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Trajectory of the turning point is dense for
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Abstract. It is known that for almost every (with respect to Lebesgue mea-

sure) a ∈ [
√

2, 2] the forward trajectory of the turning point of the tent map Ta with

slope a is dense in the interval of transitivity of Ta. We prove that the complement

of this set of parameters of full measure is σ-porous.

1. Introduction. For a ∈ (1, 2] set Ta(x) = ax for 0 ≤ x ≤ 1/2 and
Ta(x) = a(1 − x) for 1/2 ≤ x ≤ 1. We refer to this family of maps as the
family of tent maps. Other models are possible, but two tent maps with the
same slope are conjugate via an affine transformation and hence the model
does not matter. We choose this model as it makes our computations the
easiest. The only measure we use is Lebesgue measure.

We restrict our attention to the parameters a from [
√

2, 2]. If
√

2 < am

≤ 2 for some m ∈ {1, 2, 22, 23, . . .}, then the nonwandering set of Ta consists
of m disjoint closed intervals and a finite number of periodic points [15, p. 78].
Moreover, for such a the map Tm

a restricted to any one of those intervals is
a tent map with slope am, so is affinely conjugate to Tam . Thus, getting
corresponding results for smaller parameter values is easy. We work with
Ta restricted to its core, [T 2

a (1/2), Ta(1/2)]; the core is the smallest forward
invariant interval containing the turning point 1/2. In fact, Ta is transitive on
the core. For more information on transitivity, nonwandering sets, and other
related topics see [1]. The term trajectory will always refer to the forward
trajectory.
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In [3] it was proven that for almost every (with respect to Lebesgue
measure) a ∈ [

√
2, 2], the Ta trajectory of the turning point 1/2 is dense in

[T 2
a (1/2), Ta(1/2)]. Letting D denote those parameters a ∈ [

√
2, 2] such that

the closure of the trajectory of 1/2 under Ta is [T 2
a (1/2), Ta(1/2)], we prove:

Theorem 1. The set [
√

2, 2] \ D is σ-porous.

In Section 2 we give basic definitions related to porosity and σ-porosity.
For a detailed survey of these concepts we refer to [17] and the appendix
of [16]. Each σ-porous set in R is of the first category and of zero Lebesgue
measure. These sets arise quite often as exceptional sets. For example, Preiss
and Zaj́ıček verified that the set of points of Fréchet nondifferentiability of
any continuous convex function on a Banach space with a separable dual
is σ-porous [12]. However, Konyagin showed that the set E = {x ∈ R |∑∞

n=1 |sin(n!πx)/n| ≤ 1} is a closed non-σ-porous set of zero Lebesgue mea-
sure [17, Chapter 5]. This shows that the σ-ideal of σ-porous sets is a proper
subset of the σ-ideal of measure zero first category sets. Therefore Theorem
1 strengthens the result in [3]. To obtain this stronger result, a more delicate
(refined) study of the kneading properties of tent maps was necessary. Some
of these techniques might be of independent interest.

We break the proof of Theorem 1 into two cases. In Section 4 we deal
with the easier case, namely, parameters a such that lim infk→∞Qa(k) <∞,
where Qa(k) denotes the kneading map of Ta. The remainder of the paper
deals with parameters a such that limk→∞Qa(k) = ∞. Kneading maps and
Hofbauer towers are recalled in the next section.

When obtaining measure results for one-parameter families of unimodal
maps, one often deals with the piecewise monotone functions ξn(a) ≡ fn

a (c),
where {fa} is the one-parameter family of maps with common turning point
c and n ∈ N. Given an n, the laps of ξn(a) are the maximal subintervals
of monotonicity of ξn. In [3], where fa = Ta, the main tool is the following:
there exists ε > 0 such that for almost every a ∈ [

√
2, 2] and for every M ∈ N,

there is an n ≥ M such that c ∈ ξn(J) and |ξn(J)| > ε for the lap J of ξn
containing a; here the measure of ξn(J) is denoted by |ξn(J)|. In less precise
terms, one produces long stretches in the graphs of the ξn’s for almost all
a and for arbitrarily large n. Similar such long stretches have been used in
obtaining other measure results [4, 8, 14]. For our porosity results we need
to produce long stretches with some additional measure properties/estimates
on the associated laps in parameter space; this is done in Section 6.

For a given tent map, Ta, the levels of the Hofbauer tower will be denoted
by Dn(a). As remarked above, we first treat the easier case, namely when
lim infk→∞Qa(k) < ∞, or equivalently (see Lemma 1), lim infn→∞ |Dn(a)|
> 0. In this case, infinitely many of the levels in the Hofbauer tower con-
tain a “long stretch” (denoted by W in Section 4). This long stretch is
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used to get the porosity result. Since limk→∞Qa(k) = ∞ is equivalent to
limn→∞ |Dn(a)| = 0, it is more difficult to find the required long stretches
in this second case. To understand the dynamics behind the formal proof
presented in Section 6 we provide an algorithm, named the substantial cut

algorithm, which finds the required long stretches suitable for the porosity
estimates. This is done in Section 5. A second algorithm, called the greedy

algorithm, is also discussed. This algorithm provides long stretches in a “fast”
way, but these stretches are not suitable for the geometric estimates needed
for porosity. However, the greedy algorithm can be used to obtain lower
estimates of the length of levels of the Hofbauer tower at certain cutting
times which we call substantial cuts (see Lemma 9).

2. Preliminaries. Let (X, ̺) be a compact metric space, E ⊂ X , x ∈
X , and δ > 0. Then Ec = X \ E and B(x, δ) = {y ∈ X | ̺(x, y) < δ}. We
define γ(E, x, δ) to be the minimum of 1 and the number defined by

sup{2η | η > 0 and there exists y ∈ X such that B(y, η) ⊂ B(x, δ) ∩Ec}.

If no such y exists, we set γ(E, x, δ) = 0. We can now define the porosity of
E in X . For more detailed discussions on porosity see [13, 16, 17].

Definition 1. If x ∈ E, then we define the porosity of E in X at x to
be

p(E, x) = lim sup
δ→0+

γ(E, x, δ)

δ
.

If p(E, x) > 0, then E is said to be porous in X at x. We say that E is porous

in X if p(E, x) > 0 for all x ∈ E. Any subset of X which can be written as
a countable union of sets, each porous in X , is said to be σ-porous in X. If
A ⊂ X is σ-porous, then we say X \A is co-σ-porous.

Notice that if X contains no isolated points, then any countable subset
of X is σ-porous. For E,F ⊂ X , we denote the Hausdorff distance between
E and F by HD(E,F ); so HD(E,F ) = max{dE(F ), dF (E)}, where dA(B) =
sup{̺(A, x) | x ∈ B}. We denote the closure of a set U ⊂ X by U .

