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Computation of Latent Heat based on the Energy
Distribution Histogram in the 3D Ashkin-Teller Model
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The method of computation of the latent heat based on the energy distribution histogram is applied to the
standard 3D Ashkin-Teller (AT) model. Similarly as in the original method for the q-state Potts model for strong
first order phase transitions, the characteristic histogram with two peaks in the critical region have been observed.
Positions of two minima of negative logarithm of internal energy probability for samples of finite size show good
linear scalability to the thermodynamic limit. The applicability of this method has been confirmed by proving
that the latent heat values are consistent with the ones obtained by us using the analysis of the behavior of the
cumulants of the type of Challa and of Lee-Kosterlitz. The presented method is far more efficient than the one
based on those cumulants.
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1. The standard Ashkin-Teller model

The Ashkin-Teller (AT) model originally proposed for
four component mixture [1], but later was expressed by
Fan [2] in terms of two Ising models put on the same
lattice with spins si and σi at each lattice site i. In con-
sequence, only two-spin interactions of a constant mag-
nitude J2 between the nearest neighbors are considered.
These Ising models are extended to the AT one by the
four-spin interaction of a constant magnitude J4 also only
between couples of nearest-neighboring spins. Thus, the
effective Hamiltonian H is of the form

�
H

kBT
�
¸

ri,js

tK2psisj � σiσjq �K4siσisjσju, (1)

where Ki � �Ji{kBT , with i � 2 or 4, ri, js denotes
summation over nearest-neighboring lattice sites, and T
is the temperature of the system.

We consider this standard AT model in 3D put on the
cubic lattice. It should be called the standard one as
there are many extensions of the AT model (see e.g. [3]).
Being non-trivial generalization of widely applied Ising
model, the AT model is one of the most important ref-
erence points in statistical physics [4]. It raises current
interest. Every year a dozen papers are devoted to it [3].

The state of research performed for this model and
its applications are available in many papers, e.g. [5–10].
Its K2pK4q phase diagram high complexity is the con-
sequence of the fact that three components of the order
parameter can order independently: not only xsy and xσy,
but also xsσy where x. . .y denotes the thermal average.

The aim of our paper is to present the method of
computation of latent heat based on the energy distribu-
tion histogram, originally proposed for the q-state Potts
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model [11], applied by us to the 3D AT model. To con-
firm the applicability of this method, we compare results
of our analysis with the ones obtained by us using the
analysis of the behavior of the cumulants of the type of
Challa VL [12] and Lee-Kosterlitz UL [11], modified by
us [7, 10]. The latter for the first time applied by us to
the AT model what is explained in Section 2. Similarly
as in the original method for the q-state Potts model [11]
for strong first order phase transitions, in Section 3 we
demonstrate the characteristic histogram with two peaks
in the critical region also in the 3D AT model and we
compute the latent heat on this basis.

2. The method of computation

Just like in the q-state Potts model with q equivalent
ordered states and one disordered, we observe character-
istic histogram of two peaks in the critical area also in the
3D AT model. As shown on the right in Fig. 1 for spins s,
maxima of these peaks appear at the energy value E�,L

for the ordered state and at E�,L for the disordered one,
and they are separated by a minimum of Em,L. In this
paper we use energy per lattice site in kBT units.

Hamiltonian (1) is the sum of three terms, each of
which shows the interaction energy within one compo-
nent of the order parameter. We perform the analysis
of the entire energy of the system, but it does not give
an insight into the individual behavior of the degrees of
freedom s, σ and sσ which demonstrate independent or-
dering. To calculate the individual contribution of each
of these three degrees of freedom to latent heat, we also
analyze the behavior of the energy of each degree of free-
dom, i.e. the mean value of each of the three terms in
Hamiltonian (1) separately.

