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A theoretical study of artificial neural network modelling, based on vibrational dynamic data for 2D lattice,
is proposed in this paper. The main purpose is to establish a neurocomputing model able to predict the 2D
structures of crystal surfaces. In material surfaces, atoms can be arranged in different possibilities, defining several
2D configurations, such as triangular, square lattices, etc. To describe these structures, we usually employ the
Wood notations, which are considered as the simplest manner and the most frequently used to spot the surfaces
in physics. Our contribution consists to use the vibration lattice of perfect 2D structures along with the matrix
and Wood notations to build up an input-output set to feed the neural model. The input data are given by the
frequency modes over high symmetry points and the group velocity. The output data are given by the basis vectors
corresponding to surface reconstruction and the rotation angle which aligns the unit cell of the reconstructed
surface. Results showed that the method of collecting the dataset was very suitable for building a neurocomputing
model that is able to predict and classify the 2D surface of the crystals. Moreover, the model was able to generate
the lattice spacing for a given structure.
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1. Introduction

Neural networks have been widely used for all kinds of
applications, such as prediction and classification [1–4],
where they have gained their reputation and proved that
they can be reliable alternatives to other classification
methods. The modelling of physical phenomena is still
attracting a significant interest for many issues and has
been treated by neural network techniques. For instance,
we can quote its applications in nanotechnology [5], elec-
trical conducted solids [6], electromagnetic theory [7],
fuel ignition model in combustion theory [8], magneto-
hydrodynamics (MHD) [9], fluid dynamics problems [10],
Troesch’s problem arising in plasma physics [11].

The atoms, in solid crystals, are placed in an ordered
way; their specific arrangements are conferred by the in-
teratomic forces. These forces play the same roles as the
springs in a spring-mass system. Therefore, if an atom
has slightly moved from its initial position, it will oscillate
around its equilibrium position. As the latter is linked to
the other atoms by electrostatic forces, the other atoms
of the crystal will also vibrate. Consequently, a vibra-
tional wave will propagate as a deformation within the
crystal. These vibrations have a direct impact on the
properties of solids [12], like melting temperature, ther-
mal conductivity, frequency modes, velocity, etc. As well
as indirect effects appear, in particular, on the resistivity
and the attractive interaction that leads to superconduc-
tivity [13].
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In addition, many techniques have been applied to
evaluate the elastic and mechanical properties of 2D sys-
tem [14], in particular, the Brillouin light scattering from
surface acoustic waves [15] and surface acoustic wave
spectroscopy [16].

The main interest, in this contribution, is to study the
framework of artificial neural network computing. We
begin by developing a theoretical approach of a NCM for
predicting the 2D lattice of crystal surfaces. The calcu-
lations of frequency modes, group velocity, and vector
elements corresponding to the matrix and Wood presen-
tation are used to feed in data to the proposed NCM.

This manuscript is organized as follows: in the next
section, we describe, briefly, some basic notions of lattice
dynamics in crystals. Then, we make use of the vibration
properties of perfect 2D lattice to extract the physical
parameters that will be used to collect the input-output
set of neural model. In Sect. 3, we provide a detailed
explanation about data collection as well as the neuro-
computing methodology in predicting the 2D structures.
In the last section, summary and conclusion of work are
provided.

2. Dynamic of the diatomic perfect 2D structure

The model system studied, in this work, is schematized
in Fig. 1. The representation consists of a diatomic plane
containing two different types of atoms.

Under the action of thermal agitation or magnetic ra-
diations, atoms do not keep on a fixed site, but vibrate
around their equilibrium positions. The amplitude of dis-
placements depends strongly on the intensity of excita-
tion.
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Assuming that the amplitude of vibration of each atom
is small compared to the distance between nearest neigh-
bours, the forces that bind atomic sites will be presented
in the harmonic approximation [17].

Fig. 1. A schematic representation of infinite diatomic
2D lattice. In this case, ` ≡ (0, 1) and `′ ≡ (0, 1).