A continuous map f : [0, 1] → [0, 1] is called unimodal if there exists
a unique turning or critical point, c, such that f |[0,c) is increasing, f |(c,1] is
decreasing, and f(0) = f(1) = 0. To avoid trivial cases, we assume that
f(c) > c > f(f(c)). We denote the forward images of c by ci = f i(c). Clearly
the interval [c2, c1] is invariant and f maps [c2, c1] onto itself; the interval
[c2, c1] is called the core of the map f .

Let fn be some iterate of f and let J be any maximal subinterval on
which fn|J is monotone. Then fn : J → [0, 1] is called a branch of fn. A
branch fn : J → [0, 1] is called a central branch if c ∈ ∂J . Hence there
are always two central branches, and their images are the same. An iterate n
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is called a cutting time if the image of the central branch of fn contains c.
The cutting times are denoted by S0, S1, S2, . . . (S0 = 1 and S1 = 2). If
fSk : J → [0, 1] is the left central branch of fSk , then there is a unique point
zk ∈ J such that

fSk(zk) = c.(1)

By construction, zk has the property that
⋃

0<j≤Sk
f−j(c)∩ (zk, c) = ∅ and is

therefore called a closest precritical point. The point ẑk, defined analogously
for the right central branch of fSk , is also a closest precritical point. It can be
proven that the difference of two consecutive cutting times is again a cutting
time. Hence we can write

Sk − Sk−1 = SQ(k),(2)

where Q : N → N is an integer function, called the kneading map. An
equivalent statement is

cSk
∈ (zQ(k+1)−1, zQ(k+1)] ∪ [ẑQ(k+1), ẑQ(k+1)−1).(3)

The kneading map was introduced by Hofbauer (see e.g. [9, 10]). If Q(k) is
defined for all k ∈ N, then

Q(k) < k(4)

for all k ∈ N; one can easily see that this follows from (2), cf. also [5,
page 1341]. The kneading map (or cutting times) determines the combina-
torics of f completely. A survey of this tool can be found in [5]; our discussion
follows [5].

Closely related to the kneading map is the Hofbauer tower [9]. Given
a unimodal map f , the associated Hofbauer tower is the disjoint union of
intervals {Dn}n≥1, where D1 = [0, c1] and, for n ≥ 2,

Dn+1 =

{
f(Dn) if c 6∈ Dn,
[cn+1, c1] if c ∈ Dn.

Notice that the image of either central branch fn : J → [0, 1] is such that
fn(J) = Dn. From (2) it follows that for k ≥ 1,

DSk
= [cSk

, cSQ(k)
].(5)

We say a unimodal map f is locally eventually onto (leo) provided that for
every ε > 0 there exists M ∈ N such that if U is an interval with |U | > ε and
if n ≥M , then fn(U) = [c2, c1]. We say x ∈ I is periodic provided there exists
n ∈ N such that fn(x) = x. Similarly, we say x ∈ I is eventually periodic

provided there exists n ∈ N and a periodic point y such that fn(x) = y.
When writing [a, b] we do not assume that a ≤ b. We denote the rationals by
Q and the length of an interval U by |U |.

3. Tent map preliminaries. For each a ∈ [
√

2, 2], the map Ta|[c2, c1]
is leo; see e.g. [2, Lemma 2]. Let P = {a ∈ [

√
2, 2] | the turning point
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1/2 is either periodic or eventually periodic}. The set P is countable and
contains no isolated points [2]; therefore P is σ-porous. Also, for a ∈ P , the
kneading map Qa(k) is defined for only finitely many k ∈ N (see e.g. [5,
page 1341]). Next, notice that for any a ∈ (1, 2] the zk’s as defined in (1)
are such that ẑk = 1 − zk and limk→∞ zk = limk→∞ ẑk = 1/2. When more
than one-parameter value is being used, we may write Dn(a) for the levels
in the Hofbauer tower for Ta, Qa(k) for the kneading map of Ta, Sk(a) for
the cutting times of Ta, or cn(a) for T n

a (c). Another notation for cn(a) is
ξn(a), the latter being used when one is interested in T n

a (c) as a function of
the parameter a.

Definition 2. Set

D = {a ∈ [
√

2, 2] | {T n
a (c)}n≥0 = [c2(a), c1(a)]},

I = {a ∈ [
√

2, 2] | lim
k→∞

Qa(k) = ∞}.

As noted in the introduction, it is easy to establish that {a ∈ [
√

2, 2] |
lim infk→∞Qa(k) <∞ and a 6∈ D∪P} is σ-porous; this is done in Section 4.
The more interesting/difficult case is to show that I is σ-porous; this is done
in Sections 6 and 7.

It is known that for a ∈ D we have lim infk→∞Qa(k) < 2; see e.g. [4,
Lemma 3.5] (this is not an “if and only if” statement). Hence, D ∩ I = ∅.
Again, in [3] it is shown that D has full Lebesgue measure in [

√
2, 2] and hence

I has zero Lebesgue measure in [
√

2, 2]. On the other hand, I is dense in
[
√

2, 2] and is uncountable. Since we could not find a proof of this fact in the
literature, we include it for completeness (Lemma 5). We do not explicitly
use Lemmas 1 and 5 in the paper, but we include them to give/recall facts
about the set I.

Lemma 1. Fix a >
√

2. Let Q(k) be the kneading map for Ta. Then

limk→∞Q(k) = ∞ if and only if limn→∞ |Dn| = 0.

P r o o f. If limn→∞ |Dn| = 0, then (3) and (5) imply limk→∞Q(k) = ∞.

If limk→∞Q(k) = ∞, then (3) and (5) imply limk→∞ |DSk
| = 0. But

|Dn| < |DSk+1
| for Sk < n < Sk+1 since Ta|Dn is monotone for such n. Thus,

limn→∞ |Dn| = 0.

Lemma 1 holds for more general unimodal maps with some expansion
properties.

Definition 3. For a ∈ [
√

2, 2] and n ∈ N let ωn(a) be the maximal
open interval in the parameter space containing a such that ξn is monotone
on ωn(a); recall that ξn(a) ≡ T n

a (c). Note that ωn(a) is not defined for a ∈ P
and large n. In Figure 1, with n = Sk, we have ωSk

(a) = (u, v).
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Fig. 1. Phase Space at cutting time Sk

We recall two known lemmas (see e.g. [3, 14]).

Lemma 2. Fix ε0 > 0 and a0 ∈ (
√

2, 2]. Then there exists K0 ∈ N such

that for all k ≥ K0,
|ξ′k(b)|
|ξ′k(a)| ≤ 1 + ε0

whenever a, b, belong to the same lap of ξn|[a0, 2].

Lemma 3. There exist positive constants α and β such that for all k ≥ 2
and all a ∈ [

√
2, 2],

αak ≤ |ξ′k(a)| ≤ βak

wherever ξ′k is defined. Hence we also have

1

α
a−k ≥ |(ξ−1

k )′(ξk(a))| ≥ 1

β
a−k

for any branch of ξ−1
k .

