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Convergence of multistep methods for Volterra
integro-differential equations

by Z. Jackiewicz and M. Kwapisz (Gdarisk)

Abstract. The convergence result for a general quasilinear muitistep method under Perron
type conditions with a nondecreasing comparison [unction is stated. The Lipschitz-continuity
case is also discussed. The result is an extension of a recent result due to K. Tauberl.

1. Introduction. Consider the initial-value problem for a Volterra integro-
differential equation of the form

) Vi(x)=F(x.y(x), z(x)), xel:=[xo, xo+al,
y(xo) = ¥o.

where

(2) 2(x) = | K(x, t, y(t))dr.

It is assumed that the functions F and K are continuous on T and §,
respectively, where

T:=(x,y, 2): xel, |yl <oo, |2] <),
Si=l(x, ) X KT X < xota, Jul < o).

For computing a numerical approximation to a solution of problem (1)
a uniform step size h is used. The approximate solution is denoted by
(ymN ., where )? is an approximation to Y" = Y(x!), Y is the solution of
problem (1), xf = xo+ih for i=0,1,..., N, N =a.

Put v =10,1,...}, I, :=[0, hy], hy > 0. Let functions &;: I**!x
X R**'x R**'xI, —R for ic.+" and a,: .1 =R for s=0,1, ..., k, be given,
and let a (i) =1, 2,()#0 for ie.t. Let wl eR for i=0,1,...,N,
s=0,1,...,i and |w/| < W < o for a certain W > 0. It is assumed that
&, are continuous in all variables uniformly with respect to i.

The aim of this paper is to discuss the convergence problem for the
quasilinear multistep (k-step) method of the form

k

3) Y a (DYl = (g oo X Ve o Y S 2l )

s=0
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i=0,1,..., N—k, where z! are given by the following linear quadrature for
(2):
) Z=hY WK xt ), i=0,1,..,N,

s=0

and y! for i=0,1,..., k—1 are given. These starting values may be ob-
tained by other methods, e.g. one-step methods [3], step-by-step methods
[9], block methods [6] or by methods considered in [1]. Other starting
procedures are given in [2].

Special cases of the methods of type (3) are:

quasilinear multistep methods with «,(-), s=0,1,..., k, .and &; con-
stant with respect to i:

k

(5) Z asy:'+s = h¢(x?+ka LEAS) X?, y?+k’ LR y:', z?+l¢’ (AR ] Z?. h)’
s=0
i=0,1,..., N—k;
nonstationary linzar methods of the form
k k
(6) Y ayfes=h Yy B@DF,, i=0,1,..., N=k,
s=0 s=0

where F' = F(x!, y! zM. and, of course,
linear multistep methods with constant coefficients:
k

k
(7 Y ayho=h) BFl, i=0,1....,N—k.
s=0 s=0

Observe that the class of one-step methods discussed in [3] is a special
case of (3), but not of (6). The class of methods of the form (3) seems to be
sufficiently large to unify the convergence discussion concerning one-step and
k-step methods.

The class of methods of type (7) has been studied in [2], [6], [8], under
the assumption that F and K are Lipschitz-continuous in (y, z) and u,
respectively. It was proved that both constistency and stability imply conver-
gence. The order of methods of that type has been studied in [2].

It is the purpose of this paper to examine the convergence of the
methods of type (3) under the Lipschitz-continuity assumption on F and K
and also in the case where the only conditions imposed on the functions F
and K are Perron type conditions with a nondecreasing comparison
function.

Recently Taubert [10] proved that a result of this type holds for or-
dinary differential equations

Vix)=f(x, y(x), xel,
v(X0) = Yos
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and for the methods of type (7) with F! replaced by f;* = f(x!, y%. This result
was extended in [4] to methods of type (3) with &; replaced by
& = B[ (XIvir o XVEeko -0 VI ).

In the present paper a similar result is established for Volterra integro-
differential equations by the method given in [4].

2. Definitions of convergence and consistency. Let {y/}/L o be the sequence

produced by the method (3). Put Y= Y(x") where Y is the solution of
problem (1).

