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In this paper, a newly proposed analytical scheme by the authors namely the improved di�erential transform
method is employed to provide an explicit series solution to the Thomas�Fermi equation. The solution procedure
is very straightforward, requiring merely elementary operations together with di�erentiation, and ends up in a
recursive formula involving the Adomian polynomials to a�ord the unknown coe�cients. Unlike many other
methods, our approach is free of integration and hence can be of computational interest. In addition, a very
good agreement between the proposed solution and the results from several well-known works in the literature is
demonstrated.
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1. Introduction

In quantum mechanics, the Thomas�Fermi equation
is a well-known nonlinear ordinary di�erential equation
(ODE) which a�ords the electrostatic potential associ-
ated with the Thomas�Fermi atom model. The equation,
in its normalized form, reads

d2u

dx2
=

√
u3√
x
, (1)

subject to the following boundary conditions:

u(0) = 1 and u(+∞) = 0. (2)

It is easily noticed that the Thomas�Fermi equation has
a singular point at x = 0. Kobayashi et al. [1] were of
the early researchers to numerically analyze the Thomas�
Fermi equation. As another numerical treatment of the
Thomas�Fermi equation, MacLeod [2] used the Cheby-
shev series technique for small and large quantities of
the independent variable x. A variety of analytical ap-
proximate solutions have been provided by di�erent ap-
proaches namely the δ-expansion method [3], the Ado-
mian decomposition method [4, 5], the homotopy analy-
sis method [6�9], and the modi�ed variational iteration
method [10].

The aim of this paper is to present a new explicit an-
alytical solution for the Thomas�Fermi equation which
is based on a recently developed scheme by the authors
viz. the improved di�erential transform method (IDTM)
[11] combined with the Padé approximants to treat the
boundary condition at the in�nity.
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2. Preliminaries of the improved di�erential

transform method

The di�erential transform method (DTM) was origi-
nally conceptualized by Zhou during his studies on elec-
trical circuits [12]. The method yields analytical solu-
tions in form of polynomial series through a straightfor-
ward manner: by taking the di�erential of a functional
equation which may be di�erential, integral or integro-
-di�erential, and performing elementary operations, one
can construct a recurrence within the transformed do-
main. Afterwards, the exact analytical solution would
readily be achieved by utilization of the simply de�ned
inverse di�erential transform. The other salient merits
of the DTM include its not requiring discretization, lin-
earization or perturbation [13]. Many researchers have
exploited the DTM to solve both linear and nonlinear
functional equations, yet limited to power-law and inte-
gral product nonlinearity types, in applied mathematics,
physics, aerodynamics, chemical engineering and heat
transfer, just to mention a few areas [14�22].
The one-dimensional di�erential transform of a given

univariate function u(x) is de�ned by

U(k) = DT{u(x)} = 1

k!

[
dku(x)

dxk

]
x=0

, (3)

where u(x) and U(k) denote the original and transformed
functions, orderly.
Correspondingly, the inverse di�erential transform is

introduced by

u(x) = DT−1
{
U(k)

}
=

∞∑
k=0

{U(k)xk}. (4)

Obviously, DT{·} and DT−1{·} designate the direct
and inverse di�erential transform operators in the de�ni-
tions above, respectively. Regarding the preceding equa-
tion, one can immediately recognize the simplicity inher-

(1083)

http://dx.doi.org/10.12693/APhysPolA.125.1083
mailto:abolghasemi.ha@gmail.com,\hoab@ut.ac.ir
mailto:abolghasemi.ha@gmail.com,\hoab@ut.ac.ir


1084 H. Fatoorehchi, H. Abolghasemi

ent in the de�nition of the inverse di�erential transform.
We skip the details on the de�nitions/properties of the
n-dimensional di�erential transform and refer the inter-
ested reader to [14]. A number of fundamental operations
of the one-dimensional di�erential transform are given in
Appendix A, Table A.1.
Most recently, Fatoorehchi and Abolghasemi [11] have

managed to extend the DTM to nonlinear functional
equations of arbitrary types. The essence of this ex-
tended method, dubbed the IDTM, is re�ected in the
following theorem.
Theorem 2.1. Let U(k) = DT{u(x)} and conse-

quently u(x) = DT−1{U(k)}. It holds true that,
DT{N(u)} = Ak(U(0), U(1), . . . , U(k)), (5)

where Ak represent the Adomian polynomials related to
the nonlinear operator N and are classically de�ned by

Ak(U0, U1, . . . , Uk) =
1

k!

