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Abstract. Consider the system of diflerential equations

(1) ki = gi(t)+ ZJ (glj(t)+glj(‘))xj; xi(to) = X?, i= 10 21" "y
il

where g,(t), ¢;;(t}) and §;(t) are continuous functions (in general, complex-valued) of the real
variable ¢, for 1, < t < o0 and x° = (x9, x9,...)e C, the space of convergent sequences. System (1)
can be written in the form X = A(f)x, x(0) = x°. Suppose that for each t€[0, ), A(¢) is the
infinitesimal generator of a C°-semigroup, A(t): D «¢ C—C is densely defined, and assume the
existence, uniqueness and continuous dependence of the solutions of (1), in [0, oo). It is proved that
for t > t, and under some conditions on the coeflicients g;(¢), g;(t) and g;;(t), there exists a system
of linearly independent solutions, (x,(1))¥*, x;(t) = (xy;, X2i,...) such that lim (xix(8)/ k(1)) = O for

every i # k. Furthermore, if i(x,(t)) is the Lyapunov number of the solution x,(1), i = 1, 2,..., then
¢t

Alx;(0) = lim ‘,Lj' Re(g;(s))ds. The results generalize theorems of Szmydt [12] and Perron [11]; the
S0

proof relies on a topological method presented in [15].

1. Introduction. The first investigations of countable systems of ordinary
differential equations date back to the origins of functional analysis around the
last turn of the century.

In course of time one was led to consider such systems in connection with
concrete problems in natural science such as branching processes, Hille [5],
solution of partial differential equations by Fourier Methods, Lewis [7],
Dickey [4], and semi-discretization of Cauchy’s problems for parabolic
equations, Voigt [13]. In the following we apply a topological method
presented in [15] to study the asymptotic behavior and give a formula to
calculate the Lyapunov number of a countable linear non-autonomous system
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of ordinary differential equations. An overview of the theory of countable
systems of differential equations is given in the books of Deimling [3] and
Zautykov and Valleev [14].

2. Preliminaries. We begin by recalling a few definitions and results from [6].

Suppose X is a Banach space, R* = [0, o0}, u: Rx X xR* —> X is a given
mapping and define U(o, t): X > X for 6eR™ by Ul(o, t)x = u(s, x, t).
A process on X is a mapping u: Rx X x R* - X satisfying the following
properties:

(1) u is continuous,
(i) U(o, 0) = I (identity),
(i) U(a+s, ) U(o, s) = U(a, s+t).

A process is said to be an autonomous process or a semidynamical system if
U(o, t) i1s independent of o; that is, T(t)=U(O, ¢), t >0, and T(t)x is
continuous for (t, x)e R* x X.

DEFINITION. Suppose u is a process on X.
The trajectory t7 (o, x) through (g, x) € R x X is the set in R x X defined by

t* (6, x) = {(o+1, U(o, t)x)| teR*}.
The orbit y* (o, x) through (o, x) is the set in X defined by
vt (o, x) = {U(a, t)x| teR"}.

We assume in the following that the integral through each (o, x)eRx X 1is
unique. We define 77" (x) = {(s, y)e Rx X| 3t > 0 such that U(o, t)y = x}. If
P,= (0, x)eRx X and zey™ (o, x), we define

t,=inf{t 20| U(o, t)x =2}, Q,=(o+t,, U(o, t,)x),
[Po, Q.1 ={(o+¢, Ug, )x)] 0< e <t}

Let Q be an open set of RxX, w an open set of 2, w #©J and
0w = @ N (Q—w) the boundary of w with respect to Q. We put

S° = {P, = (0, x)edw| Izey* (o, x) with
(Po, 0.) %@ and (Po, 0) > = D),
S ={Qedw| IP, = (0, x)ew with Qe1* (0, x) and [Py, Q) c w},
S*=58°nS.