DeriniTiON. The method (3) is said to be convergent if

lim max {y!—¥": 0<i< N} =0.
h—0

DEeriINITION. The linear quadrature (4) is said to be convergent if for any
continuous function y on I and any xel

X i

| fy@ydt—h Y whoy(xh| ={(x, h)

xq s=0

and lim E(f;j =0, where
h—=0

(8) E(h) :=sup {|{(x, h): xel},

and i = E(x/h) is the greatest integer not exceeding x/h.
Let us introduce the difference-integral operator & associated with the
method (3):

k

9) L(Y(x), h i)=Y ai) Y(x+sh—

s=0
—hd,(x+kh, ..., x, Y(x+kh), ..., Y(x), Z(x+kh), ..., Z(x), h),
where
Z(x)= [ K(x, s, Y(s))ds.
*o

DeriniTion. The method (3) 1s said to be consistent with the problem (1)
on the solution Y if:

(A) Z(Y(x), h, i) =hn(x, h, i) and lim 7(h) = 0, where

h—0
(10) (h) = sup {In(x, h, if: xo <K x < xg+a—kh, 0<i< N—k!.
(B) The linear quadrature (4) is convergent.

We have the following
THeoREM 1. Under the assumption that Y #0 and that a,(-),
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s=0.1,..., k, are bounded, the method (3) is consistent with the problem (1)
on Y if and only if

k

(@ Y o()=0.ie 1,
s=0

(b) Y sa,(i) F(x, Y(x), Z(x))
s=0

=@(x, ..., x, Y(x), ..., Y(x), Z(x), ..., Z(x), 0), ie. t, xel,
(c) the linear quadrature (4) is convergent.
Proof. By Taylor’s formula for Y we have Y(x+sh) = Y(x)+ Y'(x)sh+
+he(x,sh) for s=0,1,...,k, xe[xg, Xxo+a—sh] and sup {|e(x, sh):
Xo € X < xo+a—sh} —» 0 as h— 0. Accordingly, we get

k k
A1) LY, b i) = Y(¥) Y a,)+h(Y'(x) ¥ sa,0) -
s=0 s=0

— & (x+kh, ..., x, Y(x+kh), ..., Y(x), Z(x+kh), ..., Z(x), h))+
k
+h Y ali)e(x, sh),
s=0
where Y'(x) = F(x, Y(x), Z(x)). If we assume consistency. then Z'(Y(x). h, i)
= hn(x, h, i) and lim #(h) = 0, where 7(h) is given by (10). Now (a) lollows

h—0
immediately if we let h -0 in (11). Consequently, we obtain
k

h(Y'(x) Y sog())— P (x+kh, ..., x, Y(x+kh), ..., Y(x),
s=0

k

Z(x+kh), ..., Z(x), h))+h Y. a, (i) e(x, shy = hn(x, h, D).

s=0

Dividing by h and passing with h to zero, we arrive at (b). Condition (c) is
fulfilled obviously.
Now we assume (a), (b) and (c). As a consequence of the uniform

continuity of the functions &; with respect to i we have the relation
(12)  @;(x+kh, ..., x, Y(x+kh), ..., Y(X), Z(x+kh), ..., Z(x), h)
=@ (x, ..., x, Y(x), ..., Y(X), Z(x), ..., Z(x), O)+ (x, h. i),
i=0,1,...., N=k,

and lim @(h) =0, where
h-0

@(h) =sup {o(x, h, i): xo <K X< xo+a—kh. 0<i< N—kj.

In view of (12) and of the boundedness of «,(-), s =0,1, ..., k, we obtain
consistency.
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Remark. Note that the consistency conditions (a), (b) and (c) for the

methods (6) take the form
K

(@) Y a()=0, ieA",
s:O .

(b) X su()= Y Bi(i), ie. v,
s=0 s=0

(c;) the linear quadrature is convergent,
and similarly for the methods of type (7) (see [6]).

Let us now introduce the difference operator .# associated with the
method (3):

k
(13)  A(Y(xf), h)= ¥ (i) Y(xis)—

s=0
—h®(xtks s X Y (XD, o, Y(XP), ZE, ..., 20, B),
i=0,1,..., N—k, where

Zh=h Y whK(xh o YOB) =01, .. N,

s=0
It is easy to prove the following

THEOREM 2. If the method (3) is consistent with the problem (1) on the
solution Y #0 and if a,(-), s=0,1, ..., k, are bounded, then

M (Y (xP), h) = hu(x], h)
and hm ji(h) = 0, where

h—0

(14) fi(h) = max {lu(x", h): 0<i< N—k}.

