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of analytic functions*
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1. Imtroduction. Let E = {2: |¢| < 1}. Suppose p is a pos1t1ve integer
and let 8*(p, a) denote the class of functions f(z) = 2P+ Z'akz" which

p+1

are regular in ¥ and satisfy Re{zf'(2)/f(2)} > a,2¢H,0 < a < p. The
members of S*(p, a) are p-valent and starlike in F [2]. Let n > p be

a positive integer and suppose g,(2) = Ebkz", b, # 0, is regular in K.

We consider the class of functions &, (2) = f(2)4+¢,(2), where f(2)eS*(p, a)
and g, (2) satisfies Re{g,(2)/f(2)} > —1,2¢E. In the first part of this
paper we determine the ralius of p-valent starlikeness for this class and
also for the subclass consisting of those functions &, (2) = f(2)+ g,.(?)
for which |g,(2)| < |f(2)|, z€H.

Let OS*(p, o) denote the class of functions h(z) = 2+ chz which

p+1

are regular in ¥ and satisty Re{k(2)/f(2)} > 0, z¢E, for some f(2) 8" (p, a).
When p = 1, a = 0, this definition gives the class of close-to-star functions
introduced by Reade [6]. If h(z)eCS*(p, a), then h(z) = f(2)+ [h(z) —

—f(@)] = f(2)+9g.(2), where f(2)e§'(p,a) and g,(2) = f,’bkz" (n > p)

is regular and satisfies Re{g,(2)/f(2)} > — 1, zeH. Similarly, if |h(2)/f(2) —
—1] < 1,z2¢E, then h(z) = f(2)+g,.(?), Where 19,(2)] < |f(#)], 2ze E. Thus,
the results mentioned above yield the radius of p-valent starlikeness
for the class CS*(p, a) and that of the subclass of C8*(p, a) consisting
of those functions h(z) which satisfy |k(2)/f(2)—1| < 1,zeE, for some
f(z)e8*(p, a).

Suppose 0 < g < 1. In the last section we give the radius of p-valent
starlikeness for the two subclasses of C8*(p, ) consisting of the functions
kh(z) which satisfy respectively Re{h(2)/f(2)}'’ > 0, and |{h(2)/f(2)}'/ —1]
<1, zeE, for some f(2)eS"(p, a).

* This is a part of the author’s Ph. D. thesis written under the direction of
Professor 8. M. Shah at the University of Kentucky.
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The results in the paper are extensions of some similar work done
by MacGregor [3] and [4].

2. Preliminaries. We shall make frequent use of the fact that for

a function h(z2) = 2P+ Z‘ckz" which is regular in |2] < r, the condition
P+l
Re{zh'(2)[h(2)} > 0, |2| < r, is necessary and sufficient for h(z) to be

p-valent and starlike for |2| < r [2].

The following lemma is well-known for the case p =1,a =0 ([5],
p. 173, problem 11). The general result is easily obtained from this special
case.

LeMMA 1. If P(2) = p+ > pi2" is regular in E and satisfies Re{P(2)}
>a,0< a<p, then 1
— (p—2a) 2|
1+ |2

We shall also need the following extension of Schwartz’s lemma
(1], p. 290).

LEMMA 2. If ¢(2) = dy+ ) &2, m =1, is regular and bounded by 1
in E, then m
m 2™ (1— |p(2)[)

) Re{P(z)} > L ., zeH.

(2) @' (2)] < 1— o™ y, ZeH.
If dy = 0, then

(3) lp(2)] < [o|™, 2eB.
3. Main results.