The points of S are called egress points. The points of S* are called strict
egress points. Given a point P, = (6, x)€w, if the trajectory ¥ (o, x) of the
process is contained in w for every t >0, we say that the trajectory is
asymptotic with respect to w. If the trajectory t* (o, x) is not asymptotic
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with respect to w, there exists ¢ > 0 such that (o+¢, U(o, t)x)e éw. Taking
tpo =10f{t > 0| (o+1¢, U(o, hx)edw}, Q =(0+1,, Ulo, t,)x) = C(P,),
we have

[Py, Q) c w.

The point C(P,) is called after Poincaré the consequent of P,. Define G to
be the set of all P, = (g, x)e @ such that C(P,) exists and belongs to S*. G is
called the left shadow of w. Consider the mapping, called the consequent
operator,

K: $* UG- S*,
K(Py) = C(P,) if Pyew and K(P,) = P, if P,eS*.
The following lemma is proved in {10]; see also [15].
LEMMA 1. The consequent operator K: S* U G—S* is continuous.
We will need the following result of Wazewski {15], [10], [6].

LEMMA 2. Assume that there exist sets W, S, Z; W open, S < 0W and
ZcWuSs, Z#, such that
(i) S =S*,
(i) ZnS is not a retract of Z,
(i) ZnNS is a retract of S.

Then there exists at least one point P, = (0, x)€ Z n W such that C(P) does not
exist; that is, ¥ (o, x) = W.

Examples of processes are described by differential equations in a Banach
space X,

x=Ax+f(t, x), x(0)=x,.
3. Main results. Consider the system of differential equations

(1) x; = g;(t)x; + Z (gij(t)"'gij(t))xj’ x(to)=x2, i=12,...,

i=1
where g;(t), g;;(t) and §,;(t) are continuous functions (in general, complex-va-
lued) of the real variable ¢ for t, < t < o0 and x° = (x?, x3,...)e C, the space of
convergent sequences with norm {|x°|| = sup (jx?|). System (1) can be written in
the form ‘

(2) x = A@)x, x(0)=x°.

Suppose that, for each t€[0, o0), A(t) is the infinitesimal generator of
a C%semigroup and A(t): D = C—C is densely defined in C. We assume the
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existence and uniqueness of a continuously differentiable solution of (1), as well
as continuous dependence of solutions with respect to initial data [3], [9].
Our purpose is to study asymptotic directions of the solutions of (1) and to
generalize the results of Perron [8], p. 173, and Szmydt [12], Corollary 1,
Remark 2, p. 30.
The principal tool used here is a topological method developed in [15].
Theorems and notations used here can be found in [15], [6], [10].

LEMMA 3. Consider the differential inequalities
3) () <o (z—[y()+70], W) > —a,(Ow+[y(O)+7)].

Let us suppose that the functions y(t), (1), o (t) (i = 1, 2) satisfy the following
conditions: y(t), 7(t), o;(t) (i=1, 2) are continuous for T<t < o0, y(t) =20,
Jt) =20, 6;) =20, 6;(t) >0 if y(0£EO0,i=1,2, T<t< oo and

T . y(®)

“ [ o,(t)dt = o0, llmm=0, i=1,2,
c‘joﬁ(t)dt < 0.

Then inequalities (3) admit solutions

z=0@), w = Y (o),
so that
e(t)>0, yYy)>0 for T<t,
5
lim @(¢t) = lim y(¢t) = 0.

= x 1=
Proof. Each solution z = ¢(t), w = () of the system
(6) z=0,0)z—7(@)—9,(t), W=oa,[t)wH+y(t)+9,(t),

where d,(t) = y(t)+t(t)o,(t) and () is any continuous positive function which
tends to zero when ¢ — oo, satisfies the system of differential inequalities (3).
We show that the functions

() @(t) = exp [ a,(v)dv [ (8,(y)+ () {exp(— ; o, (wdu)} dy,
T ]
®) U (t) = exp(—{ o, (v)dv | (6,(»)+7(») {exp | o, (w)du}dy),
T T T

which are solutions of (6), satisfy (5). In fact,

exp | o, (v)dv | F(y){exp(—[o,(v)dv)}dy = | (y)exp(— [ o, (v)dv)dy
T t t '

< [7()dy—>0 as t— 0.

e B~ e R
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From (4) and the definition of §,(t) (i =1, 2) we have

©) lim 29 _ o,

r-vaoo'.'(t) B

Since §,(t) > 0 and o,(t) > 0, we have for ¢ large enough
(10) 3.0) < 0,(0).
The right side of (7) is well-defined because the limit

(11) lim { 8, (y){exp(— | o, (u)du)}dy

(*xc T

is finite. This follows from the existence of the limit of
4 y t
fo,(exp(— o, (wdudy = —exp(— | o, (w)du)+1.
T T T

Since ¢(t) given by (7) is positive, we have only to show that lim ¢(t) = 0.

