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Convexity of a class of functions
related to classes of starlike functions
and functions with boundary rotation

by S. Buargava and S. Nanjunpa Rao (Mysore, India)

Abstract. Let N} (8, b, ¢) denote the class of [unctions Hf=z(f’)"(f/z)", where f(2)
=z+a,z2+ ... is analylic on |z| < I,
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b and ¢ are complex numbers, —n/2 <2 <n/2, 0 < B <1 and k > 2 an integer. In this paper.
we obtain a disc of convexity for the class Nj(fi, b, ¢) and thereby unify and, at the same time,
generalize results concerning discs of convexity of generalized Robertson f{unctions. generalized
Moulis functions, generalized 4-spirallike functions and functions in other related classes.

1. Introduction. Let N denote the set of all regular functions f on the unit
disc |z| <1 such that f(0) =0, f'(0) =1 and for such a function f, let
- f'@ S
(1.1) Joey = Jpob, ¢) = bz ——+cz +(1—c¢),
o = el e e
where b and ¢ are complex numbers. Let then Nj (B, b. ¢) denote the class of
functions

(1.2) Hy=:z(f(f/z2),

where
2 B |

(1.3) | RedJﬂ:,—W df <km, z=ré? 0<r <1,
: _

(1.4) d=¢é%seci(1-p)"', 0<p<I,

n. k > 2 an integer.
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We make the following additional notations:

< - - -1 " "1
(15) iy =i, c)=f7=b%+c{f7—;},
(L.6) Ny = Ny (b, ¢, v) = Jjey—vJ2, (v complex),
so that
(1.7) Ni5(1,0,3) =11z,
the Schwarzian of f. In what follows we also use the following polynomials:
(1.8) Q;(r)=ap—a,r+a,r?
with
(1.9) ao=Red >0, a, =k|éd™"|, a,=Re(20d™'-9),

(1.10) T, (r) = |d/u| 12Q; (N +Qa(r)—2Re(d—1)(1=r?)} Q5 (r) Qu(r) -
=2ld/ul (11?2 Q, (N —12J (0, k, 1) Q5 (117,
where u =1 or d and &' = 2/(2—d)

- (k> —4)/12, k=4,
1.11 JO, k, 1) =
( ) ( ) {(k—l)/S, 2<k<4
Further. let
oy dibody g
(1.12) R; = 2a,
ao/al, a, = 0,

the radius of positivity of Q;(r).
In Section 3 we prove the following main results.

Tueorem 1.1. Let H be in N} (B, b, c). Let

3—/4sec? -3 =
(1.13) 0<f <> 4° <1, cosi>1/3,
and let Ry be the least positive root of
(1.14) T.(r}) =0
with

u=1 if R, or Ry is min R, Ry, Ry},
u=d if R, is min!R,, R;, R;).
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Then
(1.15) Re(l+zH"/H)>0 in 0<r=|z] <R,.

CoroLLARY 1.1. If fin N satisfies (1.3) with b =1, ¢ =0, that is, if f is in
the Moulis class V}(B) [4], then zf is convex in the disc |z| < R,. where Ry is
as in the theorem.

In particular, the corollary is true for

(1) Robertson functions (put f = 0),

(1) functions of bounded boundary rotation (4 =f =0),

(i11) convex functions of order B (4 =0, k = 2).

CoroLiary 1.2. If fin N satisfies (1.3) with b =0, ¢ = 1, that is, if [ is in
the generalized Pinchuk class Ut (B) ([7]. [6], [2]). then fis convex in the disc
lz| <R,, where Ry is as in the theorem.

In particular, the corollary holds for functions in (i) the class U2(0) [7],

(i) the class U2(B) [6] when k = 4. Further, in the latter case, R, can be
obtained as the least positive root of

(1.16)  Ty(r) =1-3k(1=B)r+ 6 —8B+k*(1—p)* 12—
—k(1=-B@B=4p)r*+(1=2p8)*r* =0, k=4.

Thus a result of Padmanabhan and Parvatham [6] is contained in our
Theorem.

2. Some lemmas. We first note that the class V, of Paatero [5] consists
of those functions f in N satisfying (1.3) with 2=f=0,h=1, ¢ =0.
Lemma 2.1. Let f and g in N be related by

(2.1) g'(z) = [H/z]".
Then f satisfies (1.3) if and only if g is in V.
Proof. Taking logarithmic derivatives in (2.1), we have

Zg”/g, = d(Jf_l)v
and hence

Re(1+z—g,—)=Rede—L.
g I-B

Using Pinchuk (7] criteria for g to be in ¥, we get the required result.
LemmMma 2.2. Let fin N satisfy (1.3). Let F be another function in N defined
by

1 H a |
(2.2) F(z) = —— [ o _~_ 1,
(2) (1+az)?| & Hy, ¢

B Z+4+a
" l+az

, lal < 1.

Then F is in V,.
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Proof. Given fin N satisfying (1.3), we define g in N by (2.1). Then, by
the above lemma, g is in V. We now define F by
_ 9()—g(a
(1—=lal*)g’(a)

Then, by variational principle of Robertson [8], F is in V. Substituting it for
g, we have (2.2).

F(O)y=0, F(2)

Lemma 2.3. If f in N satisfies (1.3) and 6 any nonzero complex number
with Red > 0, then

Qsr

1_'.2

(2.3) RedJ, (b, c) = >0, 0<r=|zl<R;<1,

where Q4(r) and Ry are as in (1.8) and (1.12) respectively.

Proof. By Lemma 2.2 we can choose g in the Paatero class ¥, such that

: Hee |° z+a
g’(z):const-(1+ﬁz)_2[% ) C=m, la| < 1.
Hence |
g'(z) 2a 1-|a? .
= — + dJ ;.
g (2) I+az (l+az)?  '°

With z = 0, this gives, on using the Pick [1] estimate: |g”(0) <k,
ld (1 —lal®) J ;o —2a] < k.