TacoreM 1. If f(2)eS*(p, a) and Re{g,(2)/f(2)} > —1, z¢E, then
h,(2) = f(2)+ g.(2) is p-valent and starlike for |2 <r(p,a,n), where
r(p, a,n) is the smallest positive root of

Alp,a,n;2) =p—(p—2a)2—2(n—p)a"P—2(n—p)a" "+ —
—p@* P 4 (p—2a) P = 0,

Proof. The function %(2) = —22/(1+ 2) maps E onto the half plane
Re{w} > —1, and by hypothesis, g, (2)/f(?) is subordinate to %(z). Thus,
there is a function ¢(2) which is regular and bounded by 1 in F such that

fz)  1+¢(2)

Furthermore, ¢(2) has a zero of order n—p at z = 0. It follows that

1—<P(2)}
1+¢(2))’

o) =10}
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and a computation yields
h(a) _ f'(5) 29 ()
ha(2) fley  1—g2a)’

The functions zf'(z)/f(z) satisfies the hypotheses of Lemma 1, so
from (1) we obtain

e =zh @), p=(p—D0ld _ Zillpe)
ha(2) 141 =@l

Applying (2) with m = n—p yields
2| lg"(2)| _ (n—p) 2" P (L—lp()|})  (n—p)|e|*?
=g @) ~ (A= B P) (I— lp@)})  1— e
and thus

e {zh WD) p—(p=2a)el _ 2(n—p)l"”
hn(2) 15 el 1= e

_ AMp,y a,n; (2|
(14 [2)) (1 — |e[*»=2) "

The last expression is positive for |z| < r(p, a,n), and 80 h,(z) is
p-valent and starlike for |2| < r(p, a, n).

I f(z) =2°/(1+2)**"9 and g,(2) = —2:" Pf(z)/(1+2""?), then
Re{zh, (2)/h,(2)} = 0 for 2 = r(p, &, n). Thus, for this choice of f(z) and
gn(2) the function h,(z) is not p-valent and starlike in |2| < r for any
r>7r(p, a,n).

COoROLLARY. Re{g,(2)/?*} > —1, ze¢E, then h,(2) = #"+g,(2) 18
p-valent and starlike for

" <{p—n+l/(n—p)“+p’}""‘“”
P

Proof. Letting f(2) = 27 in Theorem 1 yields

o { z";»(z)} S 2(n—p)le|”®  p—2(n—p)la" P —plafft?
h,n (Z) 1__ Iz|2(n—f‘) - 1__ Izlz(n_p) ]

so Re{zh,(2)/h,(2)} > 0 for

—p—V(n— (n—p)
1zl<{n P n/(_np p)=+p=}” ?,

The radius is exact for the choice g,(2) = —22"/(14-2""7).
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TEEOREM 2. If f(2)e8%(p,a) and |g,(2)| < |f(2)l, 2¢E, then h,(2)
= f(2)+ g, (2) is p-valent and starlike for |2| < R(p, a, n), where R(p, a, n)
i8 the smallest positive root of

p(p, a,n; ) = p—(p—2a)z—na" " P—(n+2a—2p)a™ P = 0.

‘Proof. Let ¢(2) = g,(2)/f(z) = Z'dkzk. Then ¢(z) is regular and
bounded by 1 in E, and n-p

b (2) = f(2) {1+ @(2)}.
A computation yields

eh,(2) _ #'(2) 29 (2)
ha(2) — f2)  149(2)’

and so

Re {zh;(zo} L P—(p—2a)f _ |ol ¢’ (2)]
h(2) 17 142 1+e()

Applying (2) and (3) with m =n—p we get

lel " ()] _ (n—p) 12" *(1— g (2)I?) o (n=p) """ (A + [2]"7)

L+e@) — A=) (1—lp(2)]) 1— Jo*¥)

Thus,

R {zh;(z)} p—(p—2a)lz] (n—p)l™?  u(p,a,n; )

o > — np n=py !
by (2) 1+ 2] 1— 2" 1+ 1)) (1 —[2|*77)

and the last expression is positive for |z| < R(p, a, n).

To see that the result is sharp let f(z) = 2?/(1+2)*®® and g,(2)
= —72""Pf(z), in which case, Re{zh,(2)/h,(2)} =0 for z = R(p, a, n).

