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Majority vote model on multiplex networks with two independently generated layers in the form of scale-free
networks is investigated by means of Monte Carlo simulations and heterogeneous mean-�eld approximation. In
a version of the model under study each agent with probability 1 − q (0 ≤ q ≤ 1/2) follows the opinions of
the majorities of her neighbors within both layers if these opinions are identical; otherwise, she makes decision
randomly. The model exhibits second-order ferromagnetic transition as q, the parameter measuring the level of
internal noise, is decreased, with critical exponents depending on the details of the degree distributions in the layers.
The critical value qc of the parameter q evaluated in the heterogeneous mean-�eld approximation shows quantitative
agreement with that obtained from numerical simulations for a broad range of parameters characterizing the degree
distributions of the layers.
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1. Introduction

The majority vote (MV) model [1] (for review see [2])
is a stochastic model for the opinion formation devised as
a nonequilibrium version of the Ising model. In its most
popular version agents update their opinions at discrete
time steps following the opinion of the majority of their
neighbors with certain probability 1−q, where the param-
eter q, 0 ≤ q ≤ 1/2, controls the degree of internal noise
in the system dynamics. The MV model on regular two-
[1, 3] and three-dimensional [4] lattices was shown to ex-
hibit a second-order ferromagnetic (FM) phase transition
with decreasing q, with the critical exponents belonging
to the universality class of the corresponding Ising model;
it was also shown to follow the mean-�eld (MF) criti-
cal behavior above a �nite upper critical dimension [5].
The MV model was also studied on various complex net-
works [6�14], in particular on scale-free (SF) networks [9�
11] which re�ect heterogeneity of human social and eco-
nomic interactions [15, 16]. In these cases, in general, the
MV model turned out to belong to a di�erent universal-
ity class than the corresponding Ising model. Recently
it has been recognized that even more complex and het-
erogeneous structures are typical of social systems which
has prompted interest in the study of interacting systems
on �networks of networks� [17]. In this context much at-
tention has been devoted to multiplex networks (MNs)
which consist of a �xed set of nodes connected by var-
ious sets of edges called layers [17�19]. MNs naturally
emerge in various social systems (e.g., transportation or
communications networks), and interacting systems on
MNs exhibit rich variety of collective behaviors and criti-
cal phenomena. For example, percolation transition [20�
23], cascading failures [24], threshold cascades [25, 26],
di�usion processes [27, 28], epidemic spreading [29, 30],
opinion formation [31, 32], FM transition in the Ising
model [33], etc., were studied on MNs.

*corresponding author

In this paper the MV model is investigated on MNs
which consist of a �xed set of agents interacting via inde-
pendently generated heterogeneous SF layers correspond-
ing to di�erent communications channels. In this way the
related study of the Ising model on MNs [33] is extended
to the nonequilibrium case. In the version of the MV
model under study the agents are assumed to obey the
update rule according to which if the majorities of the
agent's neighbors within each layer share the same opin-
ion the agent follows it with probability 1− q; otherwise,
she makes decision randomly. Conceptually, this update
rule can be treated as a variant of the AND dynamics for
agents on MNs [26, 31, 32] according to which the agent
is more inclined to change her opinion if information re-
ceived via all communications channels suggest change.
It is demonstrated via Monte Carlo (MC) simulations
that this model exhibits second-order FM transition with
decreasing q, and critical exponents for this transition
are calculated using the �nite size scaling (FSS) method.
Besides, critical value of the internal noise level is ob-
tained analytically in the heterogeneous mean-�eld (MF)
approximation and shown to exhibit quantitative agree-
ment with results of MC simulations.