By (4), (9) and I'Hospital rule, b
* y
{ o, (nexp(— [ o, (wdu)dy
. im - T . 0,(1)
lim ¢, (t) = lim : = lim 0 0.
t— o | Sndis of cxp(—jo‘l(v)dv) t— o0 1
T

Thus lim @(t) = 0. The proof that

[mdie el

t

lim exp— [ ¢, (v)dv [3,(y){exp([ o,(u)du)}dy = 0
T T

{>® T
is quite similar. To prove that

t t y

lim exp— [ 6, (v)dv [ §(y){exp | o, (w)du}dy = 0,

t—w T T T

define
F(y) = ?(y)exp[—jaz(u)du] if T<t< o0,
y
F,(y)=0 if t = 0.

We have jF,(y)dy < [ 7(y)dy for every t, T<t, and by the Lebesgue
dominated convergence theorem,

lim } F,(y)dy = i lim F,(y)dy = 0.

tvoT Ttox©
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Then limy(¢t) =0 and the lemma is proved.

THEOREM 1. Let system (1) satisfy the hypothesis
Re(g;—4gi+1) =20, Relg;—gi+1) >0 if g;#0

for some i, j
Zlgijl < o0, Z {IRe(gii—§G;)+1d;;} < o0,

ij i#j
_‘.Re(gi(t)_gi+l(t))dt= 0, = 1’2'--,
Z|gij(t)|
12 lim b =0, k=1,2,...,
(12 f= oo Re(gk(t)_gk+1(t))

§ T {IRe(ga(0)— g0 + G0} de < 0.
i%)
Then there exists a system of linearly independent solutions
Xy1(2)s. .05 x1a(t), ...

(x, (), x5(6),...) = | x3,(8)-..s%,5,(0), .
Xp1 (s x,,(0),. ..

such that
(2
(13) lime() =0 for every i # k.
t—'ocxkk(t)
Proof. For every fixed integer p we set
w,={P = (t, )| x| =Ix,I?¥* () <0, x> —Ix,|*¢¥?(r) <0,
i=1,2,...,p=1,j=p+1,..., t > t,},

where ¢(t), ¥(t) and t, will be conveniently chosen so that, for every
t =ty @) >0, Y(t) >0, ¢ and Y are diflerentiable, lim ¢ () = lim y(t) = 0.

| gandie o} | Sandie ¢]

Let
H/(P) = x> —Ix I*@*(), i=1,2,...,p—1,
Hi(P) = Ix{*—Ix P¥*@®), j=p+1,...,
H (P) =t,—t.
It follows that
w,={P| H(P)<0, k=1,2,..., k#p, t > ty}.
Set M ={Q =(t, x)] x=0}. Assuming that P is fixed, define for any
q=1:

r,={P|H(P)=0, H(P)<O for all g>1}, F,=I\M.
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For each p, wp is homeomorphic to a wedge.

The sets I';, i =1, 2,..., are called the faces of w,.