For a discussion of Lemma 4 see [14, Chapter 3]. Lemma 4 is used only
in the proof of Lemma 5.

Lemma 4. Fix a ∈ (
√

2, 2]. Then n is a cutting time for Ta if and only

if ξn(ωn(a)) ∋ c and a > b where b is the unique point in ωn(a) such that

ξn(b) = c.

One often works in Phase Space, i.e., one plots the ξn(a)’s as functions
of the parameter a. Figure 1 is a piece of Phase Space. Let a be given
and suppose that n = Sk(a) = Sk is a cutting time for Ta; let Qa(k) =
Q(k). Then one of the pictures in Figure 1 holds. From Lemma 2, we
see that for large n the graph of ξn is almost linear and hence for ease
we draw linear functions in Figure 1; thus assume that k is large in Fig-
ure 1. We have ωSk

(a) = (u, v). The point b in Figure 1 is such that
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ξSk
(b) = c = 1/2. Also, Sk is a cutting time for all a′ ∈ (b, v), DSk

(a′) =

[T Sk

a′ (c), T
SQ(k)

a′ (c)] for all a′ ∈ (u, v) \ {b}, and Sk is not a cutting time for
all a′ ∈ (u, b). Again, for a discussion of these and related details see [14,
Chapter 3].

Lemma 5. The set I is dense in [
√

2, 2] and is uncountable.

P r o o f. Let U ⊂ [
√

2, 2] be an open interval. Choose a1 ∈ U \ P and
a cutting time n1 = Sk1(a1) such that ωn1(a1) ⊂ U . We can make such a
choice due to P being countable and Lemma 3. Let ε1 > 0 and set J1 = {a ∈
ωn1(a1) | n1 = Sk1(a) and |c − cn1(a)| < ε1}. Then for each a ∈ J1 we see
that n1 is a cutting time for Ta and |c − cn1(a)| < ε1. Notice that J1 is an
open subinterval of U (recall Lemma 4).

Fix a2 ∈ J1 \ P . Then n1 = Sk1(a2). Set n2 = Sk1+1(a2). Choose
0 < ε2 < ε1/2 such that J2 ≡ {a ∈ ωn2(a2) | n2 = Sk1+1(a) and |c−cn2(a)| <
ε2} ⊂ J1 and such that the sets J1 and J2 share no boundary points. Then
(again use Lemma 4) for each a ∈ J2 we have n1 = Sk1(a), n2 = Sk1+1(a),
|c−cn1(a)| < ε1, and |c−cn2(a)| < ε2. Also, J2 is a proper closed subinterval
of J1.

Fix a3 ∈ J2 \ P . Then n1 = Sk1(a3) and n2 = Sk1+1(a3). Set n3 =
Sk1+2(a3). Choose 0 < ε3 < ε2/2 such that J3 ≡ {a ∈ ωn3(a3) | n3 =
Sk1+2(a) and |c−cn3(a)| < ε3} ⊂ J2 and the sets J2 and J3 share no boundary
points. Then for each a ∈ J3 we have n1 = Sk1(a), n2 = Sk1+1(a), n3 =
Sk1+2(a), |c− cn1(a)| < ε1, |c− cn2(a)| < ε2, and |c− cn3(a)| < ε3. Also, J3

is a proper closed subinterval of J2.

Continue this process and set a∗ =
⋂

n≥1 Jn. Remember that if
lim infk→∞Qa∗

(k) < ∞, then (by (3)) there exists some δ > 0 such that
for infinitely many k we have |c − cSk−1

| > δ. Hence, limk→∞Qa∗
(k) = ∞

with a∗ ∈ U . By varying the choices of {ai} and hence of the sequences of
cutting times {ni}, one can easily show that I is uncountable.

Lemma 6. Let a, a′ ∈ [
√

2, 2] and L > 0. Then for all x ∈ [0, 1],

|TL
a (x) − TL

a′(x)| ≤ |a− a′| a
L − 1

a− 1
.

P r o o f. Clearly, |Ta(x) − Ta′(x)| ≤ |a− a′|. Thus,

|TL
a (x) − TL

a′(x)| ≤ |Ta′(TL−1
a′ (x)) − Ta(TL−1

a′ (x))|
+ |Ta(TL−1

a′ (x)) − Ta(TL−1
a (x))|

≤ |a− a′| + a(|TL−1
a′ (x) − TL−1

a (x)|)
≤ |a− a′|(1 + a+ a2 + . . .+ aL−1) + aL|T 0

a′(x) − T 0
a (x)|

= |a− a′|a
L − 1

a− 1
.
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Definition 4. For a ∈ [
√

2, 2] and each k ∈ N denote by ω′
Sk

(a) that
portion of ωSk

(a) (the split being at a) for which ξSk
(ω′

Sk
(a)) contains interior

points of DSk
(a). In Figure 1, ω′

Sk
(a) = (u, a).

The next lemma is known (see e.g. [14, Proposition 28]).

Lemma 7. Fix a ∈ (
√

2, 2] and let ωSk
and ω′

Sk
be as in Definitions 3

and 4. Then

lim
k→∞

HD(DSk
(a), ξSk

(ω′
Sk

(a)))

|ξSk
(ω′

Sk
(a))| = 0.

4. Case 1: lim infk→∞Q(k) <∞

Proposition 1. Set H = {a ∈ [
√

2, 2] | lim infk→∞Qa(k) < ∞ and

a 6∈ D ∪ P}. Then H is σ-porous.

P r o o f. For each l ∈ N set Hl = {a ∈ [
√

2, 2]\D | lim infk→∞Qa(k) = l}.
Next, we define for each l ∈ N and a ∈ Hl a set Ia,l as follows. Fix l and
a ∈ Hl. Then for infinitely many k we have Qa(k) = l. For each such k we
deduce, by (3), that cSk−1

∈ (zl−1, zl] ∪ [ẑl, ẑl−1). If for infinitely many k we
have cSk−1

∈ (zl−1, zl], then choose a closed interval with rational endpoints,
denoted by Ia,l, such that Ia,l ⊂ (zl, c) and T n

a (c) 6∈ Ia,l for all n ∈ N. If for
infinitely many k we have cSk−1

∈ [ẑl, ẑl−1), then choose a closed interval Ia,l

with rational endpoints such that Ia,l ⊂ (c, ẑl) and T n
a (c) 6∈ Ia,l for all n ∈ N.

(Since a 6∈ D and Ta is leo, we can choose such Ia,l.)

For each l ∈ N set Wl = {Ia,l | a ∈ Hl}. Since the endpoints of all Ia,l

are rational, for each l the set Wl is countable. For l ∈ N and W ∈ Wl set
Hl,W = {a ∈ Hl | Ia,l = W}.