Changing « to z and multiplying throughout by |zd™'|, we get
(1=r)J oy =2r2d™ Y < k|d™ Y r.

Hence

2r2éd= k|d™'é|r S Q;(r)

1—r? 1—r2 7 1—r?

Re(dJ,) = Re(5+6zJ,) > Red+Re

where Q;(r) 1s as in (1.8).

That Qs(r) > 0 when r = |z| < R;, where R; is as in (1.12), follows from
the standard result for positivity of a quadratic form. Finally, it is easy to
check that R; < 1 is equivalent to 1+u, < a, which is true.

Lemma 24, If fin N satisfies (1.3), then

6J (0, k, 1)

Nyo(b, ¢, d2)| € ———=,
| f(-)( /)l |d|(1_r-)-

where J is the Moulis function [3] (in a slightly different notation) given by
(1.11).
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Proof By Lemma 2.1, we can take a g in V; satisfying (2.1). Differenti-
ating (2.1) logarithmically, we have ¢"/g = dj_f, and hence dN,., (b, ¢, d/2)
= g, z|. the Schwarzian of g. The theorem is now at once proved by using
Theorem 8 of Moulis [3] with J =J, x =0 and f =g there.

3. Proof of the main results.

Proof of Theorem I.1. By the definition of N} (B, b, c), there exists
an f in N satisfying (1.3) such that (1.2) holds for H = H,. Differentiating
(1.2) logarithmically, we have

31 z—=J,.
(3.1) T
This similarly yields
zH' zJ!
(3.2) 1+ =J,+-L.
72 ! J,

From Lemma 24 we have, with §' = 2/(2—d),

6J(0,k, 1) |. d. J iz 1
3.3 St SN I Ty -1 D A | e Y _
09 Grsy > =393 = 5 (s 5, ! d)\
Now, since
_ 1 ) . 2(1=p)(1-2p)
(3.4) Red = 3 >0 and Reé = T2 +an®

applying Lemma 2.3 in (3.3) repeatedly (with 6 = 1, d and d') and using (3.2),
we have '

(3.5) Re(l +z%,—:)

2T .
S Q0 e 4 1 6r>J (0, k, 1)

5+ - N - 2
(1=r7) 2 Re(d'Jy) (1—=r3?ldJ,]
> I (r)

21d](1=r?) Qy (N Q1 ()
where T,(r) is as in (1.10) with u = 1.

Here, we have assumed R, = min |R,, R, R;!, so that Q4 (r), Q,(r) are

strictly positive (by Lemma 2.3) and Z, (r) is continuous. The other two cases

are treated in the end. Now, {from the above definitions of Z, and T, we
have, on simplification,

(3.6) Sgn T,(0) = Sgn(f—B)(B—F>).

+Re (1 —d)

=Z,(rn in0<r <Ry,
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where
3+ /4seci -3
.Bla ﬂz = 4 s
respectively. Conditions (1.13) in (3.6) and (3.5) give
3.7) T,(00>0 and Z,(0)>0.

For the latter we have also used Q;(0) = Red’ > 0 from (3.4).
Now, (1.10) gives

(3.8) T.(R) = —12J(0, k, )R} Q5 (R,) <O

since, by Lemma 2.3, Q;(R;) = 0 (R, < Ry).

That there exists a positive root, and hence the least positive R, (< R;)
of T, (r) = 0 follows from (3.7) and (3.8). Thus T;(r) > 0in 0 < r < R,. Using
this in (3.5) gives (1.15), proving the theorem in the case R,
= min R, Ry, R;}. In the case R; = min \R,, R,, Ry, the above argu-
ments can easily be modified to show that R, the least positive root of T, ()
= 0, exists with R, < R; and (1.15) holds for this R,. Lastly, in the case R,
=min R, Ry, R;! we can retrace steps from (3.5) onwards and show that
(1.15) holds when R, is the least positive root of T;(r) = 0, where T,(r) is as
in (1.10) with ¥ =d. This completes the proof of Theorem 1.1.

Proof of Corollary 1.1. If fin N satisfies (1.3) with b = 1, ¢ = 0, then
(1.2) gives H, = zf" and for the proof of the corollary it is enough to put H
= H; in Theorem 1.1.

Proof of Corollary 1.2. If fin N satisfies (1.3) with b = 0, ¢ = 1, then
(1.2) gives H; = f and for the proof of the first part of the corollary it is

enough to put H = H; = fin Theorem 1.1. For the particular case, we have
that if A =0=b and ¢ =1, then

1 ,_ 2 _21-p
d—m and ¢ =5 dT 12
are real and positive. Thus, substituting in (1.8) and (1.12), we get
Q% _ 9

(3.9) = Ql and Rd = Ro" = Rl .

d o'

Hence the three cases of Theorem 1.1 merge. Substituting (3.9) in (1.10), we
have

(3.10) Ty () = Ty(r) = AT, (1) Q, (r),

where A = 4/(1-2p) > 0,

(B.11) AT, () =dé {2+d)Q, () —=2(1—r?)(d-1)! Q,(r)—
—2d(1—-r2—128'J(0, k, 1)r?
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which (but for the factor A) reduces to the expression in (1.16) on simplifica-
tion. Now, from (3.7), (3.10) and (3.11) it is easy to see that Ty(r) =0 has a
positive root and the least positive root R, is such that R, < R, and that
this is also the least positive root of T;(r) = 0. If fis in N satisfying (1.3) with
b=0, c=1 (12) gives H; = f and convexity of fin 0 <r < R, now follows
from (1.15) on taking H=H, = .
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