We show that the points of I" for g < p are strict egress points and the
points of F for r > p are ingress pomts The origin is not an egress point. An
easy computation shows that DH, the derivative of H, along the solutions of
(1) on the faces F is positive, smce

$IDH (P)per, = — x> Y () () + Re(g, — g, + Gog — Gpolix, > 07 (0)

= lx,I? rpz(t)(kz |9l Xl /1%l + kZ 19 kal/lxpl)
=1 =1

—Ix,,|2¢2(t)( 2 1Gad (el /1x )+ Z Iépkl(lxklllxpl))-
k=1 k=1

k#q k¥*p

Since |x,| < |x,|@(t) if kK <p and |x| < |x |¥(r) if k> p, if follows that
Ixil/1x | < @(r) or |xk|/|x | < y(2)
As we want to have ¢(t) > 0 and lim ¢(¢) =0, ¥(¢t) > 0 and Iim {(t) =0,

(- ® . Imw

we take t, sufficiently large so that ¢(¢t) <1 and y(t) < 1. Then
3[DH (P))eir, > 0 (O)lx,I* [@(O)Re(g,—g,+ Gog— )

a0

—¢(t)— Z (lgpk|+|qu| Z Igpkl Z ngkl]

k=1
k#-'p

> @(0)|x,1*[o(t)Re(g,—g,)— @) — () —F(1)],
where

y(0) = Zlgij' and  j(t) = Z {Re(gii_gjj)+|gijl}-
ij

i#j
In order to have [DH (P)],;, >0, g=1, 2,..., p—1, it is sufficient to
choose ¢(t) in such a way that

— @)+, - +7(0)] >0,
where o, (t) = Re(g,(t)—g,(t) > 0, or
(14) oty < o, (De()—Ly®) +7()].

For the faces I". we have

[DH,(P)]pei, < X, (O —Y(t) —Relg,— g, +F,p— )W ()
bead ) Il 1, | AL i Ijillx,l)}
(Z""' I, {1} Zg”“!xplixpl)+(k§ x| 1x |+Z okl x|
r #p
< lxp|2lll(t)[_l/;(t)+Re(gr_gp+g"_g~pp)lll(t)+zlgul+ Z lglj‘]’

i#j
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because [x,|/|x,| < @(t) if k < p and |x,|/|x,| < ¢(t) if kK > p, with ¢(t) < 1 and
y(t) <1 for t > ¢,
Hence

L[DH,(P)1,ei, < Ix,P¢ () — Y () + (Y (8) + (2 () +7(1)),
where a,(t) = Re(g,—g,) > 0.

In order to have $[DH,(P)],., < 0 for r # p, we have to choose y(t) in
such a way that

(15) U(t) > o, () (e)+ [y(e) +7(8)].

In view of (12), the system of differential inequalities given by (14) and (15)
satisfies Lemma 3 and hence possesses differentiable solutions ¢(r) and (¢)
such that

lime(t)=1lmy()=0, @)>0 and yY()>0.

t—= =

Then for i < p the points of I; are strict egress; the points of M, = M =
{(t, x)] x =0, t >0} are not egress points.

For j > p the points of [, are ingress points. Since [DH ,(P)],er, = —1, the
points of I', are ingress. The equality S = S* holds; i.e,, we have

s=5t= -y,
i<p izp

and condition (i) of Lemma 2 is satisfied.

Select a t > 1, and x,eC such that x, #0, |x, | <y(7)lx, | for j>p
and define

Z,={P=(t, x| t=1, x,=Xup, x| <|x,|0(t) for i < p}.

Then Z, is a ball B*’~2 in R?>?~? with respect to the maximum norm.
We have also

Z,nS=Z,n(UFNYUT)=U NZ,nF\I')=\ Z,nF,

i<p izp i<pjzp i<p

because Z,nIl';= . Thus
Z,nS={PeZ) i<p, Ix|=Ix, o)},

which means that Z,~ S is the boundary of B??~2 je. a (2p—3)-dimensional
sphere. Z,n S is a retract of §; the retraction r: §—~Z,n S is given by

: £)]x9
r(P)=P* with t* =1, x} = xﬁ, x¥ = a9l plx,-, i<p,
@ (t)1x,|
and x§ = xj if j > p, so that condition (iii) of Lemma 2 is satisfied. If p = 1, all
points of the faces I', are ingress points.
From Lemma 2 we conclude that there exists at least one point
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Py = (1, xo)€ Z, N @, such that the trajectory of system (1) through P, stays in
w,. This means that the solution x,(t) = (x,,(t),....x,,(t), Xu4 1p....) through P,
satisfies

i\, < max{o(t), YO} for i#p, t>1> 1t

Letting p =1, 2,..., we find a countable set of solutions (x, (f), x,(t),...)
with the required property. We now show that these solutions can be taken
Iinearly independent. By choosing Z, with sufliciently large t and xpp = 1, the
absolute values of the coordinates x;,, i # p, of the points of Z, can be made
arbitrarily small.