2. The model

MNs consist of a �xed set of nodes connected by several
sets of edges; the set of nodes with each set of edges forms
a network which is called a layer of a MN [18, 19]. In the
following, for simplicity, MNs with N nodes and only two
layers denoted as G(A), G(B) are considered (so-called
duplex networks). It is assumed that the layers (strictly
speaking, the sets of edges within each layer) are gen-
erated independently. As a result, multiple connections
between nodes are not allowed within the same layer,
but the same nodes can be connected by multiple edges
belonging to di�erent layers. The nodes i = 1, 2, . . . N

are characterized by their degrees k
(A)
i , k

(B)
i within each

layer, i.e., the number of edges attached to them within
each layer. The distributions of the degrees of nodes

(1433)

http://doi.org/10.12693/APhysPolA.133.1433


1434 A. Krawiecki, T. Gradowski, G. Siudem

within each layer are denoted as pk(A) , pk(B) and their
mean values as 〈k(A)〉, 〈k(B)〉; since the layers are gen-
erated independently the joint distribution of the de-
grees of nodes in the MN is pk(A),k(B) = pk(A)pk(B) .
In this paper only fully overlapping MNs are consid-
ered, with all N nodes belonging to both layers; gen-
eralization of the results to the case of partly overlap-
ping MNs, with only a fraction of nodes belonging to
both layers, is straightforward but omitted for the sake
of brevity. The process of generation of a MN with two
layers is illustrated in Fig. 1.

Fig. 1. Generation of a MN with two layers. The set of
nodes is the same for both layers. The layers are gener-
ated independently by connecting the nodes with edges,
black lines correspond to the edges of the layer G(A)

and gray lines to the edges of the layer G(B). The nodes
i = 1, 2 . . . N within layers are characterized by the de-

grees k
(A)
i , k

(B)
i . Finally, both layers are superimposed

by identifying the corresponding nodes to form a MN.

The MV model considered in this paper consists of
agents represented by two-state spins si = ±1, i =
1, 2, . . . N located in the nodes of a MN. The agents ex-
change information via edges of the layers and update
their opinions (orientations) according to the opinions
of the majorities of their neighbors within consecutive
layers. Di�erent layers represent di�erent communica-
tions channels used by the agents (e.g., the Internet, e-
mail, social interactions with friends, family members,
co-workers) with possibly di�erent topologies of interac-
tions. Since the set of nodes is common for all layers the
agents present the same opinion to their neighbors within
each layer, i.e., they are non-schizophrenic. The proba-
bility of the agent's opinion �ip per unit time (rate) is

wi(si) =
1

2
[1− (1− 2q)sisgni] , (1)

where 0 < q < 1/2 is the internal noise parameter,

sgni = sgn

 ∑
j:(i,j)∈G(A)

sj ,
∑

j′:(i,j′)∈G(B)

sj′

 , (2)

where the summations run over the nearest neighbors of
the node i within the layers G(A), G(B) and

sgn(x, y) =


−1 for x < 0, y < 0

+1 for x > 0, y > 0,

0 else,

(3)

denotes the signum function with two arguments. The
assumed form of the opinion �ip rate, Eq. (1), is such
that the agent with probability 1−q follows the opinions
of the majorities of her neighbors within all layers only
if these opinions are identical; otherwise, she makes deci-

sion randomly. In other words, if the opinion on a given
subject gathered from di�erent communications channels
is identical the agent follows it with higher probability;
otherwise, the agent becomes frustrated and acts ran-
domly (independently). This update rule, conceptually
related to the AND update rule for MNs [26, 31, 32], is
reasonable and simpli�es evaluation of the critical inten-
sity of the internal noise for the FM transition based on
the heterogeneous MF approximation (Sect. 5) but, of
course, it is not the only possible choice and other rules
can be used if necessary. It should be also emphasized
that in Eq. (2) the majority opinions within each layer
are calculated separately, thus the MV model on a MN
cannot be reduced to the MV model on a complex net-
work with the same set of nodes and with a set of edges
being a superposition of the sets of edges from all layers
of the MN.
Theoretical analysis of the model described above in

the MF approximation in Sect. 5 is quite general and not
restricted to any particular sort of MNs. However, MC
simulations as well as detailed analytic calculations are
performed for the model on MNs in which the layers are
independently generated SF networks with the distribu-
tions of the degrees of nodes

pk(A) ∝
(
k(A)

)−γ(A)

for k(A) > m̃(A),

pk(B) ∝
(
k(B)

)−γ(B)

for k(B) > m̃(B),

where m̃(A) (m̃(B)) is the minimum degree of nodes
within the layer G(A) (G(B)). Such SF networks partly
re�ect topology of empirical networks of human interac-
tions and communications characterized by the presence
of heterogeneous agents, from typical ones with a limited
number of contacts to �hubs� with large number of con-
tacts and high social in�uence [16], thus they are often
used to reproduce networks of interactions in the models
for social behavior.

