
 

127 

GRAPHICAL USER INTERFACE  

FOR PROTRACE LIBRARY  

Konrad Grzanek 

IT Institute, Academy of Management, Lodz, Poland 

kgrzanek@swspiz.pl 

Abstract 

Protrace library allows Clojure programmers to investigate an arbitrary 

computational process at the abstract syntax tree (AST) level. Abandoning pure 

textual representations and moving towards graphs and trees increased the 

readability and made the insight into processes easier. It gains special 

importance when tracing recursive and mutually dependent procedures 

execution. Prefuse visualization framework provided great features to prepare 

convenient views of extended ASTs. The paper presents recent Protrace 

improvements in this matter. 

Key words: Protrace, Clojure, Prefuse, Functional Programming, 

Computational Process, Visualization 

1 Introduction 

Protrace expression tracing library developed recently and described  in [1] 

allows Lisp programmers to investigate an arbitrary computational process at 

the abstract syntax tree (AST) level. According to [2] “the concrete syntax 

definition is derived from the abstract one and that the abstract syntax defini-

tion is the true definition of language structure”. This is why the abstract syn-

tax trees are such a convenient form of presenting language constructs that 

appear in the source code of programs. 

The library was created to trace programs’ dynamics in the first place, not 

only the structural dependencies. This is why a decision was made to use 

a custom extended version of ASTs. The extension involves adding subse-

quent AST nodes to the whole tree structure visualizing a flow of substitutions 

(in the computational model based on substitutions as described in [3]) that 

take place during expression(s) evaluation. It is to be presented in a more ex-

pressive way at the following figures. 

 



Grzanek K. 

128 

Previous version of Protrace used textual AST representations [1]. Unfor-

tunately, the nature of most non trivial computations is such that it requires 

many substitutional steps. Displaying the textual representation of the whole 

extended AST on the console leads to a hardly readable form, very inconve-

nient to use when looking for bugs or when searching for some behavioral 

patterns in the analyzed software. This is why we decided to use a visualiza-

tion framework [6] to implement a more convenient graphical AST view. 

It is also worth mentioning that all implementation activities described in 

this paper were applied to a new Clojure [4, 5] version of Protrace. 

2 Prefuse visualization framework 

Moving Protrace library into Java platform (Clojure is a JVM language) 

was a major step that allowed us to use a whole Java libraries stack. When 

choosing the visualization framework, we searched for the following features: 

- specialization towards visualizing graphs, trees in particular, 

- simple and readable, yet attractive appearance, 

- convenient Java API, 

- Java-pureness, the lack of  dependencies on custom platform-specific li-

braries to ensure conformity with WORA (write once run anywhere) prin-

ciple of the Java platform 

 

A choice was made to use Prefuse [6, 7] visualization framework. This Ja-

va library offers a whole bunch of possible graph displays and associated al-

gorithms: 

- tree display (actually used to visualize Protrace extended ASTs) 

- tree-map display 

- various graph visualizations, including hyperbolic and fisheye distortions, 

forces, simplifications, birdviews. 

 

It also offers a pretty consistent API and allows very deep customizations. 

The framework is not written in the functional style due to its purposes and 

high performance requirements, so we proposed and implemented a simple 

integration layer for Clojure and Prefuse. There were also some bugs inside 

the Prefuse engine resulting in subtle in nature, yet prominent in size memory 

leaks (loitering objects problem) requiring fixes. 

 

 



Graphical User Interface …  

129 

3 Usage  

To show a trace of an arbitrary Clojure s-expression evaluation one must 

take care of two things: 

1. Wrapping selected expression with a (watch …) form 

2. Running the wrapped expression inside an environment created by (show-

trace …) syntactic form. 

For example, if someone wants to trace an expression: 

(+ 1 2 (* 3 4 (- 6 7))  

 

at all levels of the computational process, has to beused the following form: 

(show-trace (watch-all (+ 1 2 (* 3 4 (- 6 7))))  

 

The interior (watch-all …) form wraps every sub-expression with a (watch…) 

form. The usage and nature of (watch-all …) is to be presented in a separate 

paper. 

4 Extended Abstract Syntax View 

The following  
 

Figure 1 shows the main visualization window after executing the above 

(show-trace …) form. 



Grzanek K. 