Proof. Just as in the proof of Theorem 1 we obtain

k

A (Y(xP), h) = Y(x}) Zk: a () +h(F(x!, Y(xP), Z(x])) Y, sa (i) —
s=0

s=0

F¢}(x?+k’ R ] x?’ Y(x?+k)7 R Y(x'h), Z?+ka ey Zlha h))+
k

+h Y agi) e(x?, sh).
s=0

Theorem 1 and the uniform continuity of @; imply that there exists 6(x”, h)
such that

k
MY (xP), ) = h(F (x, YO, Z(x)) Y so(i)—

s=0
—¢,(X:'+k, sy X:', Y(X:'+k), ey Y(x'h), Z(x:’+k)+
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FE 0 B, o ZOXHEG, B), R)+

k
+h Y a(i) e(x], sh)
s=0

k
=ho(x}, y+h Y o) e(x!, sh)

s=0
and lim 8(h) = 0, where
h—0
G(h) = max [|6(x!, h)|: 0<i< N—k}.
k

Now we put u(x!, h) =6(x!, )+ Y a,(i) e(x;, sh) ending the proof of the
theorem. s=0

Remark. Note that if &, ie. V¥, are of class C' with respect to Z,,
i=0,1, ..., k, then Theorem 2 is obvious. This is implied by the following
relation which holds between the operators .# and ¥:

M(Y (XD, h) = L(Y(xP), h, i)+

EOP (X s X Y(XE), L, Y(XD), ZH . ZH h)
hy : .
5=0 Lty

x (Z:'+s ~-Z (x?+3))a

where Z}¥', lies between Z}.  and Z(x,,). Note that in this case, if 7(h)
= 0(h%) and &(h) = O(hY, then ji(h) = O (W), where p = min (g, q¥).

3. On recurrent systems of equations. It is well known that in investi-
gations of multistep methods certain facts concerning recurrent equations are
essential. We now quote certain facts of that theory (see [7]).

Consider the systems

(15) Xivy =A@ x;+g;,  ieN,

(16) Xi+1 =A(l) Xis ie-/V"

where A(i), ie A", are k x k-matrices and g, ie.4, are k-vectors, x;, i€e.¥,
being the unknown k-vectors.

Let {x;(ig, u, 9)}2;,, Where g =(go, g1, ...), ueR", and iy is a fixed
natural number, denote the solution of (15) satisfying the condition
xio(iOs u, g) =u.

We introduce

DEerFINITION. The trivial solution of (16) is stable if for every ¢ > 0 and
every ige. A" there exists 6 (ip, €) such that inequality ||u|| < d(iy, €) implies
llx; (ig, W)l <& for i =iy (||| denotes a norm in R*). If §(iy, £) does not
depend on iy, then the stability is said to be uniform.
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The following facts are obvious.
LeMMA 1. Any solution of (15) has the form

-1

i~ 1 i i—1
Xilioru,g) =[] Ali—1+io=5)+ ¥ ( [1 Al+k-5)gs

$=ig k=i, s=k+1
i1 l'o—l
Jor i=ig, ig+1,... By [| we mean I, the unit matrix, and by Y the zero
vector. s=iy s=i,

i—1
The trivial solution of (16) is stable if and only if H Ali—1+i;—s) is

bounded for i =iy, ig+1, ..., ie, there exists a constant Ko (ip) such that

i—-1
| TT AG—1+io—s)|| < Kolio) for i =g, io+1, ... The trivial solution of (16)
isn u'to1iformly stable if and only if K, does not depend on i,.