3. Methods of simulation and analysis

The MNs under study are constructed by generating
separately and independently the SF layers from the con-
�guration model [34] for a �xed set of N nodes. To gener-
ate the �rst layer G(A), the algorithm starts with assign-
ing to each node i, in a set of N nodes, a degree, i.e., a

random number k
(A)
i of ends of edges drawn from a given

probability distribution pk(A) , with m̃(A) < k
(A)
i < N

(the minimum degree of node is m̃(A), and the maximum

one N − 1), with the condition that the sum
∑
i k

(A)
i is

even. The layer is completed by connecting pairs of ends
of edges chosen uniformly at random to make complete

edges, respecting the preassigned sequence k
(A)
i and un-

der the condition that multiple and self-connections are
forbidden. The next layer G(B) is generated in a simi-

lar way, with the degrees k
(B)
i assigned randomly (and

thus independently of the degrees in the �rst layer) to
the nodes from the probability distribution pk(B) .
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MC simulations of the MV model are performed using
simulated annealing algorithm with random sequential
updating of the agents' opinions: each simulation
is started with high value of q corresponding to the
disordered phase and with random initial conditions, the
internal noise is decreased in small steps toward zero,
and for each intermediate value of q time series of the

average opinion m = N−1
∑N
i=1 si are collected after

initial transient. Next, the order parameter, i.e., the
magnetization M , susceptibility χ and the fourth-order
Binder cumulant UL are calculated as functions of q,

M(q) = [〈|m|〉t]av , (4)

χ(q) = N
[(
〈m2〉t − 〈|m|〉2t

)]
av
, (5)

UL(q) =
1

2

[
3− 〈m

4〉t
〈m2〉2t

]
av

, (6)

where 〈·〉t denotes time average for a given realization
of the MN (usually over 2.5 × 104 MC simulation steps,
each corresponding to updating N nodes) and [·]av
denotes averaging over di�erent realizations of the MN
with given parameters such as the number of nodes and
the degree distributions within each layer; usually results
are averaged over 60�100 such realizations, depending on
N ranging from 2 × 104 to 103, respectively. The above
quantities are expected to obey FSS relations analogous
to those valid for systems on complex heterogeneous
networks [35],

M = N−β/νfm

(
N1/ν(q − qc)

)
(7)

χ = Nγ/νfχ

(
N1/ν(q − qc)

)
(8)

qc − q?(N) ∝ N−1/ν . (9)

The critical value qc of the internal noise can be ob-
tained from the intersection point of the Binder cumu-
lants for di�erent sizes N of the MN [36]. Next, from
Eqs. (7, 8) the exponents β/ν and γ/ν, respectively, can
be determined. Furthermore, Eq. (9) can be used to cal-
culate the exponent 1/ν using the value q?(N) for which
the susceptibility χ of the model on the MN withN nodes
has a maximum value. Finally, it is checked if the ob-
tained exponents ful�l the hyperscaling relation,

2
β

ν
+
γ

ν
= De�, (10)

where the e�ective dimensionDeff = 1 is expected in the
case of systems on complex networks (and, consequently,
on MNs) which do not have any particular spatial dimen-
sion [35].

4. Critical exponents

MC simulations of the MV model on MNs were per-
formed for SF layers characterized by various exponents
γ(A), γ(B) and minimum degrees of nodes m̃(A), m̃(B);
exemplary results are shown in Fig. 2. MC simula-
tions show that the model exhibits FM transition, as

expected, characterized by the increase of the magne-
tization (Fig. 2a) and maximum of the susceptibility
(Fig. 2b) as q is decreased. The Binder cumulants cross
at one point corresponding to qc and are monotonically
decreasing functions of q (Fig. 2c), which is typical of
the second-order transition [36]. Critical exponents for
this transition can be obtained using the FSS relations,
Eq. (7)�(9); these relations are ful�lled well (Fig. 2d)
and the properly rescaled magnetizations and suscepti-
bilities coincide for di�erent N as functions of rescaled q
(Fig. 2a,b, insets).

