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Abstract, The existence and uniqueness of solutions of differential equations
of retarded type in a Banach space are considered under a monotonicity type condition.
The tools that ave available for the study of equations without delay pose problems
in this case since the domain and the range come from different Banach spaces. To
overcoine this difficulty, subsets of the domain have to be chosen carefully and weaker
forms of differential incqualities have to he employed.

Introduction. The study of the Cauchy problem for differential equa-
tions in a Banach space has attracted a lot of attention in recent years.
(See [1] for references.) The two main directions that are followed are to
find compactness type or monotonicity type conditions. The corresponding
theory for differential equations of retarded type in a Banach space is
lacking a similar development. One reason seems to be the difficulty in
imposing the assumptions since, in this case, the domain and the range of
the function involved in differential equations are not in the same Banach
space. ‘

In this paper we attempt to overcome this difficulty by imposing
conditions over a subset of the domain in a suitable way and employing
the weaker forins of the theory of differential inequalities. We prove
existence and uniqueness results which extend . similar results in [4].
We believe that this approach would be fruitful in other situations.

1. Statement of main results. Let 7 > 0 be a given number and let B
be a Banach space with ||-|. Let B, = C[[—7, 0], E] denote the Banach

space of continuous functions with the norm given by |lgllo, = max [lg(s)l.
. —T<3s0

It ¢, € R* and 2 € C|[t,— 7, o), E], then for any t e [%, oo}, we let x, € B,

be defined by

z(s) =x(+s), —r<s<0.
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Let f e C[RT x E,, E]. We consider the delay differential equation

{1.1) ' (t) = f(t, z)
with the given initial function ¢, € H, at ¢ = %, that i8,
{1.2) Tty = Po-

For notation and some discussion conecerning such equa.tlons see [2],
p. 185,
We shall be employing the following hypotheses:

(H,) f e C[R* x By, B].
{H,) Im —[uqo() —~p(0)+ R {f(t, @) —F (&, ¥)} I — g (0) —p(0)I]

h—0—
< g(ts llp(0) =4 (0)l),

whenever ¢, y € 2, where £ is given by

2 =1Ilp,pek: lpgs)—pE)N < lp(0)—p(0)l, —7<s<0].
(Hy) geCO[R*xR",R*], g(t,0) =0 andw =0 is the only, solution of

the scalar differential equation

uw' = g(t, u), u(tp) =0,
on [t,, oo). ' .
Let 8,(pe) = [pe Ey: llg—@olo < p]. Then (H;) implies there exist
pogitive numbers @, b, M such that
17, el < M, (1, @) € [ty to+a] X 8y (o),

and M < b/a. This observation we shall be using without further mention.

(H,) - for:each T >t,, and £ > 0 there is a number-§(7, ) > 0 such that

If(t, @) —f(s, @)l <e whenever (i, 99)1 (s, ¢) € [ty TI1X Sb(‘Po)
and [t—s| < 4.
Our aim is to prove the following results which generalize the results
of [4] to delay differential equations.

THEOREM 1. Let hypatheses (H,), (H,) and (H,) hold. Then for each
@, € By, there is a unique solution for the initial value p'loblem (1 1) and (1.2)
existing on [ty, to-+al.

THEOREM 2. Let hypotheses (H,), (H,), (Hy) and (H,) hold. Then for
each g, € B, there is a wnique solution for the initial value problem (1.1)
amd (1.2) existing on [t,, o).

2. Auxiliary results. We need the following known results.
LEMMA 1. Assume that
(a) geO[Rt x R, R"] and [t,, oo) is the largest interval of existence
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. of the maximal solution r(t,%,, u,) of
uw =g(t,u), u(l) =u>0;

(b) meO[[to, 7, o), B ] 8 a countable subset of [ty to+aly and
SJor every 1, =1, t, ¢ 8 for which

my (s) < m(ty), —7<8<0,
the differential tnequality
D_m(ty) < g(ts, m(t:)

holds.
Then, if my (8) < 4y, —7 <8< 0, we have

m(t) <7 (b, by, %), tE€[ty, 00).