Technically, we compute the histogram dividing the
whole interval of the energy E (in kBT units) occurring
in our computer experiments into small subintervals and
the program counts the energy appearing in each subin-
terval separately. Then we calculate the probability value
P of the energy in the different subintervals in a system
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Fig. 1. On the left, the energy dependence EH,28pK2q
of the whole system as well as the energy Eα,28pK2q of
interaction of degrees of freedom α � s (or σ) or sσ
in kBT units for the 3D AT model with L � 28 for
K4 � 0.1. The critical value K2 � 0.18381p2q is marked
with a vertical dotted line. On the right side is the
energy distribution histogram, i.e. probability PL as a
function of the energies specified in the legend box. For
clarity only selected points are marked.

of a finite size L�L�L. Our program independently cal-
culates the values PL (Eα, βq and �lnPLpEα, βq, where
α � s, σ, sσ, β � 1{kBT and, obviously, we also
take the whole Hamiltonian (1) as argument at the K2

critical value. This K2 value was carefully determined
from analyzes using the QL � xα2y2L{xα

4yL [13], VL �
xE4

αyL{p3xE
2
αy

2
Lq [12] and UL � xE2

αyL{xEαy
2
L [11] like

cumulants, modified by us for the AT model [7, 9, 10], for
the fixed K4 value. To compute the values of the Binder
type cumulants, we use the n-th power of the α spins
order parameter xαnyL. Whereas, for the Challa and the
Lee-Kosterlitz like cumulants we exploit the n-th moment
of the α-spins order parameter interaction energy xEnαyL.
Moments in all cumulants are averaged over an ensemble
of independent samples of the size L�L�L. Here α � s,
σ, sσ. For the Challa and Lee-Kosterlitz like cumulants
as an argument, we also take the average energy value
for the entire Hamiltonian (i.e. internal energy of the
system).

Besides validating the code of computer experiment,
our analyses also allow the important test: the respective
energy values E� and E� for the ordered and unordered
states defined within the individual degrees of freedom
and for the entire Hamiltonian H should fall in the upper
and lower regions of the characteristic sudden jump of
the average values of the respective energies Eα in the
K2 function at the fixed value of K4 parameter.

For our analysis we use the property that the posi-
tions of the above-mentioned minima Emin

�,L and Emin
�,L of

�lnPLpEα, βq satisfy the relation (see Eq. (2.4) in [11])

Emin
i,L � Ei � OpL�pd�1qq, (2)

where i � � or �. It is noteworthy that relation (2)
has been derived under the assumption that the phase
transition of the first order is strong [11]. Thus, for finite
systems with ever greater dimensions L the energy values
Emin
i,L linearly approach their bulk values Ei as a function

of L�pd�1q. Here d is the dimensionality of the system.

In systems with one independent component of the or-
der parameter, like the Ising or the q-state Potts model,
dependence (2) was used as a finite-size scaling relation
(see e.g. [11] and the papers cited therein). In these pa-
pers, positions of the minima Emin

i,L of �lnPLpE, βq ob-
tained for finite samples with d � 2, then in the function
L�1 show good linear scalability to their thermodynamic
limits to Ei values known from the analytical calcula-
tions. Based on these results we can calculate directly
the latent heat l

l � E� � E�. (3)

3. The results and conclusions

Similarly as in the q-state Potts model [11], Fig. 1 on
the right shows the characteristic histogram with two
peaks in the critical region obtained by us for the 3D AT
model of size L � 28 at K4 � 0.1. Also in this model, the
probability peaks PL fall into the upper and lower regions
of the characteristic sudden jump average value of EH,28
of the entire Hamiltonian, as well as the energy Eα,28 of
degrees of freedom α � s (the same dependence for de-
grees σ because of Hamiltonian (1) symmetry) and sσ as
a function of K2. K2 � 0.18381p2q marked by the verti-
cal dotted line in Fig. 1 has been carefully determined by
us as a critical value based on the analyses of the behav-
ior of the above mentioned Binder [13], Challa [12] and
Lee-Kosterlitz [11] like cumulants and has the same value
for each of the three degrees of freedom of the system.
Locating accurately the phase transition point is crucial
for this method [11].