Remark. Let X be the fundamental matrix of equation (16), i.e. the
matrix function i — X (i), ie.t, with the properties: X (i+1) = A(i) X (i),
X{(0)=1I.1If det A(i) #0 for ie. |, Lemma 1 takes the form

LemMa 2. If det A(i) # 0 for ie. V' and X is the fundamental matrix of
equation (16), then the solution of (15) has the form

i—1
Xilio. u, @) = X () X "o u+ Y, X() X~ '(s+1) g,

s=ig

Jor i =i, ig+ 1, ... The trivial solution of (16) is stable if and only if X (i) is
bounded for i =iy, ig+1, ..., ie., there exists a constant Ky(iy) such that
X (D < Kolip) for i =ig. i+ 1, ... The trivial solution of (16) is uniformly
stable if and only if X (i) X ™' (i) is bounded, i.e., there exists a constant K not
depending on iy such that || X (i) X " '(io)l| < K for every ige N and i=i,,
ig+1, ...

LeMMA 3. If the trivial solution of (16) is uniformly stable, then there exists
a constant C > 1 such that

i-1
lix; (i, u, @l < C(llull+ Y. ligdll)
s=io
jbr i= io, i0+1,

DerFiniTiON. A k x k-matrix A is of class - # if for every eigenvalue / such
that |A| = g(A) every Jordan block associated with A is 1 x 1 (p(4) denotes the
spectral radius of A).

LemMMA 4. The trivial solution of (16) with a constant matrix A(i) = A,
ie. V', is uniformly stable if and only if 9(A) < 1 and if ¢(A) = 1 implies that A
is of class . 4.

2 — Annales Polonici Mathematici XLI11.2
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Let us now consider the kth order linear recurrent equations of the form

k

(17) z a,(i)z,-+,= h.', iE./V,
s=0
k

(18) Y @z, =0, iet,
s=0

where o, (), s =0, 1, ..., k—1, are the coefficients which appear in (3). The
notion of the stability and uniform stability of the trivial solution of equation
(17) is now introduced by reducing (17) to the corresponding first order
system of recurrent equations. Indeed, to write (17) in the form (15) it suffices
to put

[~ () —oy () —a, () —aoli) ]

1 0 0 0

A() = 0 1 0 0
. 0 0 1 0 |

T
cecy zi+|v zi) 3

gl' = (hiv 0: seny 0, O)T.

X =(Zivk—1 Zivk-25

LemMa 5. The trivial solution of the k-th order recurrent equation with

constant coefficients
X

Z AsVi+s = 09

s=0

ie A,

is uniformly stable if and only if no root of the polynomial

k

p(A) =Y o

s=0

has modulus greater than one, and if every root with modulus one is simple.

Taking the norm |[wl|, = max |w], where w=(w,,..., w)eR" we

1<i<k
derive from Lemma 3

LEMMA 6. If the trivial solution of the homogeneous equation (18) is
uniformly stable, then there exists a constant C > 1 such that every solution of
(17) satisfies the inequality

max
Osssk-1

k
zied S C( max Jzl+ Y b)), iet.
s=0

Oosssk-1.

DeriniTioN. The method (3) is said to be stable if the trivial solution of
the linear homogeneous equation associated with the method (3) is uniformly
stable.
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4. The convergence of the method. The Lipschitz-continuity case. We have
the following
THEOREM 3. Suppose that:
(i) There exists constants L, NjeR, s =0, 1, ..., k, such that for every
s;el, u;, ;. v;, 0;€R, hel, ,j=0,1,...,k, and ie.V

,|¢i(SO!“'1sb Ugy - s Uyy UVpy e ovy Uy h)—d)‘(so,...,s,‘, ﬁo,...,ﬂk,ﬁo,..., ﬁl’ h)l
k k

< Y Lilug—a|+ Y N,|o,—5,.
s=0 s=0

(1)) There exists a constant De R such that for every xel, te[x,, x],
u, ueR

'K(xv t, u)—K(x’ L, E)' < D|“_m-

k
(ili) There exists ige.4" such that Y sa(io) # 0.
s=0

(iv) The method (3) is stable and consistent with problem (1) on the
solution Y.
(v) limy!'=y, for i=0,1,..., k—1.
h—0
Then the method (3) is convergent to the solution Y of problem (1).

Proof. First of all we note that the assumptions of this theorem ensure
the existence in I and uniqueness of the solution of problem (1). Indeed, in
this case, in view of (iii) and condition (b) of consistency (see Theorem 1), F is
Lipschitz—continuous with respect to (y, z). Now, the existence and unique-
ness is implied by Lipschitz-continuity of F and K. Next observe that the
sequence {y"X  is well defined by formula (3) for all sufficiently small h.
This follows from assumption (1) and the Banach contraction principle.

