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Robust and efficient  
finite-difference-time-domain modelling of 
the propagation of nonlinear elastic waves
Niezawodne i wydajne modelowanie propagacji 
nieliniowych fal sprężystych metodą różnic 
skończonych w dziedzinie czasu
Abstr act

A robust finite-difference-time-domain (FDTD) scheme to model the 
non-linear elastic wave propagation in a homogeneous isotropic material 
is presented. A formulation based on rotated staggered grid scheme in 
a displacement-velocity-stress configuration incorporating both geome-
tric and material nonlinearities is proposed. By adopting a Parsimonious 
algorithm, the computational memory requirement is reduced by 50%. Si-
mulations are accelerated by exploiting massive data parallelism innate to 
the FDTD approach using parallel computation on Graphical Processing 
Units with NVIDIA CUDA’s API. For the proposed numerical scheme, the 
grid convergence criterion and accuracy over propagating distances are in-
vestigated. The study is also extended to determine the contribution from 
geometric and material models at various input amplitude levels. The time 
and frequency domain signals obtained from the proposed scheme are ve-
rified with a commercial finite element solver. The simulation runtimes 
for an Aluminium sample of dimensions 20 mm x 10 mm using a 5 MHz 
pulse is of the order of one minute, which makes the proposed numerical 
scheme attractive to model nonlinear elastic waves in large domains.

Keywords: Finite Difference Time Domain, Rotated Staggered Grid, Parsi-
monious Scheme, Nonlinear elastic waves, CUDA, GPU

Streszczenie

W artykule przedstawiono odporny schemat metody różnic skończonych 
w dziedzinie czasu (FDTD) do modelowania propagacji nieliniowych fal 
sprężystych w jednorodnym materiale izotropowym. Zaproponowano po-
dejście oparte na rotowanych siatkach przestawnych w układzie przemiesz-
czenie-prędkość-naprężenie obejmującym zarówno nieliniowość geome-
tryczną, jak i materiałową. Zastosowanie algorytmu redukcji oszczędnej, 
zmniejszyło zapotrzebowanie na pamięć obliczeniową o 50%. Symulacje są 
przyspieszane przez wykorzystanie olbrzymiego paralelizmu danych wbu-
dowanego w podejście FDTD z wykorzystaniem obliczeń równoległych 
na jednostkach przetwarzania graficznego (GPU) wyposażonych w inter-
fejs API NVIDIA CUDA. Dla proponowanego schematu numerycznego 
badane jest kryterium zbieżności siatki i dokładność w funkcji odległości 
propagacji. Badanie rozszerzono również w celu określenia wkładu mo-
deli geometrycznych i materiałowych na różnych poziomach amplitudy 
wejściowej. Sygnały w dziedzinie czasu i częstotliwości uzyskane z pro-
ponowanego schematu są weryfikowane za pomocą komercyjnego opro-
gramowania wykorzystującego metodę elementów skończonych. Czasy 
pracy dla symulacji propagacji impulsu o częstotliwości 5 MHz w próbce 
aluminium o wymiarach 20 mm x 10 mm są rzędu jednej minuty, co spra-
wia, że proponowany schemat liczbowy jest atrakcyjny dla modelowania 
nieliniowych fal sprężystych w dużych domenach.

Słowa kluczowe: metoda różnic skończonych w dziedzinie czasu, rotowane 
siatki przestawne, schemat redukcji oszczędnej, nieliniowe fale sprężyste, 
CUDA, GPU

Introduction1.	
Interatomic forces that bind solids determine the responses 

to external forces. The interatomic potentials can be very well 
approximated as quadratic in displacements, for sufficiently 
small displacements of atoms from their equilibrium posi-
tions. As a result, the response to small external forces can 
be reasonably approximated to be linear in displacements. 
For microscopically homogeneous solids subject to small 
external forces, a description in terms of linear response 
would be a reasonable first approximation. However, there 
are a wide range of solids, natural and synthetic, that are not 
homogenous in a strict microscopic sense. Microscopically 
inhomogeneous features such as dislocations, grain bounda-
ries, voids, micro-cracks, pores exist. Solids having these 
internal features are in reasonably stable equilibrium and 

may be described as macroscopically homogenous media 
in some average sense.