Claim 1. Each Hl,W is |W |/2-porous.

P r o o f. Fix l, W ∈ Wl and a ∈ Hl,W . Thus, Ia,l = W . Without loss of
generality, assume that for infinitely many k we have cSk−1

∈ [ẑl, ẑl−1) and

hence Ia,l = W ⊂ (c, ẑl). Say, W = [w1, w2]. Set W ′ = ξ−1
Sk−1

(W ) ∩ ωSk−1
(a).

Say, W ′ = [w′
1, w

′
2]. Set ∆ = |cSk−1

− w1| and ∆′ = |w′
1 − a|. See Figure 2.

From Lemma 2 we find that for large k, ξSk−1
|ωSk−1

(a) is almost linear.
Hence, ∆/∆′ ≈ |W |/|W ′| and therefore |W ′|/∆′ ≈ |W |/∆ ≥ |W |. Thus,

|W ′|
∆′

>
|W |
2
.(6)

It follows from the definitions of W = Ia,l and Hl,W that W ′ ∩ Hl,W = ∅,
since for each a0 ∈ W ′ there exists n = Sk−1 such that T n

a0
(c) ∈ W . Hence,

Claim 1 follows from (6).
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ẑl(a)

w2
w1

a

• cSk−1(a)

w′1 w
′

2

Fig. 2. Construction of W = Ia,l and W
′

Lastly, as H =
⋃

l∈N

⋃
W∈Wl

Hl,W , we see that H is σ-porous.

5. Substantial and co-substantial cuts. In this section we first give
the definition of the key concepts of the next section, the substantial and
co-substantial cuts.

We also discuss two algorithms: the greedy and the substantial algo-
rithm. They both can help one to find long stretches and they are behind
the dynamics of our proof; in fact, the arguments of the next section can be
used to verify that the substantial cut algorithm indeed works. However, we
give this idea to help the reader understand the technical details of the next
section and the dynamics behind those technicalities.

In this section we assume that a ∈ I is fixed, that is, a ∈ [
√

2, 2] and
limk→∞Qa(k) = ∞. We will also assume that ε is a small positive con-
stant.

First we give the definitions of substantial and co-substantial cuts.

Definition 5. We call a cutting time Sk a substantial cutting time

provided that |c− cSk
| ≤ 3|c− cSk−1

|.

Remark. As limk→∞Q(k) = ∞, it follows from (3) and (5) that there
are infinitely many substantial cuts. If, additionally, Q(k) is eventually non-
decreasing, then it follows from [7, Lemma 2.4] that there exists K ∈ N such
that for all k ≥ K, the cut Sk is a substantial cut.

Definition 6. We call a cutting time Sk a co-substantial cutting time

provided that |c− cSQ(k)
| ≤ 3|c− cSk−1

|.

Next we give an informal discussion of a greedy algorithm. We make the
notion precise in Definition 7. Proposition 2 uses the greedy algorithm to
produce long stretches. However, long stretches alone are not enough for our
porosity result, Theorem 1, and hence we modify the greedy algorithm to
obtain the substantial cut algorithm.
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Assume Sk0 is a cutting time and J0 = [zk0−1, c] and l0 = Sk0 . Then
T l0

a (J0) = DSk0
= [cSk0

, cSQ(k0)
]. Our target is to find an m > l0 and an

interval I ⊂ J0 such that Tm
a |I is monotone and |Tm

a (I)| > ε. Since Ta is leo
it is clear that such an interval exists; the question is how to find it. This
is where we can use the greedy algorithm. The interval J0 consists of two
pieces J1

0 = [zk0 , c] and J2
0 = [zk0−1, zk0 ] such that T l0

a (J1
0 ) = [cSk0

, c] and

T l0
a (J2

0 ) = [c, cSQ(k0)
]. Since T l0+1

a is not monotone on J0 we need to choose
one of these pieces and we make a “greedy choice”, that is, we take the bigger
piece (i.e., the piece for which T l0

a (J i
0) is bigger), and call this piece J1. Thus

we set J1 = [zk0 , c] and t = k0 if |c− cSk0
| ≥ |c− csQ(k0)

| and J1 = [zk0−1, zk0 ]

and t = Q(k0) otherwise. Clearly, if we set l1 = l0 + SQ(t+1), then T l1
a |J1 is

monotone and T l1
a (J1) = [cSt+1 , cSQ(t+1)

]. Then J1 can be split into two pieces

J1
1 and J2

1 such that T l1
a (J1

1 ) = [cSt+1 , c] and T l1
a (J1

1 ) = [c, cSQ(t+1)
]. Again

we are greedy and choose J2 = J1
1 if |c− cSt+1 | ≥ |c− cSQ(t+1)

| and J2 = J2
1

otherwise. We keep repeating this procedure to obtain a nested sequence of
intervals J0 ⊃ J1 ⊃ . . . ⊃ Jn ⊃ . . . Then for some large n we set I = Jn and
m = ln to obtain |Tm

a (I)| > ε.

Considering T ln
a (Jn), there is a corresponding greedy algorithm which

describes movements between levels in the Hofbauer tower, corresponding to
cutting times. For this algorithm, we are interested in which levels of the
tower are visited and hence the algorithm is given as a function from N into
the cutting times {Sk}. This algorithm is different from the usual action on
the tower as described for example in [4].

Definition 7. Fix m ≥ 0. Define Gm : N → {Sk} by Gm(1) = Sm and
if Gm(n) = St, then

Gm(n+ 1) =

{
St+1 if |c− cSt+1 | ≥ |c− cSQ(t+1)

|,
SQ(t+1) else.

We call this algorithm the greedy algorithm. The name comes from the fact
that at each cut we are greedy and take the larger piece of [cSt+1 , cSQ(t+1)

].

Lemma 8 is a technical lemma used in Proposition 2 and elsewhere in the
paper.

Lemma 8. Let Sk be a substantial cut (resp. a co-substantial cut) with

Q(k) > 6. Then |c− cSk
| < |c− cSQ(k)

| (resp. |c− cSQ(k)
| < |c− cSk

|).

P r o o f. We have |cSk
− cSQ(k)

| > 8|c − cSk−1
|, since Q(k) > 6. The

lemma now follows from the definition of a substantial cut (co-substantial
cut).

Proposition 2. Let Sk be a cutting time and fix δ < min{|c − c1|,
|c − c2|}. Set H1 = [c, cSQ(k)

] and H2 = [c, cSk
]. Then for i ∈ {1, 2}, there
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exist a closed interval Ii ⊂ Hi and li ≥ 1 such that

• T li
a |Ii is monotone, and

• |T li
a (Ii)| > δ.

Moreover , when Sk is a substantial cut with Q(k) > 6, then 1 ≤ l1 ≤ Sk−1.