Put ¢! =y"—Y" i=0,1,..., N. By consistency we have

k

(19 Y a) ¥

s=0
= h¢i(x?+h AR ] les Y(,-'Ph’ R ] Yih’ Z?d—b very Z:" h)+h.u(x?! h)'
i=0,1,..., N—k, and lim a(h) = 0, where a(h) is given by (14). Subtracting

h—0
(19) from (3) we obtain

k
(20) Y a (el =hy—hu(xi, h), i=0,1,..., N—k,

s=0
where
1) 7= B e X Yk e Vi 2k e 2 ) —

h h h h h h
_¢i(xi+b ceey Xis Yi+h AR Y( ’ Zi+lu A Zi? h)~
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By the stability of the method (3) we have (see Lemma 6)

i—-1 i— 1
(22) e SCleb+h Y Ivd+h Y lu(x}, b)), :
s=0 s=0
i=0,1,..., N—k+1, where ef:= max |e' ). It is obvious that
‘0Sy<k—-1
(23) lefejl € lefanl <efeys

for j=0,1,..., k=1, i=0,1,..., N—k. From assumption (i) we get the
estimates

k
Z s+1|+ Z NI s+j

j=0
s=0,1,..., N—k, where 8! = |2/ — Z"|. We have the following estimation for
5:“..s=01 N—=k j=0,1,... k:
s+j

‘5:+j s h Z Iw:+j.u| IK('\.:-P;% x:’ y:)_K(x:+j9 x:; y'h)‘
n=0

s+j

ShWD Y el
n=0

From (22) we obtain

i-1 i—-1 s+J
24) S <Cleb+h Y Z Lile’, |+ WD ¥ Z N; Z lefl +
s=0 j=0 s=0 j=0 n=

oh'S e )
s=0

-1 & i-1 & s+j

Now we evaluate Y Y Lyl and Y Y N; Z lef|. According to (24)
s=0 j=0 s=0 j=0 n=0
we have
Z Z L; |£s+j| = Z ( Z lers+)|+l‘t|f‘s+k|)
x=0 j=0 s=0
_ i-2
z (Z Le"'*"—-tenl)—LZ eg+Ly ) e+ Lyef
s=0 j=0 s=0
i-1

S(L+L) Y e+
s=0

k-1
where L:= ) L, Similarly we get
j_
st s+k

'Z 2 N; lenl ZZN zm

s=0 j=0 n= s=0 j=0 n=
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i-1 k-1 s+k—1

SNY (Y N+ 3 let+leha)
s=0 na=0 n=k
i-1 k-1 s+k=1

SN Y (Y eb+ Y ehpertelsy)
s=0 =n=0 n=k

s

i—1
< kN z (Z e;+e:+1)\ Z z e + Z (_)")
s=0 j=0 s=0 j=0
k

where N:= ) N;. Substituting these evaluations to (24) we obtain
i=0

i—-1
e <C(eh+h(L+Ly Z e"+hL, e+

+h?kWDN ( Z Z e+ Z el +el)+h Z (=2, ).

s=0 j=0

Put

Ceb/(1—ho CL,—hikCWDN),

C(L+ L)1 —hy CL, — h kCWDN),
B=2kCWDN/1—h,CL,—h3kCWDN),
E= Ca/(1 —ho,CL, —hikCWDN),

and assume that Cho(L,+ ho kWDN) < 1. Under this assumption we have

&
A

(25) < &3+ hA Z & +h’B Z }: e;+Ej(h),

s=0 j=0

i=0,1,..., N—k+1, where j(h) is given by (14). Denote the right-hand
side of inequality (25) by v!. Now

v —v = hAe!+h?B Y el < hAv!+h’B ) V],
i=0 ji=0
and
vy S(U+hA)VI+R?B Y v, i=0,1,..., N—k.

j=0 .