There exists considerable experimental evidence to indi-
cate that such macroscopically homogeneous media respond 
nonlinearly to applied forces. Several of the examples of 
nonlinear effects reported in the literature include higher 
harmonics generation[1,2], resonance shift in frequency[3], 
amplitude-dependent and non-classical dissipation[4], DC 
response and subharmonic generation[5], wave modulation 
and frequency mixing[6]. Nonlinear acoustic and elastic 
waves have been investigated extensively for past few dec-
ades on grained materials[7], and rocks[8], in areas relating 
to geology[9], seismology[10], biophysics[11], biomedical 
engineering[12], lithotripsy and acoustic physiotherapy of 
soft tissues[13] and nondestructive testing of polycrystalline 
and composite media[14]. 

Historically, the nonlinear theories have been classified *Correspondence author. E-mail: prsd.shiva@gmail.com
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into two: classical theory, which accounts for the higher 
order elastic terms in the Hooke’s law and the non-classical 
theory which includes mechanisms like stress-strain hyster-
esis and contact acoustic nonlinearities(CAN)[5]. 

Two types of classical nonlinearity have been reported in 
the literature[4,15,16], i.e. geometric (kinematic) and mate-
rial (physical) nonlinearities. The former accounts for the 
gradient of the strain-displacement relation, whereas the 
latter is the result of the nonlinear stress-strain function (i.e. 
the third- and higher-order terms in elastic energy). The 
contribution of geometrical nonlinearity in solids has been 
known to be much smaller than the material nonlinearity, 
and, hence, has usually been neglected[17]. 

Among the various applications of nonlinear acoustic and 
elastic waves described earlier, the most exciting potential is 
believed to be in characterising materials nondestructively. 
In last few decades, researchers have been able to experi-
mentally relate the acoustic nonlinearity parameter, β with 
microscopically inhomogeneous features such as disloca-
tions, grain boundaries, precipitates, voids, micro-cracks 
formed due to various damages mechanism like fatigue, 
creep, thermal aging and radiation damage which can be 
related to the third-order elastic(TOE) constants[18,19].

The majority of literature deals with the experimental de-
termination of the nonlinearity parameter using harmonic 
generation technique. The non-linearity parameter obtained 
from experiments is the combined effect of many micro-
scopic factors as well as instrumentation non-linearity. The 
individual contribution of each of the microscopic factors 
to the non-linearity parameter is not entirely understood. 
Numerical simulations can provide a better insight into 
nonlinear wave characteristics by allowing for the study 
of individual contributions to non-linearity. A variety of 
numerical methods have been employed for examining 
the nonlinear wave propagation through homogeneous 
isotropic media, including the finite element (FE) method 
[20–23], the elastodynamic finite integration technique[24] 
and the finite difference(FD) method[25,26]. Researchers 
in the past have mostly resorted to various commercially 
available explicit/implicit FE solvers for dealing with such 
problems. For instance, Chillara and Lissenden [20] solved 
a two-dimensional FE model using the implicit solver, while 
Rauter and Lammering[22] and Xiang et al. [23] adopted an 
explicit solver, all of them incorporating TOE constants to 
account for the nonlinear effects. Drewry and Wilcox[21] 
on the other hand, looked at computationally less intensive 
one-dimensional FE models, underlining various signal 
processing protocols for obtaining the quantitative value 
of nonlinearity parameter. Commercial software packages 
based on FEM are memory intensive. Implicit solvers are also 
CPU time intensive as the computational domain increases.

Little work has been done in the past to develop finite 
difference time domain(FDTD) numerical models for elastic 
wave propagation through nonlinear media. Matsuda and 
Biwa [25,26] proposed a two-dimensional finite difference 
time domain(FDTD) model using a Standard Staggered 
Grid(SSG)[27,28] by incorporating both geometric and 
material nonlinearities. For anisotropic as well as nonlinear 

media, SSG requires interpolation of stress and strain [25]. 
The rotated staggered grid(RSG) FDTD scheme[29] over-
comes this shortcoming by placing the density and material 
parameters at the same location corresponding to velocity 
and stress components respectively. There have been efforts 
in the past to exploit the graphics processing cards to acceler-
ate simulations for linear elastodynamic problems [30–33]. 