Fig. 2. Results of MC simulations of the MV model
on a MN with SF layers with γ(A) = 4.0, m̃(A) = 20,
γ(B) = 5.5, m̃(B) = 20: (a) magnetization M vs. q for
N = 1000 (circles), N = 2000 (triangles), N = 5000
(squares), N = 10000 (crosses), N = 20000 (pluses),
inset shows results rescaled according to Eq. (7) with
critical exponents from Table I; (b) susceptibility χ vs.
q, symbols as in (a), inset shows results rescaled ac-
cording to Eq. (8) with critical exponents from Table I;
(c) Binder cumulants UL vs. q, symbols as in (a); (d)
log�log plots of M(qc) vs. N (�lled circles), χ(qc) vs. N
(�lled triangles) and qc − q?(N) vs. N (�lled squares),
straight lines are least-squares �ts to the FSS relations,
Eq. (7), Eq. (8), Eq. (9), respectively..

The exponents β/ν, γ/ν, 1/ν obtained for the model
with �xed γ(B) = 5.5, m̃(A) = m̃(B) = 20 and di�erent
γ(A) are summarized in Table I. It can be seen that the
universality class of the model depends substantially on
γ(A). This dependence is similar to that of the MV model
on SF networks, e.g., the exponent 1/ν increases as a
function of γ(A) approximately up to 0.5 [11]. Besides,
for a strongly heterogeneous layer G(A) with γ(A) < 5,
the MV model on MNs belongs to a di�erent universality
class than the corresponding Ising model. First, even for
γ(A) = 3 the FM transition occurs at qc < 0.5 whereas for
the corresponding Ising model the critical temperature
diverges [33]. Second, the critical exponents for the MV
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TABLE I

Critical intensity of internal noise qc, critical exponents
β/ν, γ/ν, 1/ν and e�ective dimension Deff for the MV

model on MNs with SF layers with di�erent γ(A) and
�xed γ(B) = 5.5, m̃(A) = m̃(B) = 20.

γ(A) qc β/ν γ/ν 1/ν De�

3.0 0.390(2) 0.3071(4) 0.3870(8) 0.3538(60) 1.0012(16)

3.5 0.370(2) 0.2821(1) 0.4385(1) 0.4547(36) 1.0027(3)

4.0 0.371(2) 0.2688(1) 0.4649(1) 0.4975(25) 1.0025(3)

4.5 0.368(2) 0.2790(1) 0.4563(1) 0.4958(101) 1.0143(3)

5.0 0.365(2) 0.2553(1) 0.4859(2) 0.5258(144) 0.9965(4)

5.5 0.363(2) 0.2442(3) 0.5003(5) 0.5424(61) 0.9887(11)

model and the Ising model are di�erent. For example,
assuming that γ(B) > γ(A), for the Ising model on MNs
β = 1/

(
γ(A) − 3

)
for 3 < γ(A) < 5 [33], and these values

are signi�cantly higher than those resulting from Table I.
In general, for high values of m̃(A), m̃(B), as γ(A), γ(B)

are increased the critical exponents approach the values
β/ν ≈ 0.25, γ/ν ≈ 0.5, 1/ν ≈ 0.5 which were obtained
for the MV model on random graphs [8]; these values
are also MF values of the critical exponents for the Ising
model [35]. On the one hand, this result could be ex-
pected since for large γ(A), γ(B) the SF layers approach
random graphs [16]. On the other hand, it is not obvious
since the update rule, Eq. (1), is qualitatively di�erent
from, e.g., the Glauber or Metropolis spin �ip rates for
the kinetic Ising model on MNs [33]: it depends on the
majority opinions evaluated separately within each layer
rather than on the majority opinion obtained by sum-
ming the opinions of all neighbors of a given agent in all
layers. Finally, from Table I it follows that the critical
exponents for the MV model on MNs with SF layers obey
with good accuracy the hyperscaling relation, Eq. (10),
with De� = 1, as expected.