For a proof see [3], Vol. II, p. 8.
LeMMA 2. Let the assumption of Lemma 1 hold. Suppose that [to, t1]
< [t, o0). Then there exists a &> 0 such thai 0< e < &, the mammal
solution  r(t, t,, tyy £) Of 2 Lo

w =g, u)+e ull) = 4‘0"‘3’

exists on [ty, t,] and Nmr(t, &y, Uy, ) = 7L, &y, %) . uniformly on [ty 2.1
>0 .

For a proof see [3], Vol. I, p. 12. '

Our next result is concerned with the construction of e-approximate
golutions to problem (1.1) and (1.2) which i§ an extension of a similar
important result in [4].

Lemma 3. Let (H,) hold and let a, b M > 0 be chosen such that ||f(t, ¢)|
< M on [ty, to+a] X Sy(po), where g, EEO 18 @ given initial function. Then
for each positive integer n, there is a positive integer N = N (n), & partition
{0, of [y B+ al, and a function z" from [t,—=, t-+a] into E such that

(1) m}‘ = Qo)

(ii) |82, — 7 < 1/n for each L< i< N;

(iti) fjof — w5l < Mlt—sl, %, 8 € [y, to+al;

(iv) ift e (87, 17), them the derivative (a)'(t) ewisls and equals

FE ., m,, ) for each 1 < i< N;
(V) %fllt;v T o< M7 —t7) and te[ty, 4], then |f(t, 9)—f(t s,

ap, < 1/n.

Proof. Let I =1, and define z"(1) = g (t—1) for ?e [t,—=, ]
Assume we have defined 3, ..., and z"(f) on [f{,— 7, #;] so that (1)—(5)
are satisfied. If t* = t,+a we are finished. If # < 1§ 4+ a choose &, subject
to the following restrictions:
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(1) t:';'-l—_(?,- Sh+a;

(ii) 6, < 1/n;

(iii) using the continuity of f at (&}, 7)) we choose §; sufficiently
small go that if 7 € [t” i+ 6] and |lp —aflly < M4y, then |f(¢, ) —f(@, )|
<1/n; '
and precigely one of conditions (iv) and (v) below hold.

(iv) 8;-+1} = ty-+a or & = 1/n; -

(v) for each f> 0 there exist I, y, with i, e [#, ] +d;,+p] and
llwp—2ille << M 6;+ B and yet

» If(%gs wa) —F (825 @p) > 1/n.

Define 7, , = &+ 6, and for ¢ e [#}, t},,] define

a(8) = 2" () + (L~ 1) F (7, ;)

If.we can show there exists N, with #y "= ?,+a we are finished. If not
" — 8 <t,+a and hence {:z; ,,},,=,D is Cauchy since ]|m” —wnuo < M — 1
f

—0 a8 4,7 — oo and 80 a}tn—e- 1. However, since f is contmuous at (s, v
. : !
there exists a < 1/n such that |lp—wlly < @ and [f—s| < a then

£ (85 wo) =S (¢, @)l < 1/3n.
For sufficiently large ¢,

a
th_g _— —_—yh ]
[t —s| < 31T and  |lyo—aijll < 3a

But

& =t ,—tr<s—1} < 2 <1 and ', #t+a

80 (iv) does not hold forcing (v) to hold. Consider (v) for § = 3a and there

exists @, , %, With

lpsa— 2l < M 6;+3a = M(tf,— 1) +Ha < §a and t, €[, 1+ &;+{a]

(this means [, —s| < a) and yeb [f(f, gs) —F(L0, )l > 1jn. Notice
[P4a — Pollo < ||991a t"“°+ “a;;:r, ol < fe+da =a< 1/n

and since [te—8 < o we hzwe

1 .
H gllf(’tga; Q’ia —f(t, @ in ”f(tgu Pya) — (8, w)ll + 11 (s, wo) —F(7, m:’@)l[
1 1

< —
31 3n n

This contradiction forces the existence of N, such that ih, =th+a m
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LeMvA 4. Assume the hypothases of Lemma 3 and for each positive
integer n let 2™(1) and {t"}, be the function and partition assured by
Lemma 3. If for each te[t,—7,t+a] we have z™(f) converges pointwise
to a function (1), then x(t) is a solution of 2’ (t) = f(t, x,), Ty, = Po-