The scope of the present work is to develop a robust and 
time-efficient two-dimensional RSG-FDTD scheme capable 
of modelling the non-linear response of the material while 
exploiting massive data parallelism innate to the FDTD ap-
proach. A formulation to deal with finite amplitude wave 
propagation based on FDTD method considering both the 
geometric and material nonlinearities is presented here. The 
geometric nonlinear model adopts a Signorini’s model[34], 
while the complete nonlinear model considers Lagrangian 
stress and strain tensors, accounting for both geometric 
and material nonlinearity. The gridding convergence re-
quirements to capture the higher harmonics components 
are presented. Signal stability as a function of propagation 
distance, evolution of higher harmonics with input am-
plitude as well as with propagation distance are described. 
The time and frequency domain signals obtained from the 
proposed scheme are verified with the commercial FE solver. 
The article has been organised as follows. Section 2 presents 
the theoretical formulation of nonlinear wave propagation. 
Section 3 explains the FDTD scheme implemented in this 
study. Section 4 describes the numerical model, grid conver-
gence and propagation aspects. The results are discussed in 
Section 5 and conclusions are presented in Section 6.

Different models presented in this studyTab. 1.	
Różne modele przedstawiane w niniejszej pracyTab. 1.	
Model Strain Measure Elastic Constants

Linear Elastic  
(LIN) Cauchy Strain Second Order

Geometric Nonlinear 
(GNL)

Almansi Hamel 
Strain Second Order

Material Nonlinear 
(MNL) Lagrangian Strain Second and third 

Order

Non-Linear Elastodynamics - Theoretical 2.	
Formulations

We consider three different models for the present study. 
First, a linear elastic model (LIN) is used considering Cauchy 
strain as the strain measure coupled with second-order elas-
tic constants. Second, geometric nonlinear model (GNL) is 
introduced by adopting Signorini’s model[34] relating finite 
strain tensor and Cauchy’s stress tensor which is coupled 
with second-order elastic constants. Third, a complete 
nonlinear model comprising both geometric and material 
nonlinearity called Material Nonlinear model(MNL) is used. 
Here, the Lagrangian strain is used as the strain measure and 
is combined with second and third order elastic constants. 
The models considered in this study are shown in Table 1.

Linear Elastic Model2.1	

In this model, a linear relationship between stress and 
strain is assumed and Cauchy strain is used as the strain 
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measure [35]. The linearized strain tensor is,

(1)

where εij is the strain, ui is the displacement and .

Following the constitutive relationship for elastic isotropic 
solids we have,

(2)

The simplified constitutive equations turn out to be

(3)

(4)

(5)

where λ and μ are the Lame elastic constants and τij is the stress.

Geometric Nonlinear Model2.2	

Here, instead of the linearized strain, a finite strain tensor 
is used here. Signorini’s model[34] relating the finite strain 
tensor (Almasi-Hamel strain) and Cauchy’s stress tensor is 
employed in this formulation. The third order elastic con-
stants are not considered. The finite strain tensor in terms 
of displacement gradient is,

(6)

The constitutive equations concerning two-dimensional 
non-linear wave propagation following[36] are,

(7)

(8)

(9)

Material Nonlinear Model2.3	

For the Material Nonlinear model, the governing equa-
tions of motion, the displacement – velocity relation, and 
the stress- strain relation can be written by[15] 

(10)

(11)

(12)

where Xi is the Lagragian coordinates, νi the velocities and Pij 
are the components of the nonsymmetric first Piola-Kirchoff 
stress tensor. For an isotropic material, the second- and third-
order stiffness tensors are given as,

(13)

(14)

where A, B and C are the third-order elastic constants for an 
isotropic material following Landau and Lifshitz[37], δij is the 
Kronecker’s delta function and 

In simplified terms, equation (12) can be expressed as

(15)

(16)

(17)

(18)

where,

(19)