5. Heterogeneous mean-�eld theory

for the ferromagnetic transition

In this section the critical value of the internal noise
level qc for the FM transition in the model under study is
obtained analytically in the heterogeneous MF approxi-
mation and compared with that obtained from the MC
simulations. The analytic approach is analogous to that
used in the studies of epidemic spreading [29, 30] and FM
transition in the Ising model [33] on MNs.

5.1. Equations for the order parameters

The starting point for the heterogeneous MF ap-
proximation is the master equation for the probability
Pr (si = +1) = 1− Pr (si = −1) that at time t the agent
in node i has opinion si = +1:

∂

∂t
Pr (si = +1) (11)

= wi (−1)Pr (si = −1)− wi (+1)Pr (si = +1) .

Taking into account that

Pr (si = +1) =
1 + 〈si〉

2
,

Pr (si = −1) =
1− 〈si〉

2
,

where 〈si〉 is the average opinion, and applying the MF
approximation, the master equation becomes [5]:

∂〈si〉
∂t

= −〈si〉+ (1− 2q)sgni →

∂〈si〉
∂t

= −〈si〉+ (1− 2q)〈sgni〉, (12)

with

〈sgni〉 = (+1)Pr (sgni = +1) + 0Pr (sgni = 0)

+(−1)Pr (sgni = −1) . (13)

In particular, in the model under study from Eq. (2) there
is

Pr (sgni = ∓1) = (14)

[
k
(B)
i
2

]
∑
m=0

(
k
(B)
i

m

) m∏
j′′

Pr (sj′′ = ±1)

k
(B)
i −m∏
j′′′

Pr (sj′′′ = ∓1)



×



[
k
(A)
i
2

]
∑
l=0

(
k
(A)
i

l

) l∏
j

Pr (sj = ±1)

k
(A)
i −l∏
j′

Pr (sj′ = ∓1)

 ,

where
[
k
2

]
= k

2 − 1 for k even and
[
k
2

]
= k−1

2 for k odd.

The basic assumption of the heterogeneous MF the-
ory for interacting systems on MNs is that the nodes
are divided into classes according to their degrees within
each layer and that the average values of the states of
interacting units (spins, agents, etc.) in nodes belonging
to the same class are equal [33]. In particular, in the
case of the MV model on a MN consisting of two layers
G(A), G(B) the nodes are divided into classes according
to their degrees

(
k(A), k(B)

)
and it is assumed that the

average opinion of agents in nodes belonging to each such
class is equal to 〈sk(A),k(B)〉. Further analytic results can
be obtained if correlations between the degrees of nodes
within each layer are vanishingly small (this is the case
of SF layers generated from the con�guration model with
γ(A) > 3, γ(B) > 3) or are neglected. Then for indepen-
dent layers the probability that the edge of the layer G(A)

attached at one end to the node i is linked at the other
end to the node with degrees

(
k(A), k(B)

)
is

pk(A)pk(B)k(A)∑
k(A),k(B) pk(A)pk(B)k(A)

=
pk(A)pk(B)k(A)

〈k(A)〉
,

and similarly for the layer G(B) (note that these probabil-
ities must be evaluated separately for each layer). Thus,
the number of nodes with degrees

(
k(A), k(B)

)
connected

to the node i by edges of the layer G(A) is
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k
(A)
i

pk(A)pk(B)k(A)

〈k(A)〉
,

and similarly for the layerG(B). As a result, in the case of
MNs with independent SF layers in Eq. (14) the products
of probabilities over the indices of nodes can be replaced
with products over the classes of nodes,

l∏
j

Pr (sj = ±1) =

∏
k(A),k(B)

Pr
(
sk(A),k(B) = ±1

)l k(A)p
k(A)pk(B)

〈k(A)〉 , (15)

etc.