Moreover, an infinite 2D crystal, which is characterized
by a periodic repetition in the Bloch space, translational
symmetry, and periodic boundary conditions, reduces the
atomic displacement field. All these assumptions allow
us to describe the motion equation of the sites ` and `′
as

ω2m`uα (`, t) =
∑
`′ 6=`

∑
β

(rαrβ
r2

)
k (`, `′) (uβ (`

′, t)

−uβ (`, t)) . (2.1)
The indices α and β represent Cartesian co-ordinates,
m` is the atomic mass for site `, and uα(`, t) is its cor-
responding displacement vector vibration, rα is the α-
component of the radius vector, r the distance between
` and `′ sites, and k (`, `′) is the elastic constant between
the two neighbouring sites.

In the perfect lattice, the previous linear equations for
the perfect diatomic 2D structure from Eq. (2.1) may be
cast in the matrix form as(

Ω2I −D (z, ϕy)
)
|U〉 = |0〉 . (2.2)

Ω is the energy of the vibration modes of the perfect
diatomic 2D lattice. It contains the characteristic fre-
quency of the perfect lattice, which is defined by k andm.
Here Ω is expressed by Ω2 = ω2/ω2

0 , and ω2
0 = k(A,A)

mA
.

D (z, ϕy) is the dynamical matrix characteristic of the
system, and I is its corresponding unit matrix. For the
configuration under study the matrices are reduced to
the size (8× 8).

The D elements are expressed as a function of the z =
exp(iqxa) and ϕy = exp(iqya), whereby (qx, qy) are the
reciprocal lattice wave vectors, respectively in the x and
y directions, and a is the lattice parameter.

By diagonalizing Eq. (2.2), for |z| = 1, we obtain the
eight (8) vibration modes of the diatomic structure pre-
sented in Fig. 1.

Among the dispersion curves, we note only two (2)
acoustical modes. The others are optical ones. They are
ranged from bottom to top in a numerical order. These
modes are presented as a function of the normalized wave
vector qx that runs over high symmetry points (HSP)
in the first Brillouin zone as depicted in Fig. 2. All the
modes are symmetric regarding to the Brillouin zone cen-
ter.

Fig. 2. Phonons dispersion modes for the 2D diatomic
lattice depicted in Fig. 1.

Each vibration mode propagates in its specific interval
frequency. We notice the existence of zones where some
modes are recovered. These zones signify that the above
modes can be excited simultaneously.

The dispersion phonon modes are strongly dependant
on the variation in atomic masses and the force elastic
interactions between the sites that form the unit cell.

In addition, the unit cell, of the diatomic system given
in Fig. 1, is composed by four (4) atoms, two A and
two `′ sites, the dispersion curves corresponding to the `
sites are the modes numerated from 1 to 4, in the bot-
tom modes. The other modes, on the top, from 5 to
8, correspond to the B vibration modes. The phonons
modes of the two different types of atoms are separated
by forbidden band.

In addition, the group velocities can be determined, di-
rectly, by calculating the slopes of the dispersion curves.
When the slopes are negatives, these signify that the elas-
tic waves changes the sense of propagation.

3. Neural network model

An artificial neural network is a model that imitates
the mathematical behaviours of biological nervous sys-
tems. Definitely, in the neural approach, the formal neu-
ron is the basic processing elements of neural networks.
In a roughly similar way, an artificial neural network,
based on a simplified model of the neuron, is thus com-
posed of a very large number of small and similar process-
ing units called artificial neurons “formal neuron”. These
are interconnected by weighted links, i.e., connections,
also called “synapses” according to the corresponding bi-
ological term. The nonlinear characteristic displayed by
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neurons is represented by a differentiable function called
transfer functions. Mathematically, the output of the i-
th neuron in the k-th layer of a network is [18]:

x
(k)
i = f (k)

 τ∑
j=1

w
(k)
ij x

(k−1)
j

 . (3.1)

Here x(k)i refers to the network response at the k-th layer,
wij are connection links between the input layer and the
hidden layer, and τ is the number of neurons in the layer
(k−1). The node of each neuron in the network is associ-
ated with a continuously differentiable transfer function
given by f (k).