We then have

EigreerEpprenn
(X, (©), X5(1)s...) = | €315 €220--5800 |
Enl> Enzse e sEmn

where ¢; = 1 and the ¢;’s are arbitrarily small positive numbers for i # j.
Let us now consider

(16) X; = Z (gij(t)+gij(t))xjs i=1,2,...
i=1
If we set g,;+g; = g;, system (16) becomes
(17) X = g:(0x+ ) (9;(0+d,;00x;), i=1,...
j=1
i#j

The following theorem generalizes a theorem of Perron [10]; see also [8],
p. 173.

The Lyapunov number of a solution x(t) of equation (17) is defined by (see
[2], p- 117)

—1 t
(18) A(x(t) = lim w.
t— ¢
THEOREM 2. Assume the hypotheses of Theorem 1 with respect to system (17).
If Y lg;;(0)| is bounded in [0, w0), i, j=1,2,..., then there exists a system of
j=1
linearly independent solutions of (17), (x,(t), x,(),...), such that

AMx, (1) = lim %i Re(g;(s))ds,
t—=xo *0

where i(x;(t)) is the Lyapunov number of the solution x(t) = (x;(t), x,;(¢),...).

Proof. By Theorem 1, system (17) has a system of linearly independent



176 A. F. Iz¢é

solutions which satisfy (13). Multiplying the i-th component of (17) by 1/x;
integrating and taking the norm we get, if |x;(¢,) = by,

Ibolexp[f Re g,(S))dS—I Z lg:;() — :lez ;l" -} Z 7 )lxﬂz ;: ]

1#1

11

< Ixu (0] < byl CXP[ e(g.(s))ds
I
|x;

2 NECY
i & o el +,{,§'””'| E] }

Since the sums ) lg;;(1)| are bounded by a constant K for t > t,, we can
i#j
take for every ¢ > 0 a number ¢, sufficiently large to have the inequality

Ixji(t)'<£
1 ()
satisfied for every pair i, j with i # j. Then
(- {x i (s) o€
N mds < [K—ds <st, 21,
§ O o < SRk :
JFEI

We may take t, > 1 so large that

t ®
jz ;()ds <k  for t > t,.

}#l
We have
N ()
IZ';}()I— < é&t, t2t0>1
10j=1 ()
j#1
Then

Ibol exp ( [ Re(g;(s))ds —2et) < Jx(8)] < |bolexp( f Re(g;(s))ds + 2et).

to

By Theorem 1, |x;;(t)] < |x;(¢)l for t sufficiently large, and we have

Ibol exp ([ Re(g,(s)ds—2¢t) < [Ix;(e)l].< sup {Ix; ()}

< |yl cxp([ Re(g;(s))ds + 2et).

fo
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Using the well-known properties of Lyapunov numbers
A= Mx;) = l(expi Re(g,(s))ds),
to
we have by definition (18)
= Ax) = ﬁ%g Re(g,(s))ds.

ExaMPLE. Let {a,} € C be a sequence with lim g, = a_ #0,a' =(0,0,...,q,
0,...). Define T(t)a' = {e*a'}, —o0 < Red, < w < 0. T(t) is a strongly con-
tinuous semigroup with infinitesimal generator A given by Ao’ = {1&'}. T(t) is
compact if and only if limRe4; = —oo; [1], p. 189. Take Re4; > Re4,,,,
i=1, 2,..., and consider the system

X; = Ax; + Z g/ (0x;,  xi{ty) = x?,

i=1

with lim ) g, =0, Y lg,] < co. By Theorem 2, there exists a system of
t—o0 j=1 i#j

linearly independent solutions (x, (t),...) such that 2(x,(t)) = Re(4), i=1,2,...
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