Proof. Since {»"} is an equicontinuous family by (iii) of Lemma 3
we have z" —@® uniformly on [f,—7, % +a] and so z(t) is continuous.
Moreover, since 2" —x uniformly on [{,—7,% +a] we have (z");,— m;
uniformly on [ —z, 0]for each ¢ € [#,, ?, + a]. Furthermore by 3.1 of Lemma 3
et — @l = lof —@olle < [t — 5| M < aM < b thus each af € Sy(p,) and so
oy € 8y (o)

oo
Let 8§ = U {##}4 =1,...,N,} and note § is countable. Let

n=1

te(t;, 7 ) for each n; then

(4.1) hml]w,—mnua lim [, — (@")lo + (") — (@) 5 |lo]

n—»00 in n—>00 n

< B[z, — (&™) llo+ [t — 8 | M] = 0.

Recall from part (iv) of Lemma 3 (2™)'(t) = f(i} , (2"), n) for te (17,5 B 1)

Note K = {(¢, z(t))|t e [to,to+a,]] is compa.ct thus usmg (4.1), and (iv)
of 'Lemma 3 we have lim(a") = hm f( ”) ) =f(t, ) uniformly

n—>00
in [t5, 8y +a]— 8. Consequently for each t €[t to+ a)

L

a(t) = lim &" (1) = lim {p, (%) +f )'(s) ds) —%(to>+ffs z,)

n—>»03 n—>00

and thus «(?) is the desired solution.

LEMMA B. Assume the hypotheses of Theorem 1 and let {z"};.., be the
approximation assured by Lemma 3. Then {2} converges uniformly to & func-
tion a(t) from [t —,t,+a] into B such that g, = 2, and z; € S;(p,) for
each 1 € [ty, t,+a].

Proof. Let m,n be positive integers and define w,, ,(f) = ||a:”(t)—-
—a™(t)|. To av01d notational chfflcultles we will write w(#) instead of
Wi, o (8). Notice w; = |} = . Let {z:"},,,,,1 be the partition corresponding

to x and let § = U {ti}i=1 and observe S is countable. Suppose that for

x=1
11 € (b, fp+a]—8 we have w, ( )< w(t) for all se[—7,0]. Setting
¢ =} and p = af we see |lp(s) —y(s)l < [ (0) —v(0)] for all s & [—, O]
and so @,y Q. Let i,] be the mtegers such that te (8, )N (2, i7).
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For h sufficiently close to zero, h < 0 we have '
w(t+h)—w(ty) = lo"(8+ k) — @™ (G + )| — 0" (t,) — 2™ (%)l
= l&® (8) — o™ (82) + R {S (t2 @) —f (b, a’?:)}" ™ (84) — &™ ()1 +
+ [le™ (%, 'l‘!h) —a™ (ty+ )| — 0" (¢) — @™ (1) + & {f(tu ) —f (1, o)}
= |l (ty) —a™ (82) + 2 {f (%, 2F) —F (1, wtl }” — ll2™ (1) — &™ (24) ]| —
— (L™ (4 h) — " (8,) — Bf (8, o)1 — [0 (8, +h) — mm(tl) - hf (b1, )]l
> o™ (82) — ™ (1) -l-h{f (31, @) —F (5 )M — ko™ (82) — 2™ (8] —

— ll5™ (8 + h) — 2" (1) — Bf (1, @)l — 2™ (b1 + B) — 2™ (81) — Bf (b, @5))1.
Thus
B —wlt,
LD Z00) < 2 o () — 0 (0 B (7 1 08) —F 2B —

— [l™ (8,) — 2™ (8,)11] 4

o™t +h) — 0" (f) “'_”m (t+ h}z i GV an |,

-+

—f(ty @7})

and 8o

. (b + h)— ’w(ﬁ)
! h

[||w"(t1)— o™ (4)+h{f(t, wtl) —f (s, B —

- ”mn(tﬂ m(ﬁ)”] +

" (¢ +h) —a™ t ‘
AL ) _ @y )] + ey () (65 )1+
o™ (b4 h) —a™ (1,

L _ @y (1)

h + (&™) (#) —f (b1, 2T

Consequently a,pply'mg hypothesis (Ha) we obtam

D_w(ts) <ty w(t)+ @) (82 —F (Er, oP) |+ 1(@™)" (E) —F(E1y ..
By part (iii) of Lemma 3,

oz, —@lle < M by — %] < M (5 —%,1)

and so using parts (iv) and (v) of Lemma 3

1
(2™)" (8) —f (¢, mﬁ)” < -

and similarly

1
1(™)" (2,) — f( tyy ) }<‘E
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and we obtain the inequality

' i 1
D_w(t,) < g(t, w(ti))‘l'; + et

Applying Lemma 1 and noting w, =0, we have

w(t) < nm(t to,—+ 1) for each t &[4, %+ al,

1 1
where 7, ,, (t, toy . + _'n?) is the maximal solution of

1 1 1 1
o' =g(t, 'N;)-I-; +-E, 1b(to)=7+;n—.