It is to be noted that the stress tensor in the case of material 
nonlinearity is not symmetric. The elastodynamic equations 
for two-dimensional problem, in the absence of body forces, 
are given by,

(20)

(21)

(22)

(23)

Finite Difference Time Domain (FDTD) 3.	
Formulation

Rotated Staggered Scheme (RSG) 3.1	
In this section, the 2D Heterogeneous Explicit Parsimonious 

Rotated Staggered Grid Scheme is described. The RSG finite 
difference scheme was proposed by Saenger et al. [29], and it 
has been successfully applied in seismic modelling of elastic, 
viscoelastic, isotropic and anisotropic media[38]. In the RSG 
unit cell, all the velocity (and displacement) components are 
at the same location and the stress components at the other 
location (see Figure 1). Correspondingly, density is located 
at the same position as velocity and material parameters are 
located at the same position as stress. This gridding scheme 
is advantageous in modelling non-linear response of materi-
als as well as anisotropic crystal systems with symmetry less 
than Orthotropic. It is to be noted that non-linearity and ani-
sotropy of a material can also be modelled using the Standard 
Staggered Grid(SSG) [27,28], but requires interpolation of 
components[25,39]. The present scheme is also numerically 
stable with the existence of high contrast heterogeneities like 
voids, cracks, inclusions and the presence of more than one 
medium (fluid-solid contact). The application of boundary 
condition whether welded interface or free-surface bound-
ary condition, is straightforward in the heterogeneous 
formulation of the RSG Scheme. The major disadvantage of 
using RSG scheme is a stricter grid dispersion criterion, i.e., 
a higher sampling ratio is needed to achieve the same level 
of accuracy as obtained by a conventional SSG [40]. This 
leads to increased computational memory requirements and 
consequently large simulation times. Both these issues are 
addressed in this article by adopting a Parsimonious scheme 
and accelerating the simulations on Graphical Processing 
Units respectively.

Compared to the SSG scheme, the RSG method rotates 
the finite differential operators to the elementary cell in the 
diagonal directions first, and then, the standard FD operator 
is calculated by the linear combination of these operators. 
A detailed description of the RSG scheme can be found in 
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ref.[29]. We adopt a second order update in space and first-
order update in time. The extension to higher order spatial 
derivatives is straightforward.

Fig. 1.	 Rotated Staggered gridding scheme
Schemat obróconej siatki przestawnejRys. 1.	

Parsimonious Scheme3.2	

There are various numerical formulations of the above 
governing equations: Velocity-stress, Displacement-
Velocity-Stress, Displacement-Stress and Displacement-
Displacement [41]. We develop an algorithm by adapting 
a Displacement-Velocity-Stress (DVS) scheme. The proposed 
scheme is staggered in time where displacements are stored 
at integral timesteps and velocities are stored at half-integral 
timesteps leading to a recursive time-marching algorithm 
(as shown in Figure 2). Equations (3-5), (7-9) and (15-18) 
are used to compute the stress values from displacement at 
integral timesteps. Equations (20-21) are used to update 
the velocities at half timesteps from the stress values, and 
finally, Equations (22-23) are used to evaluate displacement 
at the next integral timestep. In order to reduce the compu-
tational memory requirement, we employ the parsimonious 
staggered grid [42][43]. It is not a gridding scheme in itself, 
but rather an algorithm to reduce computational memory 
requirement. Since in the DVS formulation, no temporal 
derivatives involving stress exist, there is no need to store 
stress tensor components for successive timesteps. This is 
the prime reason for parsimony. The scheme necessitates 
storing only displacement components and velocity compo-
nents reducing the computational memory to 50%. 

Fig. 2.	 Parsimonious gridding scheme
Schemat redukcji oszczędnejRys. 2.	

Stress components are evaluated but not stored for 
subsequent timesteps. The parsimonious scheme has 
memory requirements similar to that of a collocated grid 

[44] but exploits the numerical stability and accuracy of 
a complete[27] and partial staggered grid[29]. The bot-
tleneck is that programming is much more involved and 
redundant computations are performed between adjacent 
grid points increasing the computational time. This increase 
in computational time is compensated by performing paral-
lel computations on Graphical Processing Units exploiting 
the massive data parallelism innate to the FDTD approach. 
A complete set of discretized FD equations for geometric and 
material nonlinearity can be found in Appendix.