[
dk

dλk
N(

∞∑
i=0

λiUi)

]
λ=0

. (6)

Proof: The proof to this theorem is fully covered
in [11].
The respected reader who is new to the Adomian poly-

nomials can consult Refs. [23�28] for background infor-
mation.
Additionally, the theorem to follow often comes in

handy in analysis of functional equations.
Theorem 2.2. Given DT{f(t)} = F (k), it holds for

any non-negative integer m that

DT{tmf(t)} =

{
F (k −m), k ≥ m,
0, 0 ≤ k < m.

(7)

Proof: Substitute u(t) = f(t) and v(t) = tm into the
fourth property and then utilize the �fth property stated
in Table I to yield

DT{tmf(t)} =
k∑
i=0

{F (i)δ(k − i−m)}. (8)

According to the de�nition of the Kronecker delta func-
tion, all components of the preceding summation vanish
except for the one with i = k −m. Since i ≥ 0, the fol-
lowing equation is valid for k −m ≥ 0 or k ≥ m:

DT{tmf(t)} = F (k −m). (9)

To obtain the di�erential transform of tmf(t) for
0 ≤ k < m, we shall refer to Eq. (3),

DT{tmf(t)} = 1

k!

[
dk(tmf(t))

dtk

]
t=0

. (10)

By the general Leibniz rule it is easily yielded that

DT{tmf(t)} = 0; 0 ≤ k < m. (11)

Equation (9) together with (11) concludes the proof.

3. Solution of the Thomas�Fermi equation

by the IDTM

For the sake of simplicity and to get rid of the frac-
tional order of the Thomas�Fermi equation, �rstly we let
t =
√
x.

TABLE I

Some basic operations of the one-dimensional di�erential
transform.

Original function Transformed function

u(x)± v(x) U(k)± V (k)

αu(x) αU(k)

dmu(x)
dxm

(k+m)!
k! U(k +m)

u(x)v(x)
∑k
r=0{U(r)V (k − r)}

xm δ(k −m) =

{
1, k = m,

0, k 6= m

eax ak

k!

sin(ax) ak

k! sin
(
kπ
2

)
=

 0, k ∈ even,

ak(−1)
k−1
2

k! , k ∈ odd

cos(ax) ak

k! cos
(
kπ
2

)
=

 ak(−1)
k
2

k! , k ∈ even,

0, k ∈ odd

f(x) =
∫ x
x0
u(t)dt F (k) =

U(k−1)
k , k ≥ 1; F (0) = 0

f(x) =
∫ x
x0
g(t)u(t)dt F (k) =

∑k−1
l=0

{
G[l]

U(k−l−1)
k

}
, k ≥ 1; F (0) = 0

So,

d2u

dx2
=

d

dt

(
du

dx

)
dt

dx
=

d

dt

(
1

2t

du

dt

)
1

2t

=

(
1

2t

d2u

dt2
− 1

2t2
du

dt

)
1

2t
=

1

4t2
d2u

dt2
− 1

4t3
du

dt
.

(12)

Therefore, Eq. (1) is converted to

1

4t2
d2u

dt2
− 1

4t3
du

dt
=
u

3
2

t
, (13)

or equally,

t
d2u

dt2
− du

dt
= 4t2u

3
2 . (14)

Taking the di�erential transform of Eq. (14) gives

DT

{
t
d2u

dt2

}
− (k + 1)U(k + 1) = 4DT{t2u 3

2 }. (15)

Letting DT{u 3
2 } = F (k), we obtain the following from

Theorem 2.1:

F (0) = [U(0)]
3
2 ,

F (1) =
3

2
[U(0)]

1
2U(1),

F (2) =
3

8

[U(1)]2

[U(0)]
1
2

+
3

2
[U(0)]

1
2U(2),

F (3) = − 1

16

[U(1)]3

[U(0)]
3
2

+
3

4

U(1)U(2)

[U(0)]
1
2

+
3

2
[U(0)]

1
2U(3)

... (16)

By invoking Theorem 2.2, Eq. (15) leads to

k(k+1)U(k+1)− (k+1)U(k+1) = 4F (k− 2) (17)

or

U(k + 1) =
4

k2 − 1
F (k − 2) (18)

for k ≥ 2.

