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The paper focuses on the estimation techniques for a low-dimensional phenomenological model of ferromagnetic
hysteresis proposed by the Brazilian research group GRUCAD. The description is expressed with an ordinary
differential equation and some auxiliary relationships. It describes both irreversible and reversible magnetization
processes and addresses some problems inherent in the well-known Jiles—Atherton model. It is found that the
differential evolution method is the most competitive technique for recovery of optimal model parameters.
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1. Introduction

An important stage of hysteresis modeling is the iden-
tification of model parameters. For this purpose, dif-
ferent optimization techniques, including those based on
artificial intelligence methods and soft computing, are
applied [1-3]. An improper choice of values for model
parameters may result in excessive prediction errors if
other phenomena (e.g. eddy currents) are taken into ac-
count [4]. On the other hand, different sets of model
parameters may yield identified hysteresis loops that are
quite similar in shape [5]. The present paper is aimed
at the development of a methodology to choose an op-
timum procedure to estimate the parameters of a low
dimensional hysteresis model, described in Refs. [6-8].

2. Model description

The description advanced by Jiles and Atherton [9]
has attracted a lot attention of the scientific community
in the last thirty years. In the present paper, we fo-
cus on its modification proposed by the Brazilian team
GRUCAD |6, 7], which has addressed a number of prob-
lems with the original description. As pointed out in
Ref. [10], in the original Jiles—Atherton (JA) model the
loop branches are obtained by introducing offsets along
the M-axis. On the contrary, the GRUCAD proposal is
based on introducing offsets along the H-axis from the
so-called anhysteretic (truly reversible) curve. There-
fore the latter model yields an improved description of
reversible magnetization processes in the sense of ther-
modynamics, for example there is no need to introduce
artificial “switching oftf” of the irreversible magnetization
component after sudden field reversals. The slope of the
magnetization curve described with the GRUCAD model
is non-zero after a field reversal, such model behavior is
expected for the advanced Preisach-based models like the
moving Preisach model [11].

Yet another practical advantage of the GRUCAD de-
scription is its formulation directly as B—input model,

which is in compliance with international standards con-
cerning magnetic measurements.
The model equations are:
(1) Hap = B/po — Mg(coth A — 1/X),
(2) A\ = (l—a)Han+aB/uo7
(3) dH, _ Hprs(coth Ay —1/\pr)+-Hy,
dB BT
§ = +1 = sgn 4

dB >
(4) Ay = Hntolns

a )
(5) H = Hgyy, + Hy.
The model parameters are «, a, v, Hpgs and M.
The paper [8] provides information how the variation of
the above-mentioned parameters qualitatively affects the
shape of the modeled hysteresis loop.

, where

3. Comparison of different estimation techniques

In order to compare the efficiency of different estima-
tion techniques, we propose the following procedure:

1. estimation of model parameters using a generated
loop with a priori preset parameters,

2. the same as in previous point, but an artificially
generated noise is added to the values for the refer-
ence point to simulate inevitable measurement er-
rors,

3. estimation of model parameters for a real life sam-
ple.

For comparison we choose the following methods: dif-
ferential evolution, genetic algorithms, particle swarm
optimization and simulated annealing. All algorithms
have been implemented as components of the Matlab
toolbox GODLIKE (Global Optimum Determination by
Linking and Interchanging Kindred Evaluators) by Old-
enhuis [12].

Both genetic algorithms and differential evolution are
stochastic global optimization methods inspired by the
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evolution processes observed in nature. Genetic algo-
rithm (GA) transforms a population or a set of individ-
ual objects, each with an associated fitness value, into
a new generation of the population using the Darwinian
principles of reproduction and survival of the fittest and
analogs of naturally occurring genetic operations such
as crossover (sexual recombination) and mutation. Each
individual in the population represents a possible solu-
tion to a given problem. The genetic algorithm attempts
to find an optimal solution to the problem in a number
of iterations corresponding to successive generations. In
every generation the most promising (fittest) individuals
are chosen to produce offsprings [13, 14]. The block dia-
gram illustrating the general flow chart in GA is shown
in Fig. 1.

Initialization: generate initial population P°

—

termination conditions
fulfilled?

n=n+l Exit

:

Selection: generate mating pool Q"

!

Crossover: mate parents in Q" to
generate children pool C*

!

Mutation: mutate children in C* to
generate new population P*

!

Elitism: retain best individual in
Pn-l

Fig. 1. The general flow chart of genetic algorithms
(own work, after [14]).

Nowadays GA is considered a bit of an outdated tech-
nique (originally proposed by Holland in 1975), in most
cases it has been successfully superseded by the more
recent and effective differential evolution. Genetic algo-
rithms, either in the binary or floating number repre-
sentation, have been successfully applied for the task of
recovery of optimal values of JA model parameters in the
papers [1, 15-19].

Differential evolution (DE) was proposed in the mid-
nineties of the last century by Price as a way to address
some shortcomings of the GAs (premature convergence,
slow performance). The key difference between DE and
GA is the introduction of the differential mutation op-
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erator, whose role is to maintain the self-adaptability
of trial solutions [20-22]. DE is now considered one of
the most robust and versatile metaheuristic optimization
techniques.
The pseudo-code of DE is given below [22].
Require: D — problem dimension (optional)
NP, F, Cr — control parameters
GEN — stopping condition
L, H — boundary constraints
Initialize population POP; ; < rand; ;[L, H] and
Evaluate fitness FIT; < f(POF;)
for g =1to GEN do
for j =1to NP do
Choose randomly 71,23 € [1,...,NP], r1 #ra #r3 #j
Create trial individual X < S(r, F, Cr, POP)
Verify boundary conditions if(z; ¢ [L, H])
x;  rand,[L, H]
Select better solution (X or POP;), and update iBest if
required
end for
end for

Several authors report on successful application of dif-
ferential evolution to the problem of estimation of JA
model parameters [23-25].