It is obvious that the sequence [v!1!-f*! is nondecreasing. From this we
have

viv1 < (1+(A+Ba)h)v},
i=0,1,..., N—k. We show by induction that
(26) v < (14+Gh) vl < v8 exp G(xf— xb) < vh exp Ga,
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where G = A+ Ba. Now the assertion of theorem follows in view of the

relation lim v = 0.
h—0

Remark. Note that if ji(h) = O(h*) and e} = O(I), then v} = O(hY),
where g = min (p, r). Finally, in view of the inequality |}, ,_,| < ¢ < v}, we
get e =09, i=0,1,...,N.

5. The convergence of the method. The general case. We have the
following

THEOREM 4. Suppose that:

(i) There exists wy: I**' xR**'x R** ! xI, — R such that for every

s;el, u;, u;, v;, 0;€R, hel, ,j=0,1,... k
[D;(Sgs ---» Sks Ugs - - s u,,.. Ugs -y Uy ) —
—®,(S0, -5 Sk, B, ---» Ugs Doy -~ Dk D)
S Wy (Soy +--» Sk» [Uo—ols - - -, [y — i, [Vo—Dol, ..., |vx — i, h).
(i) w, is continuous, bounded and nondecreasing with respect to u;, v;,
i=0,1,..., k, and, moreover,

wl(SO, eey Sk’ 0, ey 0, O, vy O, O) =0.

(i) There exists w,: S — R such that w, is continuous, bounded, nonde-
creasing with respect to the last argument, and
IK(xa t, U)—K(x, ta f‘)l s wZ(xv I’ lu—al)

Jor every xel, te[x,, x], u, #€eR.

(iv) For any p>1, q > 1 the problem

u'(x) = pw, (x, ..., x, u(x), ..., u(x), q { @;(x, t, u(®))de, ...

%o

coer @ [ 2(x, 1, u(n))dt, 0),
*o

u(xo)= 0,

has in I only the trivial solution.

(v) The method (3) is stable and consistent with the problem (1) on the
solution Y.

k
(vi) There exists ige A" such that ) sa(io) # 0.

s=0

(vii) im yf =yo for i=0,1, ..., k—1.
h—0

Then the method (3) is convergent to the solution Y of the problem (1).
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Proof. Note that the assumptions of the theorem ensure the existence
and uniqueness of the solution of problem (1). Indeed, by assumptions (i), (vi)

and condition (b) of the consistency (see Theorem 1) we have the following
estimate for F: '

|F(X, Y, Z)-F(xa )7’ 2)'

< (1 20 56, (i) @y (X, «ves Xy [y =Ty ovey [y=31, [2=21, .., Iz =1, O).

This implies that F is bounded. It is clear that the operator

XHy(x):=yo+ | F(t, y(t), z(t))dt

%o

with z(t) defined by (2) is compact. The existence of the solution of problem
(1) is now a consequence of the Schauder fixed point theorem. The unique-
ness of the solution of problem (1) is implied by the theory of integral
inequalities (see [5]).

Observe that the sequence {y!}X, is well defined by formula (3). This is
a consequence of the boundedness of @, for any fixed i.

In this section we use the notations introduced in Section 4. As in the
proof of Theorem 3 we have

i-1 i-1
(27) et < Cleb+h Y lyl+h Y |u(x), b)),

s=0 5=0
i=0,1,..., N—k+1. Taking r" to be equal to the right-hand side of in-
equality (27) we obtain ¢! <rf for i=0,1,..., N—k+1 and

ris1—ri = Chlpl+ Chip(xf, h).
From assumption (1) we have the [ollowing inequality:
|YJ < wl (x:l+k, [ERE) x?’ |£?+k|7 recy Isl!'la 6?4’&’ reey 5:'7 h)’

i=0,1,..., N—k. It is obvious that
(28) |af'+j|<ef'<r?, |5?+k|<e?+1 <V?+1

for j=0,1,...,k, i=0,1,..., N—k. Let us now estimate 8! for s =i,
i+1,...,i+k, i=0,1,..., N—k. We have
itk
5.!'+;¢ = Iz?+k_z?+kl = lh Z w?+k,s(K(x?+h x.:’a .V;')"K(x:’ﬂ, x:, Ysh))l
s=0
itk
ShW Y wy(xtyy, X2, [el)
s=0

k-1 itk
= hW Z wl(x:'+b )C-_:', |£:’)+hw Z mz(x?+ln X_:', |£;‘|)
s=0 s=k
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k-1
s hW Z (wl(x?+ka x'(l)) e’(’))+A (h))+
§s=0
i+k
+hW Z (wZ(x:'+h X et e:-'—nl)"'A(h))
s=k
i+ 1
S kW Y w,(xfy . x2 el +kaWA (h),
s=0
where

A(h) = sup {lw,(x, t, u)—w,(x, 1, u)|: |t—t]| <(k—1)h, xel, ueR).