Also, for the case with k = 0, we get U(1) = 0, and
obviously, k = 1 leads to the trivial result 0 = 0. This
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is not far from expectation as our solution shall contain
one free parameter to be �xed by the second boundary
condition, which is the one prescribed at the in�nity.

Moreover, the boundary condition at zero easily deter-
mines that U(0) = 1.

Thus, it follows from Eq. (18) that

U(3) =
4

3
F (0), U(4) =

1

2
F (1), U(5) =

4

15
F (2),

U(6) =
1

6
F (3), U(7) =

4

35
F (4), U(8) =

1

12
F (5),

U(9) =
4

63
F (6), . . . . (19)

As discussed above U(2) cannot be determined by the
foregoing equations, so we set U(2) = α and later will
determine it by the help of the boundary condition at
the in�nity.

In view of prior equations, we �nd

U(0) = 1, U(1) = 0, U(2) = α, U(3) =
4

3
, U(4) = 0,

U(5) =
2

5
α, U(6) =

1

3
, U(7) =

3

70
α2, U(8) =

2

15
α,

U(9) = − α3

252
+

2

27
, . . . (20)

Finally, we can propose the solution to Eq. (14) as

u(t) =

∞∑
k=0

{
U(k)tk

}
= 1 + αt2 +

4

3
t3 +

2

5
αt5 +

1

3
t6

+
3

70
α2t7 +

2

15
αt8 +

(
− α3

252
+

2

27

)
t9 +

1

175
α2t10

+

(
1

1056
α4 +

31

1485
α

)
t11 +

(
4

1575
α3 +

4

405

)
t12

−
(

3

9152
α5 − 557

100100
α2

)
t13 −

(
29

24255
α4

− 4

693
α

)
t14 +

(
7

49920
α6 − 623

351000
α3

+
101

52650

)
t15 +

(
68

105105
α5 − 46

45045
α2

)
t16

+

(
3

43520
α7 − 153173

116424000
α4 +

113

1178100
α

)
t17

−
(

4

10395
α6 − 1046

675675
α3 − 23

473850

)
t18

−
(

1232941

1278076800
α5 − 799399

698377680
α2

)
t19

+

(
256

1044225
α7 − 99856

70945875
α4 +

51356

103378275
α

)
t20

−
(

143

6537216
α9 − 705965027

966226060800
α6

+
33232663

25881055200
α3 − 35953

378132300

)
t21

−
(

6272

38105925
α8 − 43468

33622875
α5 +

250054

342953325
α2

)
t22

+

(
143

10551296
α10 − 4524629159

7953566100480
α7

+
1861464749

1253187936000
α4 − 22773977

95108013000
α

)
t23

+

(
2048

17782765
α9 − 14756758

12455257815
α6

+
27134428

23880381525
α3 − 823

23108085

)
t24

−
(

663

75366400
α11 − 144926432597

319825938432000
α8

+
2383837819589

1455090436800000
α5 − 17319117797

30580884180000
α2

)
t25

+O(t26). (21)

We shall remark that the series solutions reported by
Wazwaz [5] and Noor et al. [10] miss one term in the co-
e�cient of t20, namely (256/1044225)α7 unlike Eq. (21).
This fact does not imply that the previous results are
not correct, however, they have been not reported com-
pletely. In other words, if we continue the schemes de-
scribed in [5] and [10] for further solution components,
then the term (256/1044225)α7t20 will appear.