1 1 .

By Lemma 2, lim 7, , (t oy — + ) = r(t, §,, 0) uniformly on [%,, {, + al,
M, n—~>00 - ‘ h

where 7(2, %, 0) is the mammal solution of w' = g(t, u), u(f) = 0 which

is identieally zero by (H,). This implies {z"(#)} is Cauchy and since the

sequence is equicontinuous we know lim #,(f) = @(f) uniformly on

[to—7, s+ a]. e

3. Proof of the main results. We now have the tools necessary to
prove Theorem 1.

Proof of Theorem 1. As a consequence of Lemmas 3, 4, and 5,
it is clear that the initial value problem (1.1) and (1.2) has a 100&1 solution
for each given initial function @, € E,. To see uniquencss suppose o (, &, o)
and y(t, %, ) are both solutions of (1.1) and (1.2) existing on [%, t+a]
and define m(f) = [lw(t, %, @o) — ¥ (¢, to, @o)ll- Notice m, = |[@;(ty, @o) — Ye(tos Po)ll
and if ¢ €[t,%+a] such that m, (s)<m(t) for al se[—7,0]
then we can let ¢ =, and y =a,. Thus |ip(s) —p(s)ll < llp(0) — (0]
forallse[—7,0]50 ¢, p € 2. Using the same tcohmque as nged in Lemma 5
we obtain .

D_m{t) < g(t,, m(t,)).

Applying Lemma 1 we get as before
m(t) < r(t, %, 0) for all tel[t,—z,i+al,

where 7(f, %, 0) is a maximal solution of %' = g(¢, %), u(%) = 0. Thus
by (Ha) we have 2(t, %, go) = (%, %, @) for all ¢ e [t—7, {,+a].

Proof of Theorem 2. Theorem 1 assures for local existence and if
global existence is shown the same proof assures global uniqueness. By
local existence there is a T > ¢, such that z(¢, %, @,) oxists on [t,—7, T).
Suppose T < <o and e > 0 then by (H,) there exists §(7, ¢) > 0 such that
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IF(t, @) —f(s, @)l < & whenever (i, ), (s, )€, T]1x 8y(p)) and [i—s|
< d. Choosing 0 < k<< 6(T, &) and such 'that ty < T'—h. Defining

m () = l@(t-+h, by po) —2(%, Ty ol for te [to) T'— )

we see my = @y, (t, Po) — B (b, o)ll- If for some 1, E(tyy T'—h) we
have my (s) < m(t) for all se[—7,0] then setting ¢ = ;4 (%, @),
P = @ (fy, o) We see @, € §2. Proceeding as in Lemma 5 we arrive at

D_m(t) < 9’(7:1; ’m/(tx))"‘ Hf(tu wtl+h(to’ ‘Po)) —Flt. + hy 5011+h(t0: ‘Po))”
< 9;('311 -’m(t1)) +e, by (Hy).
Lemma 1 now Yyields

(31)  lw(t+h, los @) — (1, o, gl < 7 (t; toy 1140ty Po) — @ollo + 8)
forallte[t,, T —h), where (2, t,, @) i8 the maximal solution of ' = g (¢, u)+
+ & ulty) = 145 (%) o) —Pollo+¢ = Yo.

. As i+ h and ¥ tend to T, & tends to zero and consequently by Lemma 2,
(By) and (H,), lim7(t, 1, 1,) = 0 uniformly on every compact subin-

Uup—+0
terval of [fy, co). Since UM [|l@y (%, Pa) — @l +¢] = 0 it follows from
s> N0

(3.1) that w(?, t, @) tends to a limit as ¢ > 7' and this is enough to define
z(t, ty, @) for all ¢ e [{,—, oo).
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