Another assumption of the heterogeneous MF theory
is that the system on a MN undergoing phase transition
should be characterized by several (mutually dependent)
order parameters related to the consecutive layers [33]. In
the case of the MV model these parameters are weighted
average opinions, with weights associated with each node
and equal to the degrees of nodes within consecutive lay-
ers. For the two layers G(A), G(B) the order parameters
are 〈S(A)〉, 〈S(B)〉, where

〈S(A)〉 =
1

N〈k(A)〉

N∑
i=1

k
(A)
i 〈si〉 =

∑
k(A),k(B)

k(A)pk(A)pk(B)

〈k(A)〉
〈sk(A),k(B)〉, (16)

and similarly for 〈S(B)〉.
From the master Eq. (12), using Eqs. (13)�(15) it is

possible to obtain linearized equations for 〈S(A)〉, 〈S(B)〉
valid for small values of the order parameters, i.e., in the
disordered phase and just below the transition point to
the FM phase. For this purpose let us take into account

that Pr
(
sk(A),k(B) = ±1

)
=

1±〈s
k(A),k(B) 〉

2 , substitute this
into Eq. (15), expand for small 〈sk(A),k(B)〉,(

1± 〈sk(A),k(B)〉
)l k(A)p

k(A)pk(B)

〈k(A)〉

≈ 1± l k
(A)pk(A)pk(B)

〈k(A)〉
〈sk(A),k(B)〉,

etc., up to linear terms, substitute resulting Eq. (15) into
Eq. (14) and retain only terms linear with respect to
〈sk(A),k(B)〉. The resulting sums over the classes of nodes
in Eq. (14) can be written in a concise form by introduc-
ing the quantity

Bki = 2ki

[
ki
2

]∑
l=0

(
ki
l

)
(ki − 2l) , (17)

which is evaluated in Appendix, Eq. (25). Then it can
be written that[

ki
2

]∑
l=0

(
ki
l

)
=

{
2ki−1 − 2kik−1i Bki for ki even,

2ki−1 for ki odd,
(18)

where the �rst equality follows from Eq. (25) in Appendix

and the second one is trivial. Finally, the right-hand side
of Eq. (12) can be expressed by the order parameters (16):

∂〈si〉
∂t

= −〈si〉+ (1− 2q)

×

[(
1−

2B
k
(B)
i

k
(B)
i

δ
k
(B)
i ,even

)
B
k
(A)
i
〈S(A)〉

+

(
1−

2B
k
(A)
i

k
(A)
i

δ
k
(A)
i ,even

)
B
k
(B)
i
〈S(B)〉

]
. (19)

It can be seen that the form of the equation for the mean
opinion of the agent in node i depends on the parity of
the degrees of this node within the layers of the MN. Such
dependence is not observed in the Ising model [33].

The next step is to multiply both sides of Eq. (19)

by k
(A)
i /N〈k(A)〉 (k(B)

i /N〈k(B)〉) and perform summation
over the indices of nodes i = 1, 2 . . . N . When doing
this it should be remembered that approximately half of
nodes has even (odd) degrees within each layer and the
degree distributions within di�erent layers are indepen-
dent, thus, e.g.,

N∑
i=1

k
(A)
i

(
1−

2B
k
(B)
i

k
(B)
i

δ
k
(B)
i ,even

)
B
k
(A)
i
≈

1

2

N∑
i=1

k
(A)
i

(
1−

2B
k
(B)
i

k
(B)
i

)
B
k
(A)
i

+
1

2

N∑
i=1

k
(A)
i B

k
(A)
i
,

etc. The above sums on the right-hand sides of the two
resulting equations can be evaluated using the approxi-
mate equality in Eq. (25),

1

N

N∑
i=1

k
(A)
i B

k
(A)
i

= 〈k(A)Bk(A)〉 ≈
1√
2π
〈
(
k(A)

)3/2
〉

1

N

N∑
i=1

(
k
(B)
i

)−1
B
k
(B)
i
k
(A)
i B

k
(A)
i

=

〈
(
k(B)

)−1
Bk(B)k(A)Bk(A)〉 =

〈
(
k(B)

)−1
Bk(B)〉〈k(A)Bk(A)〉 ≈

1

2π
〈
(
k(B)

)−1/2
〉〈
(
k(A)

)3/2
〉,

etc., where the brackets 〈·〉 denote the appropriate mo-
ments of the degree distributions pk(A) , pk(B) .