Parallel Computing- Efficient simulation using 3.3	
GPU 

The numerical scheme outlined in the previous section is 
implemented through the use of Compute Unified Device 
Architecture (CUDA)[45], an Application Programming 
Interface(API) and a parallel computing platform, to lever-
age graphical processing units(GPU) capabilities. CUDA 
provides transparent access to the GPU hardware at a low 
level while minimising the programming complexity and 
the attainable efficiency was demonstrated with an FDTD 
case study performed by Pandala et.al [46], wherein a speed 
improvement of up to seventy times was reported in com-
parison with computer processing units(CPU). The authors 
also have earlier explored the capability to use CUDA based 
acceleration for linear wave propagation through the poly-
crystalline material for both two and three-dimensional 
models[47]. In the present scheme, in order to retain the 
information between successive timesteps, the two sets 
of displacement and velocity components are stored as 
global variables. The stress components are evaluated at 
individual grid points as local variables. The use of shared 
memory does not provide any acceleration as there is zero 
redundancy in memory transactions. All the computations 
have been carried out with NVIDIA Tesla K40C graphics 
card.

Fig. 3.	 Snapshot and Schematic diagram of a model for nonlinear 
elastic wave propagation.

Schematyczne przedstawienie modelu do propagacji nie-Rys. 3.	
liniowej fali sprężystej

Numerical Modelling4.	
Scheme4.1	

An FDTD simulation was carried out on a domain 
having dimension 20 mm x 10 mm. A Hann windowed 
tone burst signal of 5 MHz centre frequency with eight 



15
Badania Nieniszczące i Diagnostyka 2 (2018)
N o n d e s t r u c t i v e  T e s t i n g  a n d  D i a g n o s t i c s

cycles was imposed from the top surface of the domain. 
Hann windowed signal is known to produce significantly 
lower amplitudes (80dB) at the frequencies of harmonics 
of interest[21]. Through transmitted signal was received 
from the other end of the domain as shown in the sche-
matic diagram in Figure 3. The length of the modelling 
domain was adjusted to isolate the first arrived signal 
from the side wall reflections at the receiver. The mate-
rial properties used are for aluminium and are given in 
Table 2.[48].

Material Properties used for Aluminum[48]Tab. 2.	
Właściwości materiałowe aluminium [48]Tab. 2.	

Material Aluminum
ρ 2727 kg/m3

λ 57.0 GPa
μ 27 GPa
A -320 GPa
B -200 GPa
C -190 GPa

Gridding4.2	

It is known that RSG scheme requires at least 15 grid 
points per wavelength to avoid numerical dispersion and 
provide reasonable accuracy [40]. This criterion has been 
deduced from linear wave propagation considerations. It 
needs to be re-examined while dealing with nonlinear 
wave propagation involving generation of higher harmonic 
components. In the present study, we investigate the spatial 
sampling requirements to ensure sufficient modelling ac-
curacy to extract up to third harmonics components from 
the numerical model. For the domain given in Figure 3, 
numerical simulation was performed for both GNL and 
MNL models by varying the grid point per wavelength 
as indicated in Figure 4. The peak amplitude of excitation 
here was set to 10-7m. The received time domain signal was 
Fast Fourier transformed to extract the amplitudes of static, 
second and third harmonic components. Typical input and 
received time domain signal along with the corresponding 
frequency spectra are shown in Figure 5.