Of course at every abscissa on the left in Fig. 1 the
sum of the mean values of the respective interaction en-
ergy of degrees of freedom s, σ and sσ equals to the
mean value of the internal energy of the whole system
within the uncertainty intervals that are of the order of
the symbol magnitude. This is the next positive test for
validity of the code of our computer program. It is worth
pointing out that our results refer to the boundary be-
tween the Baxter phase, where all the components of the
order parameter xsy, xσy and xsσy are ordered, and the
paramagnetic one.

As explained in Sect. 2, our program computes � lnPL
as a function of energy Eα,L not only of the whole Hamil-
tonian, but also of the energy Eα,L of interaction of
degrees of freedom α � s, σ and sσ separately for a
system of different L sizes. Figure 2 shows this depen-
dence � lnPLpEα,Lq for degrees of freedom s (or σ) with
K4 � 0.1 at critical value K2 � 0.18381p2q for system
size values 18 ¤ L ¤ 32 explained in the legend box.

Based on these graphs, we determined the positions
of both minima occurring in the relation (2), which is
the most probable energy of E�,L for ordered state (left
minima) and of E�,L dominating for unordered one (right
minima). In order to increase the precision of minima po-
sition determination, in their vicinity a smooth approx-
imating curve is used, applying regression of the third
degree. The approximated curves are illustrated by the
solid lines in Fig. 2.
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Fig. 2. The course of dependence � lnPLpEα, βq for
degrees of freedom s (or σ) at the critical value of K2 �
0.18381p2q and K4 � 0.1. The values of the system size
L are explained in the legend box. In the minima regions
the dependencies �lnPLpEα, βq have been smoothed by
the solid curves using the third degree regression.

Fig. 3. Values of Emin
�,L (upper lines) and Emin

�,L

(lower lines) of the minima positions of dependencies
�lnPLpEα, βq received at K4 � 0.1 (left) and K4 � 0.17
(right) for a system of finite size L for degrees of free-
dom explained in the legend box. The individual lines
are extrapolated to their thermodynamic limits E� or
E� using linear regression.

Symbols in Fig. 3 illustrate the results of such analyzes
for energies Emin

�,L and Emin
�,L for the whole Hamiltonian

(1), as well as for the energy of interaction of degrees of
freedom s, σ and sσ separately, explained in the legend
box, at K4 � 0.1 (left side) and at K4 � 0.17 (right
side). According to the formula (2), the values of Emin

�,L

and Emin
�,L in the L�2 function scale to the respective bulk

values E� and E�. Therefore, the individual lines in
Fig. 3 according to the relation (2) are extrapolated to
the thermodynamic limit using linear regression.

The resulting values E� and E� after substituting into
equation (3) at K4 � 0.1 give latent heat ls � 0.0891p5q
for spins s (or σ) and lsσ � 0.0423p6q for degrees of free-
dom sσ, which sum up to lsum � 0.2205p16q. While
latent heat determined on the basis of the entire internal
energy is lH � 0.2202p9q. AtK4 � 0.17 we have obtained
ls � 0.1100p4q, lsσ � 0.1300p4q, lsum � 0.3500p12q, and
lH � 0.3499p6q. Results lH and lsum are consistent within
the uncertainty intervals.

Thus, the method of computation of latent heat based
on the energy distribution histogram can successfully be
used in systems with many components of an order pa-
rameter showing individual ordering. The latent heat
values received here are consistent within the uncertainty
intervals with the values obtained from the analysis of the
behavior of the cumulants of the type of Challa VL [12]
l � 0.2197p14q at K4 � 0.1 and l � 0.3504p23q at K4 �
0.17 as well as of Lee-Kosterlitz UL [11] l � 0.223p15q at
K4 � 0.1, modified by us [7, 10].

This method requires much less numerical computa-
tion, and the results for extrapolation to the thermody-
namic limit in Fig. 3 exhibit significantly lower statisti-
cal scattering than those based on the Challa and Lee-
Kosterlitz cumulants. However, in order to use it, it is
necessary to have quite precisely determined position of
the investigated phase transition.
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