3.1. Database collection

In this subsection, we describe the neural approach
used for predicting the 2D structure of crystal surfaces.
The training and evaluation of neurocomputing model
(NCM) involve three phases that include: first, collect-
ing the database, which characterize the input-output
unit of the tasks under study. Second, constructing the
proposed network topology for the given data. Third,
the performance of the proposed neural architecture is
checked. The essentials of these steps are discussed in
the next section.

Most of the common material crystallizations are
body-centered cubic (bcc), face-centred cubic (fcc),
hexagonal close packed (hcp), etc. In these structures,
there are in principle multitude possible positions on
their surfaces. Moreover, it is achievable to determine
the atomic arrangement on, a particular, crystal surfaces.
The latter depends on how the bulk structure is inter-
sected.

To collect the data set for NCM, let us consider some
simple examples illustrating the surface structures. For
illustrations, Fig. 3 and Fig. 4 show several 2D structures
defining some surfaces having hexagonal and square ar-
rangements, respectively. The 2D lattice of these sur-
faces shows gray circles which map the substrate atoms
and blue circles which map the adsorbate atoms.

As conclusion, there are different structures which rep-
resent different possible arrangements that can be ex-
posed on the surface. The solutions of the dynamic
equations (an eigenvalue problem) for different surface
arrangements give rise to many physical parameters that
will be used to generate the NCM. The descriptions of
data collection are discussed in the next subsection.

3.2. Description of the collected data
1. The first input unit is organized into ten

(10) blocks: (i) the first eight (8) blocks
contain the values of angular frequency vec-
tors Ω1 (z, ϕy), Ω2 (z, ϕy), Ω3 (z, ϕy), Ω4 (z, ϕy),
Ω5 (z, ϕy), Ω6 (z, ϕy)Ω7 (z, ϕy) and Ω8 (z, ϕy) gen-
erated from the dynamic equation. Each of fre-
quency modes is organized into six (6) neurons that
is used as training data. (ii) The ninth (9) block
contains the values of wave vector z = ϕx over HSP
in the first Brillouin zone. The values are organized

Fig. 3. The Wood and matrix notation for some su-
perlattices on a hexagonal 2D lattice.

Fig. 4. The Wood and matrix notation for some su-
perlattices on a square 2D lattice.

into six (6) neurons. (iii) The last block contains
the velocity data of each frequency response. Since
the velocity depends on the frequency modes, the
neuron number in this block will be the number of
modes times the neuron units used for each mode.
In total, we get 48 neurons for the velocity block.

2. The neuron number in each block represents the
training units. We sample the wave vector to yield
240 training data generated uniformly over six (6)
units which refers to the neuron number in each
block.

3. We have taken the lattice spacing data in a sepa-
rated unit (2), since for each value of a given lattice
spacing [12] we have to resolve the eigenvalue prob-
lem in Eq. (2.1).
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4. The output data have been classified according
to the matrix and Wood notations. For each
structure, we select the output data as a vec-
tor whose elements are extracted from the ma-
trix and Wood notations. Moreover, whilst deal-
ing with the output data, the HSP’s path should
be in accord with matrix and wood’s notations
since each notation has its related HSP path. For
these reasons, the training output vector is given as
[a, b, c, d, θ10 , γ, δ, ρ, σ], where the 4 elements (a, b, c,
and d) represent the matrix notation, θ is the an-
gle of rotation, which aligns the unit cell of the
reconstructed surface (the Wood notation). Fur-
thermore, γ, δ, ρ and σ refer to HSP path. As an
example, the corresponding vector of substrate unit
c(3× 1) :

√
2×
√
2 R45 is a vector whose elements

are [3, 0, 0, 1, 4.5, γ, δ, ρ, σ].

A schematic representation of the network topology is
shown in Fig. 5.

Fig. 5. A schematic representation of the network
topology used in this approach, the model is given by
three hidden layers connected in a feed forward manner.