Similarly we get
Ot SkhW Y w,(xt,;, xb, eh)+kWaA(h), j=0,1,...,k—1.
s=0

From these and in view of the monotonicity of w, and w, we have

(29) ey S+ Cho (X, oo xPrt ol
i+1
khW Y @y (xtyy, xt, rl)+kWaA (h),
s=0

khW Y @ (xtei-y, x4 ry+kWaA(h), ...

s=0
s kAW Y @y (xP, X2, rt)+ kWaA(h), h)+ Chiu(x!, h)|
s=0

for i=0,1,..., N—k. It is clear, in view of the boundedness of w,. that
there exists a constant D* such that

0<rl, , —r' < hD*

But
i1 i
Z wz(x?ﬂ, xf, ":-') = Z wz(x?u- x;', ’:)+w2(x?+k, x:h+|, ".!'+1)
s=0 3=0
< z wZ(x?+h x.f* r:)+w2(x|!|+b X?, r,")+A(h)+B(h)
s=0
i
<2 @y(xfer X5 r+ AN+ B(h),
s=0
where

B(h) = sup {jw,(x, t, u)—w,(x, t, @)|: xel, te[0, x], lu—i] < hD*).



Convergence of multistep methods 135
Now consider the initial-value problem

2(x) = Cay(x, ..., X, A(x), ..., A(x), M [ wy(x, s, A(9)ds. ...

]

cos M [ @,(x, 5, A(s))ds, 0)+4,

*o0

;'(x()) = r'(l)9

where ge[0, Q]. and Q is a lixed positive constant. Denote by A, the set of

all solutions of this problem and put A= ) A,. The set A is compact
9¢(0.Q)
in view of the Ascoli Arzela theorem. Let 2" be the maximal solution of the

above problem for ¢ = Q. Write

S =sup {I"(x): xel], S*=sup! [my(x,s, 2(s))ds: xel).

X0

The set A and the constants S and S* will occur in the definition of certain
quantities introduced in the sequel.
Now, relation (29) is rewritten as follows:

h h h h _h h
ri < +Chw,(x,-+,‘, e XP LT

2hkW Y w,(xPyy, xB r)+ khW(A(h)+ B(h)+kWaA(h),
s=0

20kW Y wy(xtei— 1, X8 r+kWaA(h), ...
=0

L

ey 2HKW Y @, (XD, XP, )+ kWaA (h), h)+ChG (h)+ Chi(h),
=0

s
where

G(h)y=sup {loy(x.....x.a.b.....0b.¢c,....c. h)—

~wi(x,...,x,a,b,....,b,c,....c, h):
xel, la—al < hD*, |b| < S, || < §*),

and g(h) is given by (14). Put

D(h) = sup :I(Uz(x, t, U)_U)z(x, {, u)l: IEI’ lx_-fl < kha |u| < S*}v

k
./;h= sz(X?,H‘, X:, r:)- i=0,1,..., N—k,
s=0

M= 2kW.
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In view of the continuity of the function w, there exists E(h) such that
lim E(h) =0 and

h—0
@y (s ooy X, P, L P RMSR+KRW (A (h)+ B(h)+ kWaA (h),
hMfE+ kWaA (h)+ 2hkWD (h), ..., hMﬁ"+kWaA(h)+BthD(h). h)
=0, (XM, o, XP ot et RMER L RMSR, R+ E(h).
Finally, we obtain
M S+ Cho (M, o xE et o RMEE, L MR h)+ RF ()
for i=0,1,..., N—k, where
F(h) = C(ia(h)+ G (h+E(h).
Let us now consider another initial-value problem:
(30) X (x) = Co, (x+kh, ..., x, A(x), ..., A(x),
M[ j(w2 x, t, A(t))+ D (h)+ T(h))dt + hD (h)+ hT(h)+ P(W)]. ..