The grid convergence was obtained by calculating the 
difference between the amplitudes of individual harmonic 
component (i.e. static(A0), second(A2) and third(A3) 
harmonic component) to that of the converged solution 
Ac. The converged solution is obtained at the highest mesh 
density, in this case at λ/50. From, Figure 4 (a), for GNL 
model, it can be seen that both second harmonic and static 
displacement components converge beyond 30 grid points 
per wavelength. The presence of third harmonic compo-
nents in this model was found to be minimal throughout 
and has hence been ignored from the present analysis and 
rest of the article. Figure 4 (b), which is for MNL, converges 
beyond 45 grids per wavelength. As static displacement 
component converges much earlier, ensuring the conver-
gence for third harmonics will ensure sufficient sampling 
for static displacement components. General criteria for 
gridding and time stepping for GNL and MNL model is 
given in equation (24), (25) and (26)

Fig. 4.	 Convergence of normalised harmonic amplitude against 
number of grid points per wavelength obtained for (a) GNL and 
(b) MNL models. A zoomed view of the graph near to the converg-
ing point is shown in the inset image. Results are presented for 
static displacement (blue diamond marker), second harmonic (red 
circular marker) and third harmonic component (black square 
marker).

Zbieżność znormalizowanej amplitudy harmonicznej Rys. 4.	
w funkcji liczby punktów siatki przypadających na długość fali, 
uzyskana dla modeli: (a) GNL, (b) MNL. W powiększeniu poka-
zano widok wykresu w pobliżu punktu zbieżności. Wyniki przed-
stawiono dla przemieszczenia statycznego (niebieski znacznik 
diamentowy), drugiej harmonicznej (czerwony znacznik kołowy) 
i trzeciej harmonicznej (czarny znacznik kwadratowy).

(24)

(25)

(26)

where VL is the longitudinal velocity in the material, λ is the 
longitudinal wavelength, Δh is the gridding, ck represents 
difference coefficients(e.g. Holberg Coefficients[49]). 
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Fig. 5.	(a) Typical input excitation and received A-scan signal 
(normalized) (a) corresponding FFT signal (normalized)

Typowy znormalizowany sygnał wzbudzenia i wyj-Rys. 5.	
ściowy: (a) w dziedzinie czasu (sygnał typu A) (b) w dziedzinie 
częstotliwości

Propagation Aspects4.3	

The solution to the nonlinear ultrasonic wave equation, 
based on an input harmonic wave train, has been deduced 
in numerous articles published earlier [15,19,21,50] and 
hence will not be repeated here. The expression for second 
harmonic nonlinear response (β) is given by 

(27)

where β is the second-order nonlinear parameter, ν is the 
longitudinal wave velocity of the material, ω is the angular 
frequency, z is the thickness of the material, A1 is the 
fundamental amplitude, A2 is the second harmonic amplitude.

Similarly, the third harmonic nonlinear parameter and 
the static displacement nonlinear parameter are given in 
Eq. (28) and (29)

(28)

(29)

where δ is the third order nonlinear parameter, βdc is the static 
displacement nonlinear parameter, Adc is the static displacement 
amplitude, A3 is the third harmonic amplitude.

Fig. 6.	Variation of (a) A2/A1
2, (b) Adc/A1

2 and (c) A3/A1
3 with 

propagation distance for MNL model
Zależność (a) ARys. 6.	 2/A1

2, (b) Adc/A1
2, (c) A3/A1

3 od odległości 
dla modelu MNL 
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Fig. 7.	Variation of (a) A2/A1
2 and (b) Adc/A1

2 with propagation 
distance for GNL model

Zależność (a) ARys. 7.	 2/A1
2, (b) Adc/A1

2 od odległości dla modelu 
MNL

The stability and accuracy of the proposed FDTD model 
for nonlinear elastic media are demonstrated by performing 
simulation on medium with varying propagation distances 
using both the GNL and MNL models. It is expected from 
relations (27), (28) and (29) that the relative amplitude ratio, 
defined by A2/A1

2, Adc/A1
2 and A3/A1

3 would vary linearly 
over the propagation distances. The modelling parameters 
for this study have been kept similar to that mentioned in 
Section 4.1 while the propagation distance was varied from 
10 mm to 50 mm. The frequency domain plots obtained for 
GNL and MNL models were individually normalised with 
respect to their corresponding amplitudes of the fundamen-
tal (A1) and amplitudes corresponding to static, second and 
third harmonic components were extracted. This normalisa-
tion permits comparisons between the responses from dif-
ferent nonlinear models. The variation of A2/A1

2, Adc/A1
2 and 

A3/A1
3 with propagation distance for MNL model is shown 

in Figure 6. A similar plot for A2/A1
2 and Adc/A1

2 evaluated 
using the GNL model is shown in Figure 7. The linear trend 
indicates that the nonlinear effect captured by the numerical 
scheme is consistent with the theoretical expression for all 
three nonlinear parameters given in Eq. (27), (28) and (29) 

As mentioned earlier, the contribution from third harmonics 
generated from GNL model was found to be negligibly small 
at the given input amplitude level and has been ignored from 
the analysis detailed in this section.