Eventually, the following system of two linear equa-
tions for the time dependence of the order parameters is
obtained,

∂〈S(A)〉
∂t

= (20)[
−1+

1− 2q√
2π

〈
(
k(A)

)3/2〉
〈k(A)〉

(
1−
〈
(
k(B)

)−1/2〉
√

2π

)]
〈S(A)〉

+
1− 2q√

2π
〈
(
k(B)

)1/2
〉

(
1− 1√

2π

〈
(
k(A)

)1/2〉
〈k(A)〉

)
〈S(B)〉,
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and a complementary equation for 〈S(B)〉 which can be
obtained from Eq. (20) by exchanging the indices A, B.

5.2. Critical value of the internal noise intensity
for the ferromagnetic transition

In the stationary state with ∂〈S(A)〉/∂t = 0,
∂〈S(B)〉/∂t = 0 the system of Eq. (20) and the
complementary equation has a trivial solution
〈S(A)〉 = 〈S(B)〉 = 0 corresponding to a disordered
phase. For the occurrence of non-zero solutions, cor-
responding to the FM phase, the determinant of the
right-hand side of this system of equations must be
zero. This condition leads to a quadratic equation for
q, and the solution of this equation with a higher value
corresponds to the critical noise intensity qc:

qc =
1

2

(
1 +

b+
√

∆

2a

)
, (21)

where

a =
1

2π

[
〈
(
k(A)

)3/2〉
〈k(A)〉

〈
(
k(B)

)3/2〉
〈k(B)〉

(
1−
〈
(
k(A)

)−1/2〉
√

2π

)

×

(
1−
〈
(
k(B)

)−1/2〉
√

2π

)
− 〈
(
k(A)

)1/2
〉〈
(
k(B)

)1/2
〉

×

(
1− 1√

2π

〈
(
k(A)

)1/2〉
〈k(A)〉

)(
1− 1√

2π

〈
(
k(B)

)1/2〉
〈k(B)〉

)]
,

b =
1√
2π

[
〈
(
k(A)

)3/2〉
〈k(A)〉

(
1−
〈
(
k(B)

)−1/2〉
√

2π

)

+
〈
(
k(B)

)3/2〉
〈k(B)〉

(
1−
〈
(
k(A)

)−1/2〉
√

2π

)]
,

∆ =
1

2π

[
〈
(
k(A)

)3/2〉
〈k(A)〉

(
1−
〈
(
k(B)

)−1/2〉
√

2π

)

−
〈
(
k(B)

)3/2〉
〈k(B)〉

(
1−
〈
(
k(A)

)−1/2〉
√

2π

)]2

+
2

π
〈
(
k(A)

)1/2
〉〈
(
k(B)

)1/2
〉

(
1− 1√

2π

〈
(
k(A)

)1/2〉
〈k(A)〉

)

×

(
1− 1√

2π

〈
(
k(B)

)1/2〉
〈k(B)〉

)
.

In particular, for SF layers with pk ∝ k−γ for k > m̃
there is

〈k−1/2〉 = γ−1
γ− 1

2

m̃−1/2, 〈k1/2〉 = γ−1
γ− 3

2

m̃1/2,

〈k〉 = γ−1
γ−2m̃, 〈k3/2〉 = γ−1

γ− 5
2

m̃3/2.

Substituting these expressions with γ = γ(A), γ = γ(B),
respectively, into Eq. (21) the critical intensity of the
internal noise qc for the MV model on MNs with in-
dependent SF layers can be obtained. In particular,
if both layers have identical degree distributions with
γ(A) = γ(B) = γ and m̃(A) = m̃(B) = m̃ � 1 there is

〈k−1/2〉〈k3/2〉
〈k〉

∝ O(1)� 〈k
3/2〉
〈k〉

, 〈k1/2〉 ∝ m̃1/2.

This yields the following expression for the critical inten-
sity of the internal noise:

qc =
1

2

[
1−
√

2π

(
〈k3/2〉
〈k〉

+ 〈k1/2〉
)−1]

, (22)

which can be compared with that for the MV model on
heterogeneous SF networks [11].
In Fig. 3 predictions of the MF approximation,

Eq. (21), are compared with the results of MC simula-
tions. It can be seen that these predictions are quantita-
tively correct in the case of MNs with high mean degrees
of nodes within SF layers, and small deviations from the
values of qc obtained numerically occur in the case of SF
layers with smaller mean degrees of nodes, as expected.
Besides, from Eq. (21) follows that in the model under
study the FM transition occurs at qc < 1/2 if γ(A) > 2.5,
γ(B) > 2.5, which is con�rmed by numerical simulations.