P r o o f. For i = 1, set G = GSQ(k)
and for i = 2, set G = GSk

.

Claim 1. Fix i ∈ {1, 2}. If G(n) = Sm with Q(m + 1) > 1, then

|c− cG(n)| < |c− cG(n+1)|.

P r o o f. Since Q(m + 1) > 1, we have SQ(m+1) > S1 = 2 and hence

aSQ(m+1) > 2. But aSQ(m+1) > 2 implies that |cSm+1 − cSQ(m+1)
| > 2|c− cSm

|.
It is now easy to check that the claim holds by the definition of G.

Assume that i = 1; the case i = 2 is similar. If, when applying the greedy
algorithm G, we arrive at a level of the tower Sm with Q(m+1) ∈ {0, 1} then
we are done since either |c− c1| or |c− c2| is contained in DSm+1.

Since limk→∞Q(k) = ∞, there exists t ≥ 1 such that |c − cSQ(k)+t
| <

|c− cSQ(k)|. Hence, if we have the condition “Q(m+ 1) > 1” when applying
the greedy algorithm, then (due to Claim 1) we cannot get to a level in the
tower above SQ(k)+t. Thus, we arrive at any level of the tower at most once
until we arrive at D2 or D1, in which case we are done. If Sk is a substantial
cut and Q(k) > 6, then by Claim 1 and Lemma 8 we cannot return to level
Sk and hence cannot get above this level. Therefore l1 ≤ Sk−1.

As previously remarked, for our porosity estimate we need more than
just to find a long stretch. Assume that we have a small number η̃ > 0
given in advance and we also have a k0 such that Sk0 is a substantial cut and
we want to find an interval I ⊂ [c, cSQ(k0)

] and an l ≥ 1 such that T l
a|I is

monotone, |T l
a(I)| > ε and |I| > η̃ẼI where ẼI is the length of the shortest

closed interval containing both I and cSk0
. For our porosity estimates we need

|I| ≥ η̃ẼI , which we call the metric assumption for our porosity estimates;
this assumption roughly means that we not only want an interval on which we
have a long stretch, but we want the length of this interval to be sufficiently
large, compared to its distance from cSk0

. Of course, the best situation is
when this interval is a central branch (which we can have if a 6∈ I), but
for a ∈ I finding such intervals is more difficult. In an algorithm which we
call the substantial cut algorithm, as in the greedy algorithm, we will define
a nested sequence of intervals J0 ⊃ J1 ⊃ . . . ⊃ Jn ⊃ . . . such that for a
sequence l0 = Sk0 < l1 < . . . < ln < . . . , T ln

a |Jn is monotone and T ln
a (Jn)

corresponds to a cutting time level of the Hofbauer tower, J0 = [α0, β0] with

T
Sk0
a (α0) = cSk0

and T
Sk0
a (β0) = cSQ(k0)

. For a large value of n we will be

able to choose I = T
Sk0
a (Jn).
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To understand the dynamics behind the next technical section we need
to see how the greedy algorithm is modified, that is, how we define Jn+1 by
selecting a proper piece of Jn.

Assume Jn = [αn, βn]; we chose our notation so that αn is closer to
α0 than βn. To satisfy our metric assumption we will have to control our
greed and sometimes we will have to keep the shorter piece of Jn in order
to stay sufficiently close to α0. To be more precise assume that T ln

a (Jn) =
[cSt

, cSQ(t)
] for an integer t. If T ln

a (αn) = cSQ(t)
we say that we are in a

co-active situation. Otherwise, when T ln
a (αn) = cSt

, we are not in a co-active
situation. Choose γn ∈ [αn, βn] such that T ln

a (γn) = c. In the non-co-active
case we check whether the cut at [cSt

, cSQ(t)
] is substantial or not; if it is then

we set Jn+1 = [γn, βn] (that is, we are greedy and keep the longer piece; recall
Lemma 8); if it is not a substantial cut then we set Jn+1 = [αn, γn] (that
is, in order to satisfy the metric assumption we choose the piece closer to α0

even if it is smaller than the other piece; since we do not have a substantial
cut this smaller piece is still relatively long). In the co-active case we check
whether the cut at [cSt

, cSQ(t)
] is co-substantial or not; if it is then we set

Jn+1 = [γn, βn] (that is, we are greedy and keep the longer piece); if it is not
a co-substantial cut then we set Jn+1 = [αn, γn] (that is, in order to satisfy
the metric assumption we choose the piece closer to α0 even if it is smaller
than the other piece; since we do not have a co-substantial cut this smaller
piece is still relatively long).

Next we give a formal definition of the substantial cut algorithm.

Let k0 ∈ N be fixed and assume Sk0 is a substantial cut. Set Γ (0) = 0,
J0 = [zk0−1, c] and l0 = Sk0 . (The auxiliary function Γ tells us whether we
are at a co-active (Γ = 1) or a non-co-active (Γ = 0) cut.) Then T l0

a (J0) =
DSk0

= [cSk0
, cSQ(k0)

], and T l0
a |J0 is monotone. Let J1 ⊂ J0 be such that

T l0
a (J1) = [c, cSQ(k0)

]. Set k1 = Q(k0) + 1 and l1 = Sk0 + SQ(k1). Then

T l1
a (J1) = DSk1

= [cSk1
, cSQ(k1)

], and T l1
a |J1 is monotone. Set Γ (1) = 1.

Assume that n ≥ 1 and that we have constructed finite sequences
{Γ (i)}n

i=0, {ki}n
i=0, {li}n

i=0, and closed nested intervals J0 ⊃ J1 ⊃ . . . ⊃ Jn

such that

• T li
a |Ji is monotone for 0 ≤ i ≤ n,

• T li
a (Ji) = DSki

for 0 ≤ i ≤ n,

• li = li−1 + SQ(ki) for 1 ≤ i ≤ n,

• ki ∈ {ki−1 + 1, Q(ki−1) + 1} for 1 ≤ i ≤ n,

• ki = ki−1 + 1 ⇒ T
li−1
a (Ji) = [c, cSki−1

] for 1 ≤ i ≤ n,

• ki = Q(ki−1) + 1 ⇒ T
li−1
a (Ji) = [c, cSQ(ki−1)

] for 1 ≤ i ≤ n, and

• Γ (i) tells us whether the cut at Ski
is co-active or not.
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We want to define kn+1, ln+1, and Jn+1. There are two options, which we
call Option A and Option B.

Option A. Set kn+1 = kn + 1 and ln+1 = ln + SQ(kn+1). Let Jn+1 ⊂ Jn

be such that T
ln+1
a |Jn+1 is monotone and T

ln+1
a (Jn+1) = DSkn+1

.

