (E AL YKY)
The mapping oy +da: Y* — 2 takes the form
oY +da: TALF H(KYan— (L 1(KY)"

Now, let us observe that the above mapping is the subdifferential of the
indicator function

. . %
lndsz}-l(xl)‘ Y —;(_w’ w]
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which is a convex lower semicontinuous proper function. Then, due to the
known theorem [13], its subdifferential is a maximal monotone mapping. Wl

Remark 6.5. By the assumption that one of the subspaces X+ or
(L* ' (KY)" is finite-dimensional £ l+(L“"‘(K*))L is a closed subspace of Y.
Therefore in this case the assertion of Theorem 6.4 follows.
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