Results and discussions5.	
Verification of FDTD model5.1	

We compare the MNL-FDTD model with an FE model im-
plemented using a commercial software package, COMSOL 
Multiphysics 5.2 [51]. This commercial software package 
runs on an implicit solver and adopts a straightforward im-
plementation of third-order elastic constants (TOEC’s). In 
contrast, our FDTD model employs an explicit scheme, and 
the objective here is to draw a comparison in terms of the 
accuracy of the solution, as such packages have been widely 
utilised for the nonlinear wave propagation studies[20, 52, 
53].The modelling parameters are kept identical for both 
the models and are shown in Table 2 and Table.3. The peak 
amplitude of input excitation was set of 10-7m. Figure 8.(a) 
shows the time domain and FFT signal drawing a compari-
son between the FE and FDTD model. It can be seen that the 
time domain signals shows good agreement with each other 
showing a discrepancy within 1%. The FFT shown in Figure 
8. (b) also indicates good agreement with the FE Model for 
static components, second harmonic and third harmonic 
components showing the differences to be less than 1% for 
the peak amplitudes. The simulation time for the FDTD 
model given in Table 3, was of the order of one minute, while 
the memory intensive model having a dimension 20 mm x 
50 mm with 5MHz input frequency took 6 minutes.

Simulation parameters used for comparing FE and FDTD Tab. 3.	
models.

Parametry symulacji używane do porównywania modeli Tab. 3.	
FE i FDTD

FE Model F DTD Model
Model dimension 20 mm x 10 mm

Input frequency/Number of cycles 5 MHz/ 8 cycles
Step time/Gridding 3.4e-9sec / λlongitudinal/45

Comparison of Linear, GNL and MNL models5.2	

The amplitude of input displacement considered here is in 
the order of 10-7m. Figure 9. (a) compares the time domain 
signal received for the three models. It can be seen that all 
the three models overlap with each other to a greater extent, 
while some fluctuations can be observed beyond the first 
arrived signal in case of MNL model (shown in the inset 
in Figure 9. (b)). This could indicate the presence of higher 
harmonic components as reported in Fig.7 of [20]. The 
frequency spectra shown in Figure 9. (c) indicate a higher 
harmonic contribution from MNL than GNL. Similar trends 
have been reported in the numerical model presented by 
Chillara and Lissenden [20].

The study was extended to investigate into the responses 
of the harmonic components by varying the input amplitude 
levels. Figure 10 shows frequency responses for MNL and 
GNL models, indicating consistent increment in the higher 
harmonic generation. At lower amplitude levels (in the order 
of 1e-9m), both GNL and MNL models, showed excellent 
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agreement with the linear elastic model, which indicates 
that noticeable harmonic components are generated only 
above certain finite amplitude levels. The static displacement 
component (or DC component) amplitudes are observed 
to be one order higher in MNL model in comparison with 
GNL model.

Fig. 8.	 Comparison of FEM and FDTD models with the input 
excitation signal (a) Time domain (b) FFT. Note the difference in 
the signal strength between input and output signal in the time 
domain are reflected in the FFT plot.

Porównanie wyników modeli FEM i FDTD z wejściowym Rys. 8.	
sygnałem wzbudzenia (a) w dziedzinie czasu (b) w dziedzinie 
częstotliwości. Uwaga: różnica w sile sygnału między sygnałem 
wejściowym i wyjściowym w dziedzinie czasu jest odzwierciedlona 
na wykresie widmowym.