Option B. Set kn+1 = Q(kn)+1 and ln+1 = ln+SQ(kn+1). Let Jn+1 ⊂ Jn

be such that T
ln+1
a |Jn+1 is monotone and T

ln+1
a (Jn+1) = DSkn+1

.

If Γ (n)=0 and Skn
is substantial (resp. not substantial) then set Γ (n+1)

= 1 and use Option B (resp. set Γ (n+ 1) = 0 and use Option A) to define
kn+1, ln+1, and Jn+1.

If Γ (n) = 1 and Skn
is co-substantial (resp. not co-substantial) then set

Γ (n + 1) = 1 and use Option A (resp. set Γ (n+ 1) = 0 and use Option B)
to define kn+1, ln+1, and Jn+1.

The above definition of Γ (n + 1) explains our name for the function Γ .
If Γ (n) = 1, then we need to check whether the cut at Skn

is co-substantial
or not (co-active case). If Γ (n) = 0, then we need to check whether the cut
at Skn

is substantial or not (non-co-active case).

If for some j we have |DSkj
| > ε, then the algorithm terminates at this

step and Jj can be chosen as I ′, and lj as m.

It is worthwhile to compare the substantial cut algorithm and the greedy
algorithm after this formal definition.

Assume kn, ln, and Jn are defined. Recall that DSkn
= [cSkn

, cSQ(kn)
].

During the greedy algorithm we use Option A if |c − cSkn
| ≥ |c − cSQ(kn)

|
and Option B otherwise. This means that we are greedy, we always want to
follow the “larger piece” at each cut.

In the substantial cut algorithm, to satisfy the metric assumption (that
is, we need the long stretch relatively close to c) we allow the use of Option A
for nonsubstantial cuts. At nonsubstantial cuts it may still happen that
|c − cSkn

| < |c − cSQ(kn)
|, but at these steps, to obtain the metric estimate,

we limit our “greed” and choose the piece which stays close to c. Studying
the proof of Lemma 12 of Section 6 one can verify that being nongreedy at
these steps yields the desired estimate for the metric assumption.

Finally, we show that substantial cuts are interesting for other reasons as
well. It is obvious that at a cutting time |DSk

| can be arbitrarily small. On
the other hand, for substantial cuts we have:

Lemma 9. Let Sk be a substantial cut and set δ = min{|c − cj | | 1 ≤ j
≤ 6}. Then

|DSk
| ≥ a−Sk−1δ.(7)

P r o o f. If Q(k) ≤ 6, then (7) follows from (5), the definition of δ, and
a−Sk−1 < 1. Assume that Q(k) > 6. Then, from Proposition 2, there exist
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L ⊂ DSk
and l ≤ Sk−1 such that T l

a|L is monotone and |T l
a(L)| > δ. Now,

L ⊂ DSk
, al|L| ≥ δ, and l ≤ Sk−1 imply the result.

6. Tools for the case limk→∞Q(k) = ∞. Throughout this section
a ∈ I is fixed; recall a ∈ (

√
2, 2). In this section we give the technical details

of the estimates corresponding to this case. Behind the “dynamics” of our
argument there is the substantial cut algorithm. Our argument is based on
induction; the key result of this section is Proposition 3 which roughly states
that if we can find a sufficiently long stretch with good metric estimates for
all suitable “lower level” substantial and co-substantial cuts in the Hofbauer
tower, then we can find the required long stretch at the “next level” as well.

Choose K1 ∈ N such that

• k > K1 and l′ ≥ min{Q(k + 1), Q(Q(k) + 1)} imply that SQ(l′) ≥ 20,

• k > K1 implies that Q(k) > 100.

As a >
√

2, we have aSQ(l′) > 210 > 1000 for l′ satisfying the above inequality.
Since a 6∈ P , there exists ε1 > 0 such that |cSk

− cSQ(k)
| > ε1 for k ≤ K1.

Also, throughout this section we assume that 0 < ε < min{|c− c1|, |c− c2|,
ε1/2} is fixed and η ∈ (0, 1/2).

In the next definition we introduce auxiliary points yk and yk for substan-
tial cuts. These points will help us in our induction for the estimates needed
for the metric assumption; we will use them to show that if we have good
metric properties at “lower levels” of the tower then we have good properties
at the “next level” as well.

Definition 8. If Sk is a substantial cut for Ta, define yk to be the unique
point on the same side of c as cSk

such that |yk − c| = 4a−SQ(k) |c − cSQ(k)
|.

The point yk is defined similarly to yk but with |yk − c| = 2|yk − c| =
8a−SQ(k) |c− cSQ(k)

|. It is easy to check that yk, yk 6∈ [c, cSk
].

The next definition will give our metric assumption (based on the auxil-
iary point yk) which we can use in our induction. The ε-η-good substantial
cuts will provide long stretches with good “metric properties”.

Definition 9. A substantial cut Sk is said to be ε-η-good provided that
there exist I ⊂ [c, cSQ(k)

] and l ≥ 1 such that T l
a|I is monotone, |T l

a(I)| > ε,
and |I| ≥ ηEI , whereEI is the length of the shortest closed interval containing
both yk and I. (See Figure 3.)

cSk c cSQ(k)
I

•

yk

EI

Fig. 3. Construction of EI
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Definition 10. A substantial cut Sk is strongly ε-η-good provided there
exist I ⊂ [c, cSQ(k)

] and l ≥ 1 such that T l
a|I is monotone, |T l

a(I)| > ε, and

|I| ≥ ηEI , where EI is the length of the shortest closed interval containing
both yk and I.

The next three definitions are the co-substantial versions of the previous
two.

Definition 11. If Sk is a co-substantial cut for Ta, define y′k to be the
unique point on the same side of c as cSQ(k)

with |y′k − c| = 4a−SQ(k) |c− cSk
|.

The point y′k is defined similarly to y′k but satisfies |y′k − c| = 2|y′k − c| =
8a−SQ(k) |c− cSk

|. Again, it is easy to check that y′k, y
′
k 6∈ [c, cSQ(k)

].

Definition 12. A co-substantial cut Sk is said to be ε-η-good provided
there exist I ⊂ [c, cSk

] and l ≥ 1 such that T l
a|I is monotone, |T l

a(I)| > ε, and
|I| ≥ ηEI , where EI is the length of the shortest closed interval containing
both y′k and I.

Definition 13. A co-substantial cut Sk is strongly ε-η-good provided
there exist I ⊂ [c, cSk

] and l ≥ 1 such that T l
a|I is monotone, |T l

a(I)| > ε, and
|I| ≥ ηEI , where EI is the length of the shortest closed interval containing
both y′k and I.

Lemma 10. Let Sk be a substantial cut. Set p0 = Q(k) + 1 and q0 =
Q(p0). If Sp0 is not a co-substantial cut , then there exists l ≥ 1 such that

Sq0+l is a substantial cut , L ≡ Sq0+l = Sq0 +SQ(q0+1)+. . .+SQ(q0+l) ≤ SQ(k),
and Sq0+l′ is not a substantial cut for 1 ≤ l′ < l.