COROLLARY. If |g,(2)| < |2|°, zeH, then h,(2) = 2°+¢,(2) is p-valent
and starlike for |z| < (p/n)"®=P), ‘

Proof. Letting f(z) = 2 in Theorem 2 yields

Rel?h;(z)} N o DL R el ,
ha(2) R B

and the result follows. The radius (p/n)/®~® is exact for the choice

gn(z) = —2"
4. Throughout this section k(z) denotes a function of the form

h(z) = 2+ Y ¢,?* which is regular in E and vanishes only at z = 0.
p+1
We assume 0 < < 1.
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THEOREM 3. If f(2)e8*(p,a) and Re{h(2)/f(2)}'” >0, z¢E, then
h(z) is p-valent and starlike for

(p+p—a)—V(p+p—a):—p(p—2a)
P—2a

2l <a(p,a,f) =

H

where the expression above is defined by its limit when a = p/2.

Proof. With the appropriate choice of the branch, {h(z)/f(2)}?
takes the value 1 at z = 0 and is subordinate to (1—=z2)/(1+2). Thus

1— 8
h(2) = f(2) {ﬁ%} ’

where ¢(z) is regular and bounded by 1 in E, ¢(0) = 0. A computation
yields

hy(2) _ of'(2) 22’ (2)
W) 16 1-¢()’

and from (2) with m =1 we get

Re{zh;(z) _ p—(p—2a)le] _ 2Blzl ly/(2)

ho(@) ) 14 1—lp(2)?
L P—(p—2a)l] 2Bl
T 141 1—Jef?
_P—2(p+p—a)ll+(p—2a)*

1— 2|2

The last expression is positive for |2| < o(p, a, f), and so h,(2) is
p-valent and starlike for |2| < o(p, a, ).

The radius o(p, a, f) is exact for the choice f(2) = 2°/(1+2)*®~? and
h(2) = f(&){(1—2)/(1+2)}".

COROLLARY. If Re{h(2)/:"}'* > 0, z¢E, then h(2) is p-valent and
starlike for

Pl had s

J2|

Proof. If f(z) =2 in Theorem 3, then

Re{"’""z’}> _ 2 _ 2R plel
h(z) 1—-|z[2 1— |22

and the result follows.
The radius is exact for the choice h(z) = 27 {(1 —=2)/(1+2)}".
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THEOREM 4. If f(2)e8*(p,a) and |{h(2)[f(2)}'’—1| <1, z¢E, then
h(z) is p-valent and starlike for
(2p+B—2a)—V(2p+ f—2a)’— 4p (p— 2a— )

2(p—2a—p) ’
where the expression above is defined by its limit when a = (p— f)/2.

Proof. With the appropriate choice of the branch, {h(z) [f(z)}'*
takes the value 1 at 2 = 0 and is subordinate to 1 4z. Thus,

h(z) = f(2) {1+ 9(2)),
where ¢(z) is regular and bounded by 1 in E, ¢(0) = 0. It follows that
W () _ of') | p(2)
h(2) fe) 149’
and from (2) and (3) with m =1 we get
Re{z""z’ _p=(=20)] _ llly' (2
h(z) 14 12| 1—|p(2)]

_ P—(p—2a)ls Bl
T 14 1— 2|

p—(2p+B—2a) 2|+ (p—2a—f) 22
1— 2|2 '

2] < Z(pyaB) =

The last expressions is positive for |2| < X (p, a, f).

The radius X(p, a, f) is exact for the choice f(z) = 2P/(1-+ 2)*®~ 2
and h(z) = f(z)(1—2).

COROLLARY. If |[{h(2)[P}*—1| < 1, 2¢E, then h(2) is p-valent and
starlike for |z| < p/(p+ PB).

Proof. Letting f(2) = 2” in Theorem 4 yields

Re{z""”’}> _ bRl _p—(tA)
h(z) 1— |7 1— 2|

and so Re{zh'(2)/h(2)} > 0 for |2| < p/(p+ B)-
The radius p/(p4p) is exaet for the choice h(z) = 27 (1—2z)%.
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