4. The Padé approximants

A Padé approximant, symbolized by [m/n], to the
function f(x) is a rational function de�ned by

[m/n] = R(x)

=
P (x)

Q(x)
=
p0 + p1x+ p2x

2 + . . .+ pmx
m

1 + q1x+ q2x2 + . . .+ qnxn
, (22)

where the numerator and the denominator have no com-
mon factors, m,n ≥ 0 and

f(0) = R(0),

f ′(0) = R′(0),

f ′′(0) = R′′(0)

. . .

f (m+n)(0) = R(m+n)(0). (23)

In other words, if we expand the function f(x) and R(x)
in their Maclaurin series, their �rst (m + n + 1) terms
cancel each other out.
By matching the powers in the equation Q(x)fT(x) =

P (x) + O(xm+n+1), where fT(x) denotes the Maclau-
rin expansion of f(x), one can derive the coe�cients
p0, . . . , pm and q1, . . . , qn by solving a system of linear
algebraic equations [29, 30]. In general, it is stated
that recurrence relations such as Wynn's epsilon algo-
rithm is more computationally e�cient than solving the
mentioned matrix problem in determination of the Padé
approximants [31]. A classic and most comprehensive



1086 H. Fatoorehchi, H. Abolghasemi

monograph on the basics of the Padé approximants is
due to Barker [29].
As the convergence radius of a non-in�nite polynomial

series is not su�ciently large to contain the boundary
conditions at an in�nite or semi-in�nite domain, we have
to employ the Padé approximants to covert Eq. (21) to
its equivalent rational function of polynomials in order

for calculating the free parameter α. As suggested by
Wazwaz [5] the diagonal [n/n] Padé approximants are
the most suitable for this purpose. It is worthwhile to
mention that the Padé approximants of a desired poly-
nomial series can easily be evaluated by the help of the
built-in routines available in the mathematical software
packages like Maple or Mathematica.

TABLE IIThe initial slope of the Thomas�Fermi potential, α = du(0)/dx,
obtained from di�erent Padé approximants.

Padé
approximants

Present work Wazwaz [5] Yao [6] Liao [8] Khan and Xu [9]

[2/2] −1.211413728 −1.211413729 N/A N/A N/A

[4/4] −1.550525918 −1.550525919 N/A N/A N/A

[5/5] −1.586834762 N/A −1.573319118 −1.50419 −1.542791808

[7/7] −1.586021034 −1.586021037 N/A N/A N/A

[8/8] −1.588076818 −1.588076820 N/A N/A N/A

[10/10] −1.588069580 −1.588076779 −1.576999604 −1.54600 −1.573824678

[12/12] −1.589115463 N/A N/A N/A N/A

[14/14] −1.586499424 N/A N/A N/A N/A

[15/15] −1.570718095 N/A −1.582810904 −1.56437 −1.579528916

Using the diagonal Padé approximants and the second
boundary condition we have computed and compared the
values of the free parameter α as summarized in Table II.
Figure 1 depicts the variation of Padé approximants of

the potential function u(t) with respect to the indepen-
dent spatial variable t. It can be observed that a more
accurate solution, which shall satisfy u(+∞) = 0, is ob-
tained once the degrees of the Padé approximants are
increased. The Padé approximant [4,4] is found to yield
reliable solutions only in the vicinity of the origin, i.e.
t < 1, as it converges to 1.717618793 for large values of t.

5. Conclusion

The IDTM was employed to develop an analytical solu-
tion to the Thomas�Fermi atom model. To put it brie�y,
the IDTM exploits the Adomian polynomials to enable
the di�erential transform of nonlinear terms. As the �-
nal step, diagonal Padé approximants were used to make
the solution satisfy the boundary condition at in�nity,
u(+∞) = 0. It was shown that, unlike the previous
works, our approach is free of integration and requires
simple arithmetic operations together with di�erentia-
tion. Compared to a number of well-known results in the
literature [5, 6, 8, 9], the proposed method was revealed
to be highly accurate and e�cient. It can be concluded
that the IDTM, thanks to its mentioned merits, holds
the promise to become of interest in analytical treatment
of nonlinear equations of various types in the future.

Fig. 1. Padé approximants [4,4], [5,5] and [8,8] of the
potential function u(t).
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