Conclusions 6.	
The development of a robust numerical FDTD RSG 

scheme to deal with geometric and material nonlinearity 
in homogeneous isotropic materials has been described. 
The two bottlenecks of RSG scheme: large computational 
memory and extensive simulations times are addressed 
by adopting a Parsimonious scheme and parallelizing the 
time domain simulations on GPU with CUDA API. The 
simulation runtimes for the most memory-intensive test 
case of the FDTD model was of the order of six minutes. 

The study also provides the required spatial sampling to 
ensure sufficient modelling accuracy to extract up to third 
harmonics as a guideline for future modelling. The time 
and frequency domain signals obtained from the proposed 
scheme are verified with the commercial available FE solver 
showing a discrepancy within 1%. The amplitude of the 
harmonic contents extracted has shown linear behaviour 
with propagation distance, underlying the stability and ac-
curacy of the proposed modelling scheme. It is observed that 
the contribution of MNL model dominates the GNL model 
at a given input amplitude level and both GNL and MNL 
model behaves similar to the linear model at smaller input 
amplitude levels, which are in agreement with the existing 
numerical predictions[20].

Fig. 9.	 Comparison of Response of Linear (blue dashed lines), 
GNL (red solid lines) and MNL (black solid lines) models for 
a peak to peak input excitation of the order 1e-7 m showing (a) 
Received time domain signal and (b) magnified view of the time 
domain signal shown in the inset shows the presence of extra fre-
quency components (c) FFT of the received time domain signal for 
the corresponding models.

Porównanie odpowiedzi modelu liniowego (niebieskie Rys. 9.	
linie przerywane), GNL (czerwone linie ciągłe) i MNL (czarne linie 
ciągłe) dla wzbudzania wejściowego o wartości międzyszczytowej 
rzędu 10-7 m: (a) odebrany sygnał w dziedzinie czasu, (b) powięk-
szony widok sygnału w dziedzinie czasu (obecność dodatkowych 
składowych częstotliwościowych), (c) wynik transformacji FFT 
odebranego sygnału dla badanych modeli.
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Fig. 10.	Comparison of response of (a) Linear versus MNL (b) 
Linear versus GNL models for various orders of peak to peak input 
amplitudes. Results of the Linear models are shown in blue dashed 
lines with circular markers, and both MNL/GNL models are rep-
resented using solid lines. 

Porównanie odpowiedzi modeli dla różnych rzędów mię-Rys. 10.	
dzyszczytowej amplitudy sygnału wejściowego: (a) liniowy i MNL 
(b) liniowy i GNL. Wyniki modeli liniowych są przedstawione 
za pomocą niebieskich przerywanych linii z okrągłymi znaczni-
kami, a oba modele MNL / GNL są reprezentowane za pomocą 
linii ciągłych.

As the RSG FDTD scheme is numerically stable with the 
existence of high contrast heterogeneities such as voids, 
cracks and inclusions, numerical investigation can be 
extended to understand the effect of microstructural inho-
mogeneities like micro-voids[54], micro-cracks, inclusions 
and precipitates[55] on acoustic nonlinearity parameter 
with appropriately measured second-order and third-order 
elastic constants[56]. 

Also, with the ability of RSG scheme to better handle 
anisotropic media, the current numerical scheme could 
also be adopted for studying the nonlinear wave propaga-
tion through polycrystalline media by incorporating the ap-
propriate second and third-order elastic constants for each 
grain. The spatial sampling requirements derived earlier 
may not hold in this case, as grains are being often smaller 
compared to the probing wavelength, requiring much finer 
gridding than the aforementioned criteria.
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Appendix8.	
The following discretized equations are valid for interior 

of the solid. At the boundaries, the computation of velocity 
is performed by replacing the central finite differences with 
either forward (or backward) finite differences. The partial 
derivatives and represented by  and  are computed as 
follows

(30)

(31)
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where P is the variable of interest, subscript i = x,z ; k = x,z and 
superscipt represents timesteps.

Geometric Nonlinearity
The complete set of discretized equations (7-9), (20-23) 

for geometric nonlinear model described in Section 2.2 are 
given by

(32)

(33)

(34)

(35)

(36)

(37)

Material Nonlinearity
The constitutive equations (15-18), elastodynamic equa-

tions (20-23) for material nonlinear model when discretized 
take the following form

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)