Particle swarm optimization (PSO) is a population-
based stochastic optimization technique, inspired by so-
cial behavior of bird flocks or fish schools. Since 1995,
when the original concept was proposed [26], a number of
important improvements have been introduced [14, 27].
The basic concept of this method is to randomly gen-
erate a number of potential solutions (called particles or
agents) of the optimization problem in the n-dimensional
search space and next to seek for an improved one by
moving them simultaneously in accordance with sim-
ple mathematical formulae. Particles with best features
move slower and attract the other ones. After a number
of iterations the optimal solution, indicated by swarming
candidates, is determined. PSO has been applied for es-
timation of JA model parameters by Marion et al. [2§]
and Knypiniski et al. [29].

Simulated annealing (SA) is a random search technique
that mimics the annealing process in metallurgy [30, 31].
In statistical mechanics the behaviour of large aggregates
of atoms subject to cooling is highly influenced by the
cooling rate. A slow decrease of sample temperature re-
sults in the smearing out of the structural disorder and
favours the approach to an equilibrium state correspond-
ing to the global energy minimum. On the other hand,
rapid cooling (quenching) yields defects and glass-like in-
trusions inside the material. It leads to the final state
with a higher energy level than previously considered.
The main advantage of simulated annealing is its ability
to avoid being trapped in local minima. Under proper
control of the cooling rate the SA method shall converge
to the global minimum. This technique has been ap-
plied for estimation of JA model parameters by several
authors [32-34].
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4. Results
For a virtual dataset of model parame-
ters [a,a, Ms,v,Hgs] =[1076, 50, 1.1x105, 0.1,

100] all algorithms implemented in the GODLIKE
toolbox were run 20 times. The repeatability of each
algorithm was verified by a direct comparison of the
collected results. As optimum results the average values
of model parameters were assumed. The fitness function
was defined as the sum of squared errors between
the measured and the modeled values for 33 data
points belonging to the descending branch of the major
hysteresis loop. Default (“out-of-the-box”) settings for
all algorithms were used. In terms of accuracy, the
most competitive algorithm was DE (15 times the
winner and the best fitness at all), the worst was SA.
GA was winner twice, but for 17 times the method
produced second-to-one results. PSO was the winner
three times. It is remarkable that DE yielded the most
robust (repetitive) results. In terms of computational
cost PSO required the least number of iterations and
function calls, GA was slightly behind. SA availed of
the resources most. The practical indication for possible
users is that DE seems the best method for the purpose
of GRUCAD model identification.

In the next step, artificial 10% noise was added to the
reference hysteresis loop and the algorithms were re-run
again. For the distorted hysteresis loop, the advantages
of DE were not so obvious in comparison to PSO and
GAs. The three methods yielded quite comparable fi-
nal values of fitness and the computational burden mea-
sured with the number of iterations and function calls was
quite similar. SA was the weakest competitor again. It
seemed to scan quite different areas of the search space.
We suspect the improvement of its performance might
be possible by tweaking the cooling schedule to be ap-
plied at each iteration. According to the documenta-
tion [12], the simulated annealing routine implemented
in the GODLIKE toolbox is probably the weakest algo-
rithm for single-objective optimization, as the adapta-
tion of control parameters at each iteration is not imple-
mented yet. Our results confirm the statement of toolbox
developer Oldenhuis.

The considered optimization techniques were next ap-
plied to the estimation of the GRUCAD model param-
eters for a cylinder sample made of 98NiFe (permalloy).
The parameters were estimated using the major hystere-
sis loop measured at quasi-static conditions, B,,, = 0.6 T.
The bounds for model parameters were determined using
the empirical guidelines as given in Ref. [2]. The bounds
for the parameter v were set to [0.01;0.5], whereas for the
parameter Hpg — [2;7] (its value should correspond to
the measured quasi-static coercivity). Figure 2 depicts
the best solution obtained during the tests.

The estimated set of model parameters was obtained,
as previously, with the use of DE. The estimated model
parameters were o = 3.67 x 1075, a = 7.28 A/m, M, =
5.799x10° A/m, v = 0.039 T and Hys = 2.64 A/m. The

R. Jastrzebski et al.

0.75

Permalloy 98NiFe
0504 B,=06T

* measurement

0254 —— model

=

= 0.00
-0.25
-0.50
-0.75 T T T T T T T T T

-10 -5 0 5 10
H, A/m
Fig. 2. The measured and the modeled hysteresis loop

for 98NiFe sample.

TABLE I

Percentage errors in chosen characteristic points

Point on the loop | B, | He | 0.5Hmax | —0.5Hmax
Error [%] 9.2 | 04 0.3 5.6

values of percentage errors in chosen points belonging to
the upper branch of hysteresis loop are given in Table I.

As far as the performance of the algorithms is con-
cerned, the timing for the whole batch varied during the
tests from 40 to 195 s on an Intel i5-2430M, 4GB ma-
chine running Matlab R2013a on Windows 7 platform.
DE was the winner, but GA and PSO were right behind
on the podium (GA was slightly more efficient).

5. Conclusions

1. Four metaheuristic algorithms implemented by the
same developer were compared in terms of their
ability to recover the optimal values of model pa-
rameters.

2. A methodology for comparison of stochastic es-
timation methods used for estimation of the
GRUCAD model parameters was proposed.

3. The differential evolution method seems to be the
most competitive algorithm for the purpose.
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