Fig. 3. Theoretical (solid lines) and obtained from
Monte Carlo simulations (symbols) critical values of

qc vs. γ(A) for the MV model on MN with SF layers
with �xed γ(B) = 5.5 and m̃(A) = m̃(B) = 5 (circles),

m̃(A) = m̃(B) = 20 (dots).

6. Summary and conclusions

A nonequilibrium model for the opinion formation, the
MV model, was investigated on MNs with two indepen-
dently generated layers by means of MC simulations and
theoretically in the heterogeneous MF approximation.
Detailed calculations were performed and their results
were compared with numerical ones for the layers in the
form of SF networks. In the version of the MV model
under study it was assumed that the agents obey the
update rule according to which if the majorities of the
agent's neighbors within each layer share the same opin-
ion the agent follows it with probability 1 − q; other-
wise, she makes decision randomly. It was shown that
the model exhibits continuous FM transition as the level
of the internal noise is decreased, and that its universality
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class depends on the details of the degree distributions
in the layers and for strongly heterogeneous layers is dif-
ferent from the universality class of the corresponding
equilibrium Ising model. Heterogeneous MF theory for
the model under study was presented, and the evaluated
critical value qc of the internal noise intensity for the FM
transition showed quantitative agreement with that ob-
tained from MC simulations for a broad range of parame-
ters characterizing the degree distributions of the layers.
In contemporary e�orts to create agent-based mod-

els for social and economic phenomena it is more and
more understood that the underlying networks of human
interactions (for direct contacts, information spreading,
transport, etc.) are not only heterogeneous, but often
have a multilayer structure, with di�erent layers in�u-
encing each other, which can be taken into account by
using the concept of MNs [18, 19]. For example, in this
paper the multiplex structure of the network of interac-
tions a�ects the model under study via the update rule
for the agents' opinions, Eq. (1), in which the e�ect of
information received by agents from their neighbors via
di�erent channels need not be equivalent: the bias from
a (possibly larger) majority of agent's contacts within
one layer can be balanced by the opposite bias from a
(possibly smaller) majority of contacts within the other
layer. By changing this update rule it is possible, e.g., to
investigate the e�ect of the relative importance of di�er-
ent layers of the network of interactions on the process
of opinion formation, both numerically and in the MF
approximation, by changing appropriately Eq. (14). An-
other straightforward extension of the present study is to
investigate the e�ects on qc of partial multiplexity and of
correlation between the degrees of nodes within di�er-
ent layers, in analogy with similar studies for the Ising
model on MNs [33]. Finally, it is known that the mul-
tiplex structure of the network of interactions can lead
to discontinuous FM transition in certain models for the
opinion formation [31, 32]. The present work opens a way
to look for similar phenomena in the (possibly modi�ed)
MV model on MNs.

Appendix

In this Appendix the quantity Bki given by Eq. (17) is
evaluated. For ki even, taking into account that

ki
2 −1∑
l=0

(
ki
l

)
=

1

2

[
ki∑
l=0

(
ki
l

)
−
(
ki
ki
2

)]
= 2ki−1 − 1

2

(
ki
ki
2

)
,

(23)
ki
2 −1∑
l=0

(
ki
l

)
l =

ki
2∑
l=0

(
ki
l

)
l − ki

2

(
ki
ki
2

)
=

ki

ki
2 −1∑
l=0

(
ki − 1

l

)
− ki

2

(
ki
ki
2

)
= (24)

ki
2

ki−1∑
l=0

(
ki − 1

l

)
− ki

2

(
ki
ki
2

)
=
ki
2

2ki−1 − ki
2

(
ki
ki
2

)
,

it is obtained that

Bki = 2−ki
ki
2

(
ki
ki
2

)
≈ 1√

2π
k

1
2
i , (25)

where the approximate equality, valid for large ki, re-
sults from the Stirling formula. From this equation the
�rst equality in Eq. (18) follows. In a similar way, the
approximate equality, Eq. (25), can be proved for ki odd.
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