()

S M[ j(w,(x, t, 2(t))+ D(h)+ T(h))dt+ hD (k) + hT(h) + P(h)], h)+

+COh+F(h), xelxq. Xo+a—kh].

)-(xo) = rgs
where

P(h) = sup {| _[wz(x t, z(t))dt — _[wz(x t, z(n)d1|:

|x—f| 0 SI<X, X< xo+a, zeA!,
Q(hy=sup !lo,(x+k ,....x,a,...,a, b,...,b, h)—
—w,(X+kh,...,x,a,...,a,b,...., b, h):
x, Xel, |x—x| < h, |a| <8, |b] <
T(h)=sup {Jw,(x, t, u)—w,(x, t, u)|]: xo<t, t < x<xp+a,
|t—t| < h, lul < S*).

The solution A" of this problem is a nondecreasing function. We shall prove
that

A=, i=0,1,..., N—k.

This relation holds for i = 0. Assuming that it holds for any fixed i and
integrating (30) from x! to x!,,, we get
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xh
i+1
k) = 2+ C [ (o, (x+kR, ..., x, (), ..., (),

xh
]

M[ }(mz(x, t, "))+ D(h)+ T(h))dt + hD(h) + hT(h)+ P(h)], ...

o M| _f(w,(x, t, A(0))+ D{h)+ T(h))dt + hD (h)+

*o

+hT(W) + P(W)], h)+Q () dx-+hF (k)
> i+ Charg (X gy oo XE P8 L P,

<h,
M _[1(w,(x,!'+,, t, 2(6)+ D(h)+ T(h))dt, ...
xo x!'+
M 'j : (w2 (xhsy, 1, 22 ())+D(R)+ T(h)dt, h)+hF(h)

xp
h h hoh A
= r,-+Chw,(x,-+1, ey Xiy Py ooy FE

M i sjtl (@5 (xIh, 1, A"(0)+ T(R)dt, ...
s=0 x’;'

 xh
! s+1
o ME ] (@a(xh 6 20)+ T(R)dL, h)+ hF (h)
s=0 x
2+ Choy (XM, oo xP b Lt BMSE, L hMSR, B+ hF ()
2rly.

By (28) we have also

h h — oh h
max |Yn-gs1+s— In-k+1+sl SNk STV 441
0<s<k—1

s r’l:f—k-'_chwl (x’l:" LR ] x%*ka r‘!'v—h ety r’).V—ka thlc'l—la seey thA';—ka h)+hF(h)
< Mokt Chaog (XN, ooy Xho g, AM(XR-d), <oy AR, hMfu_, ..

coes RMPR_( R) 4+ hF ()i = A% (xh s ),

where
N-—k
Fook=Y oa(xk, xt, 2" (xh).
s=0
Finally, we obtain ‘
(31) <M, i=0,1,..., N—k+1.

According to the theorem on the continuous dependence of the solution
of problem (30) on parameters and initial data we have

lim sup [A"(x): xe[xo, Xo+a—kh]] =0
h—0
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and by (31) lime'=0 for i=0,1,..., N—k+1. Thus the proof of the
h—0 B

theorem is complete.

6. Some remarks. a) Note that assumption (iv) in Theorem 4 may be
weakened. It suffices only to assume that the problem

u'(x) = Cw, (x, e X u(x), . u(x), M i wy(x, 1, u(®))de, ...

*o

o M ? wy(x, t, u(n)dr, 0),

%o

u(xg) =0

with C defined by Lemma 6 and M = 2kW, where W is a bound for the
weights in the linear quadrature (4), has in I only the trivial solution.

b) In the proof of Theorems 3 and 4 we found the effective error
evaluations given by (26) and (31), respectively.

c) Il we consider the explicit. method given by

k

N b h bk bk b
Y a )yl = hBi(xns ooy X VPiko 1y oo Vi Zlak=ts oeer 20 D)
s=0

then the boundedness of w, assumed in (ii) can be dropped. But we have to
assume that the solution Y of problem (1) exists.

d) Theorems 3 and 4 are also valid for systems of Volterra integro-
differential equations.
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