As the inputs-outputs set has been coded as explained
above, the neurocomputing should present 103 neurons
in the input layer (forty-eight 48 neurons for frequency
modes, forty-eight (48) neurons for group velocity, six
(6) neurons for wave vector, and one (1) neuron for lat-
tice spacing). The hidden layer is powered with 205
neurons, while the output layer contains 10 neurons.
The initialization of the network weights and bias has
been generated by using Nguyen and Widrow’s initial-
ization algorithm [19]. In this study, the Mexican hat
wavelet function, given as f(u) =

(
1− u2

)
e−(u

2/2), has
been employed at hidden layers. However, for the out-
put layer a linear function has been used as activation,
i.e., f (u) = u. Additionally, in this contribution, the
Levenberg–Marquardt algorithm has been used to train
the neural network connection links. The training and

optimization of neural networks to perform the training
process is well documented in the literatures [20, 21].

4. Results

In this section, we illustrate the performance of our
model. The letter is done by testing the trained net-
work to evaluate its ability in predicting the 2D lattice
structures. For a better validation of our programs, the
performance of NCM is checked by some classification of
absorption sites on fcc (111), hcp (0001), ccp (111), ccp
(110) and bbc (110). For more details, see Refs. [22–24].

We can select from theses absorptions a bunch of pos-
sible arrangements [25–29] that will be used as testing
samples.

• V/Pt (111) given by the substrate unit c(2 × 1) :√
3×
√
3 R30. During the training stage, the output

unit, in the network language of such a substrate,
was coded by a training vector whose elements were
[2, 0, 0, 1, 3.00]. We have shown only the first 5 el-
ements of the output data in order to be able to
compare the network response with the matrix and
Wood notations.

• Au/Pd (100) given by the class c(2 × 2) :
√
2 ×√

2 R45. During the training stage, the output of
such a class was coded by the training elements
[2, 0, 0, 2, 4.50].

• Sm/Rh (100) given by the unit c(2 × 2) : 5
√
2 ×√

2 R45. The training elements of such a unit were
given by the training elements [2, 0, 0, 2, 4.50].

• Ce/Pt (111) given by c(2× 2) :
√
3×
√
3 R45. The

training elements of this kind of class were chosen
to be as [2, 0, 0, 2, 4.50].

• Ce/Rh (110) given by c(2 × 1) :
√
3 ×
√
3 R30.

The training elements of this kind of unit were
[2, 0, 0, 1, 3.00].

• Sb/Ag (110) given by the class c(2 × 2) : 2
√
3 ×

2
√
3 R30. The training elements corresponding of

this class were given as [2, 0, 0, 2, 3.00].

For simulation stage, the given structures are being used
as testing steps. This stage allows us to check the relia-
bility of the proposed NCM in classifying these arrange-
ments according to the Wood and matrix notations.

First, we keep the same architecture of the trained neu-
ral network. Next, we prepare the input units of the given
testing samples. The testing dataset contains the re-
quired data about frequency modes, wave vectors, group
velocity, and lattice spacing. Finally, the simulation re-
sults, which provided the output vectors through NCM,
are resumed in Table I, given below.
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TABLE I

The matrix andWood notations compared to the first five
elements of network responses according to each testing
arrangement of NCA output vectors related to the testing
data.

M & W NCA
V/Pt, (111) [2, 0, 0, 1, 3.00 [2.81, 0.12,−0.24, 0.91, 2.63]

Au/Pd, (100) [2, 0, 0, 2, 4.50] [2.37,−0.08, 0.39, 2.48, 3.92]

Sm/Rh, (100) [2, 0, 0, 2, 4.50] [1.78,−0, 47,−0.26, 1.76, 5.08]

Ce/Pt, (111) [2, 0, 0, 2, 4.50] [1.83, 0.32,−0.47, 1.79, 4.15]

Ce/Rh, (110) [2, 0, 0, 1, 3.00] [2.76, 0.08, 0.41, 1.27, 3.12]

Sb/Ag, 110) [2, 0, 0, 2, 3.00] [2.19,−0.23,−0.18, 2.46, 3.72]

V/Pt, (111) [2, 0, 0, 1, 3.00 [2.22,−0.29, 0.34, 1.16, 3.86]

According to the output vectors related to the testing
data, given in Table I, we quote the following remarks.