130 

 
 

Figure 1. Extended AST View 

Protrace GUI consists of a central panel showing an extended AST view 

and a properties panel below. The selected node is marked with a blue color 

and the path in the tree leading from the root to the selected node is marked 

with pale-blue. The tree is always expanded into a depth specified by the ra-

dius below the selected node. Selecting an AST node causes the properties 

panel to display important properties of the selected node: 

- Form: the syntactic form of the s-expression represented by the node 

- Shortened form: the syntactic form cut into a predefined length for textual 

presentation purposes 

- Value: of the s-expression and its 

- Value type: resolved using a standard Clojure type info routines 

- Evaluation level: the node level in the extended AST tree. The tree root’s 

level is 0. 

- Evaluated in Step: a number of a step of the computational process  when 

the node was assigned a value by the (meta-cyclic) evaluator 

- Visited in Step: a number of a step of the computational process  when the 

node was visited by the evaluator 

 
 



Graphical User Interface …  

131 

 

Figure 2. Tool tips in the extended AST View 

Additionally the AST view offers tool tips for nodes pointed by the mouse 

to perform fast overview of the properties without changing the overall tree 

layout and properties of the panel’s state. This feature is presented above in 

Figure 2. 

5  Recursive procedures and their evaluation traces 

Recursion is one of the key techniques of functional programming. Pro-

trace is highly effective when analyzing this kind of looping. To analyze 

a factorial procedure like the one below: 
 

(defn silnia [n] 

   (if (zero? n) 1 (* n (silnia (dec n)))))  
 

one must wrap the procedure body with the mentioned (watch-all ...) form or 

selectively with (watch …) on the specific sub-expressions: 
 

(defn silnia [n] 

   (watch-all (if (zero? n) 1 (* n (silnia (dec n)))))) 
 



Grzanek K. 

132 

Now executing the form: (show-trace (silnia 3)) in the Clojure REPL causes 

the system to display a window with an extended AST like in Figure 3.  

 

 

Figure 3. Recursive function execution trace in the extended AST View 

 

When the evaluation leads to a recursive behavior, the AST contains node 

duplicates on various levels. Every expression instance holds a bound value at 

its evaluation level. This allows one to trace the execution of complex proce-

dures, searching for the stop conditions etc. 

The view may be reorganized to be displayed both vertically and horizon-

tally. See Figure 4There is also a radius slider in the GUI toolbar. Tree radius 

may change from 1 to 7. Setting a higher radius value causes the AST tree to 

be expanded to a greater depth, thus allowing to make a more complex over-

view of the traced process. The impact of the radius value may be observed 

when comparing Figure 4 and Figure 5. 



Graphical User Interface …  

133 

 

Figure 4. Horizontal orientation of the extended AST view. Tree radius set to 1. 

6  Summary 

With Prefuse visualization framework Protrace gained a convenient way to 

observe the traced computational process at different stages of evaluation. 

Abandoning pure textual representations and moving towards graphs and trees 

increases the readability and makes the insight easier. It is especially impor-

tant when tracing recursive and mutually dependent procedures execution. 

There are plans to extend the GUI with a mechanism of (semi)automatic step-

ping across the extended AST nodes to follow the changes in the evaluator 

taking place on different stages of the computational process. Additionally, 

the AST nodes would be marked with different colors underlining their posi-

tion in the process in the overall timeline. 

 



Grzanek K. 

134 

 

Figure 5. Radius (value 3) impact on the extended AST view 

References 

1. Grzanek K., Cader A., 2010, Protrace: effective recursion tracing and debug-

ging library for functional programming style in Common Lisp, Artificial Intel-

ligence and Soft Computing, 10Th International Conference, ICAISC 2010, Za-

kopane, Poland, June 13-17, 2010, Part II. Lecture Notes in Computer Science 

6114 Springer 2010, ISBN 978-3-642-13231-5, pp. 468-475 

2. Schmidt D.A., 1986, Denotational semantics: a methodology for language de-

velopment, Allyn and Bacon, ISBN 0205104509 

3. Abelson, H., Sussman, G. J., 1984, Structure and Interpretation of Computer 

Programs, MIT Press, ISBN 0-262-01077-1 

4. Halloway S., 2009, Programming Clojure, ISBN: 978-1-93435-633-3, The 

Pragmatic Bookshelf. 

5. Clojure Website, November 2010, http://clojure.org 

6. Prefuse Website, November 2010, http://prefuse.org 

7. Heer J., Card S.K., Landay J.A., 2005, Prefuse: A Toolkit for Interactive Infor-

mation Visualization. Proc. ACM Human Factors in Computing Systems (CHI), 

pp. 421-430. 