What is the dynamics behind this lemma? In the next figure we show
some levels of the Hofbauer tower. The top level corresponds to the cut at Sk.
To satisfy our metric assumptions in the substantial cut algorithm we want
to stay “close to” cSk

, marked by an arrow. Of course, due to the substantial
cut, we need to throw away the small piece containing cSk

, and we follow
the iterated Ta images of c instead (the other point marked by an arrow on

the top level). At level Sp0 we mark by an arrow the T
Sq0
a image of c, which

actually equals cSQ(p0)
. This is the “co-endpoint” of the Hofbauer tower level

at Sp0 . We now drop down to the bottom level in the figure, SQ(p0), and we
also picture the image of the level Sp0 as a subset of the bottom level. By
our assumption we do not have a co-substantial cut at level Sp0 , that is, the
“co-piece” of length ∆ is sufficiently long. Now, starting from the bottom
level, we move up in the tower until at level Sq0+l we have again a substantial
cut. At the nonsubstantial cuts we just simply follow the piece which contains
the cSq0+j non-“co-endpoint”, j = 1, . . . , l − 1; these endpoints are marked
by an arrow again. Finally, we have a substantial cut at level Sq0+l, and the
whole procedure starts again. . .
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66

6

6

6
ccSQ(p0)

= cSq0
= T

SQ(p0)
a (c) cSQ(Q(p0))

cSQ(q0+1)cSq0+1
= T

Sq0+SQ(q0+1)
a (c)

cSq0+l
= T

Sq0+SQ(q0+1)
+...+SQ(q0+l)

a (c)
cSQ(q0+l)

cSQ(k)ccSk

...

...

-� ∆

6
cSQ(p0)

= cSq0
= T

SQ(p0)
a (c) cSp0

-� ∆

...

cSp0

Fig. 4. Some Hofbauer tower levels

Proof of Lemma 10. Set ∆ = |c − cSQ(Q(k)+1)
| = |c − cSq0

|. From (4),
q0 = Q(Q(k) + 1) ≤ Q(k). Since Sp0 is not a co-substantial cut, it follows
that

∆ > 3|c− cSQ(k)
|.(8)

Hence, q0 < Q(k), else q0 = Q(k) and ∆ = |c − cSQ(k)
|, contradicting (8).

If there does not exist such an l, then |c − cSq0+1 | > 3|c − cSq0
| = 3∆,

|c − cSq0+2 | > 3|c − cSq0+1 | > 32∆, . . . , |c − cSQ(k)
| > 3Q(k)−q0∆, again

contradicting (8).

Lemma 11. Let Sk be a co-substantial cut with Q(k) ≥ 6. Set p0 = k+1
and q0 = Q(p0). If Sp0 is not a co-substantial cut , then there exists l ≥ 1 such

that Sq0+l is a substantial cut , L = Sq0+l = Sq0 +SQ(q0+1) + . . .+SQ(q0+l) ≤
SQ(k), and Sq0+l′ is not a substantial cut for 1 ≤ l′ < l.

P r o o f. Set ∆ = |c− cSk
|. Since Sk is a co-substantial cut and Q(k) ≥ 6,

we have ∆ ≥ |c− cSk−1
| and thus, from (3), q0 = Q(k+1) ≤ Q(k). Next, Sp0

not a co-substantial cut implies that |c− cSq0
| > 3∆, and Sk a co-substantial

cut implies that |c − cSQ(k)
| ≤ ∆; thus q0 = Q(k + 1) < Q(k). Again, if

there does not exist such an l, then ∆ ≥ |c − cSQ(k)
| ≥ 3Q(k)−q0 |c − cSq0

| >
3Q(k)−q0 3∆, a contradiction.

The next lemma shows that if in our substantial cut algorithm a substan-
tial cut is not followed by a co-substantial cut and the later substantial cut
(which exists by Lemmas 10 and 11) is ε-η-good then the original substantial
cut is strongly ε-η-good.
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Lemma 12. Assume that k > K1. If Sk is a substantial cut , Sp0 is

not a co-substantial cut , where p0 = Q(k) + 1, and Sq0+l is ε-η-good , where

q0 = Q(p0) and l is as in Lemma 10, then the cut at Sk is strongly ε-η-good.

Of course, the above lemma has a “co-substantial” version as well:

Lemma 13. Assume that k > K1. If Sk is a co-substantial cut , Sp0

is not a co-substantial cut , where p0 = k + 1, and Sq0+l is ε-η-good , where

q0 = Q(p0) and l is as in Lemma 11, then the cut at Sk is strongly ε-η-good.

Next we give the proof of Lemma 12 and in parenthetical remarks we
show what should be modified for the proof of Lemma 13.

P r o o f. We use the notation of Lemma 10 (Lemma 11 for proving Lemma
13). Thus, Sq0 < SQ(k) and l ≥ 1 is minimal such that Sq0+l is a substantial
cut.

Set C = cSQ(k)
. (To prove Lemma 13 set C = cSk

.) Let h = |c− C| and
for 0 ≤ i ≤ l, set hi = |c− cSq0+i

|. Then

3h < h0 and 3hl′−1 < hl′(9)

for 1 ≤ l′ ≤ l− 1. From the definition of the zk’s (see (1)) and the definition
of q0 we deduce that either [c, C] ∋ zq0 or [c, C] ∋ ẑq0 . Recall that L =
Sq0+l. Without loss of generality, assume that [c, C] ∋ zq0 and therefore that
[c, C] ∋ zq0+l−1. Recall that TL

a maps [c, zq0+l−1] onto [cSq0+l
, cSQ(q0+l)

] in

a one-to-one manner with TL
a (zq0+l−1) = cSQ(q0+l)

. Denote by φ the linear

mapping that is the extension of TL
a |[c, zq0+l−1] onto R. It is clear that

the absolute value of the slope of φ is aL. Clearly, zq0+l = φ−1(c) and
|c−zq0+l| = a−L|c− cSq0+l

|. Set w = φ−1(yq0+l); recall Definition 8 for yq0+l.
Then w is on the same side of c as yk. (In the proof of Lemma 13, w is on
the same side of c as y′k.)

Using |c−cSq0+l
|+ |c−cSQ(q0+l)

| = aSQ(q0+l) |c−cSq0+l−1
| and |c−cSq0+l

| ≤
3|c− cSq0+l−1

|, we have

hl−1a
SQ(q0+l) = |c− cSQ(q0+l)

| + |c− cSq0+l
|

≤ |c− cSQ(q0+l)
|
(

1 +
3a−SQ(q0+l)

1 − 3a−SQ(q0+l)

)

= |c− cSQ(q0+l)
| 1

1 − 3a−SQ(q0+l)
.