• The NCM estimation related to the testing data
of V/Pt (111) is [2.81, 0.12,−0.24, 0.91, 2.63] . The
latter is close to the vector [2, 0, 0, 1, 3.00]. Hence,
the network indicates that the structure is classified
as C(2× 1) :

√
3×
√
3 R30.

• The NCM output related to the testing data of
Au/Pd (111) is [2.37, 0.08, 0.39, 2.48, 3.92]. The
latter is close to the vector [2, 0, 0, 2, 4.50]. Hence,
the network indicates that the structure is classified
as C(2× 2) :

√
2×
√
2 R45.

• The NCM’s estimation related to the testing data
of Ce/Rh (110) is [2.76, 0.08, 0.41, 1.27, 3.12] . The
latter is close to the vector [2, 0, 0, 1, 3.50]. Hence,
the network indicates that the structure is classified
as C(2× 2) :

√
3×
√
3 R30.

Additionally, the lattice spacing calculations given by the
NCM are compared to the values of testing crystals: Pt,
Pd, Au, Ce, Rh, and Cb. In Table II, we have summa-
rized the network responses for the elements under test.

TABLE II

The NCM calculation of lattice spacing versus its real
cell value [12]; [pm].

Pt Pd Au Ce Rh Sb
network 302.015 405.251 425.529 381.49 213.051 185.34

cell 392.42 389.07 407.82 362 250.71 206

From Table I, the results illustrate that the neural net-
work has well recognized and classified possible arrange-
ments of testing samples. This study confirmed that us-
ing the Wood method along with matrix notations is a
very useful approach to distinguish the different arrange-
ments given in training stage as well as simulation stage.
However, the model was not accurate to determine the
lattice spacing of the same testing samples. In fact, for
the first illustration given in Table I, the NCM was more

accurate because the connection links are quite impor-
tant as shown in Fig. 5. It means that the neural model
contains raising neurons in the output-layer unit. The
latter permitted us to have more connections in terms
of weights; consequently, the NCM were more reliable in
predicting the arrangements of testing samples. On the
other hand, the connection links assigned to the lattice
spacing is only one neuron in the output unit as Fig. 5 de-
picts. For this reason, the simulation stage was hopeless
in evaluating the lattice spacing.

The results can be improved by acting on several pa-
rameters: (i) the training data quality, for the lattice
spacing, need to be coded in a very useful way. For ex-
ample, each lattice data have to be broadened by giving
each crystal a specific vector that refers to its lattice spac-
ing values. (ii) We have to increase the neuron number in
the hidden layer to get the optimal neural network model
that would be adequate to ensure a higher accuracy.

5. Summary and conclusion

A theoretical study to predict the possible arrange-
ments of crystal surfaces were reported. The model
was based on dynamic vibration and the Wood notation.
These latter allowed collecting enough data to feed the
input-output units of neural network. This contribution
has shown the capability of the NCM to recognize and
classify the possible arrangements of crystal surfaces.

Neural approaches involve collecting the input-output
set in the training stage. The matrix and Wood nota-
tions have given a helpful way to classify the arrange-
ments on surfaces for the testing crystals. Additionally,
the network response was in a good agreement with the
matrix and Wood notations. The network connection
links were initialized by Nguyen and Widrow’s method,
and the training steps were accomplished by using the
Levenberg–Marquardt and back-propagation algorithms.

To sum up, the model would be very helpful while
dealing with experimental data. In fact, it would be able
to predict the surface structures of the given data. We
have to feed the given experimental data and let the NCM
computes the output units. The latter leads to extract
the classes of each data and then compare them with the
matrix and Wood notations.

As a conclusion, inspired by the operation of nervous
systems, the artificial neural network currently consti-
tutes one of the most efficient tools to process alternative
and increasingly competent application in many fields.
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