Hence,

hl−1a
SQ(q0+l)(1 − 3a−SQ(q0+l)) ≤ |c− cSQ(q0+l)

| ≤ hl−1a
SQ(q0+l) .(10)

From the definition of yq0+l and (10) we get

|c− yq0+l| = 4a−SQ(q0+l) |c− cSQ(q0+l)
| ≥ 4hl−1(1 − 3a−SQ(q0+l)).
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Thus (use |c− yq0+l| = aSq0+l |w − zq0+l| and L = Sq0+l)

|w − zq0+l| ≥ 4a−Lhl−1(1 − 3a−SQ(q0+l)).(11)

On the other hand,

|c− zq0+l| = a−L|c− cSq0+l
| ≤ a−L 3a−SQ(q0+l)

1 − 3a−SQ(q0+l)
|c− cSQ(q0+l)

|(12)

≤ a−L 3a−SQ(q0+l)

1 − 3a−SQ(q0+l)
aSQ(q0+l)hl−1

= a−L 3

1 − 3a−SQ(q0+l)
hl−1.

Thus, using (9), (11) and (12), we have

|c− w| ≥ a−Lhl−1

(
4(1 − 3a−SQ(q0+l)) − 3

1 − 3a−SQ(q0+l)

)

≥ a−Lhl−1

(
4 · 0.99 − 3

0.99

)
> 0.9a−Lhl−1

≥ 0.9 · 3laSQ(k)−La−SQ(k)h ≡ A.

Here we have used the fact that q0 + l ≥ min{Q(k), Q(k + 1), Q(Q(k) + 1)}
and hence that SQ(q0+l) ≥ 20, i.e., a−SQ(q0+l) < 0.001. More succinctly,

|c− w| ≥ 0.9 · 3laSQ(k)−La−SQ(k)h ≡ A.(13)

Since the assumptions of Lemma 10 hold (in the proof of Lemma 13 we
use Lemma 11), we have L = Sq0+l ≤ SQ(k). If L < SQ(k), then SQ(k) − L ≥
SQ(q0+l+1) > 20, since q0 + l+ 1 ≥ min{Q(k+ 1), Q(Q(k) + 1)} and k > K1.
Hence if SQ(k) 6= L, then SQ(k) −L ≥ 20. We use this fact in the next claim.

Claim 1. We have yk ∈ [w, c].

P r o o f. First assume that either l ≥ 2, or that SQ(k) 6= L. Then, by

(13), |c− w| ≥ A > 8a−SQ(k)h = |yk − c| and therefore yk ∈ [w, c].
Next assume l = 1 and SQ(k) = L. Then cSq0+l

= cSQ(k)
and |c− cSq0+l

|
≤ h (here we have equality when Sk is a substantial cut and strict inequality
when Sk is a co-substantial cut). Hence, |c − zq0+l| ≤ a−Lh. From (11)
we have |w − zq0+l| ≥ 4a−L · 0.99h0 ≥ 12a−L · 0.99h > 11a−Lh. Lastly,
|c− zq0+l| ≤ a−Lh and |w − zq0+l| > 11a−Lh imply that |c−w| ≥ 10a−Lh =
10a−SQ(k)h. Thus, |c− yk| = 8a−SQ(k)h < |c− w|.

(The proof of Claim 1 with yk replaced by y′k gives the next claim, which
is used in the proof of Lemma 13.

Claim 2. We have y′k ∈ [w, c].)

By assumption Sq0+l is ε-η-good. Hence, choose I ⊂ [c, cSQ(q0+l)
] and

l′ ≥ 1 with T l′

a |I monotone, |T l′

a | > ε, and |I| ≥ ηEI , where EI is the
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length of the shortest closed interval containing both yq0+l and I. Set J =
φ−1(I).

Then J ⊂ [zq0+l, cSQ(k)
] ⊂ [c, cSQ(k)

]. From linearity of φ, |I| ≥ ηEI ,

and the definition of w we obtain |J | ≥ ηEJ , where EJ is the length of the
shortest closed interval containing both w and J . Let EJ be the length of
the shortest closed interval containing both yk and J . From EJ < EJ and
|J | ≥ ηEJ , we have |J | ≥ ηEJ . Lastly, since |TL+l′

a (J)| = |T l′

a (I)| > ε and
TL+l′

a |J is monotone, it follows that Sk is strongly ε-η-good.

(In the proof of Lemma 13 an argument similar to the above paragraph
is used with J ⊂ [c, cSk

].)

The next two lemmas are the versions of Lemmas 12 and 13 which work in
the case when a substantial or a co-substantial cut is followed by an ε-η-good
co-substantial cut. In this case we again conclude that the original cut is
ε-η-good.

Lemma 14. Assume that k > K1. If Sk is a substantial cut , Sp0 is a

co-substantial cut that is ε-η-good , where p0 = Q(k) + 1, and Sq0 < SQ(k)

with q0 = Q(p0), then the cut at Sk is strongly ε-η-good.

Lemma 15. Assume that k > K1. If Sk is a co-substantial cut , Sp0 is a

co-substantial cut that is ε-η-good , where p0 = k + 1, and Sq0 < SQ(k) with

q0 = Q(p0), then the cut at Sk is strongly ε-η-good.

Again we give a proof of Lemma 14 and point out in some parenthetical
remarks the differences of the proof of Lemma 15.

P r o o f. From the definition of q0 we find that q0 + 1 ≥ min{Q(k + 1),
Q(Q(k) + 1)} and hence, since k > K1, SQ(q0+1) > 20. Thus, SQ(k) − Sq0 ≥
Sq0+1 − Sq0 = SQ(q0+1) > 20. Set C = cSQ(k)

. (In the proof of Lemma 15 set
C = cSk

.) Put h = |c− C|. An argument similar to that for (10) gives

haSq0 (1 − 3a−Sq0 ) ≤ |c− cSp0
| ≤ haSq0 .(14)

Denote by φ the linear mapping that is the extension of T
Sq0
a |[c, C] onto R.

It is clear that the absolute value of the slope of φ is aSq0 .

As in the proof of Lemmas 12 and 13, without loss of generality assume
that zq0 = φ−1(c) ∈ [c, C]. Set w = φ−1(y′p0

). Again, |c−zq0| = a−Sq0 |c−cSq0
|

and w is on the same side of c as yk. (In the proof of Lemma 15, w is on the
same side of c as y′k.) The definition of y′p0

and (14) give

|c− y′p0
| ≥ 4h(1 − 3a−Sq0 ) ≥ 4 · 0.99h.(15)

Again in (15), k > K1 and q0 ≥ min{Q(k + 1), Q(Q(k) + 1)} imply that
SQ(q0) ≥ 20, i.e., a−SQ(q0) < 0.001. From |w − zq0 | = a−Sq0 |c− y′p0

| and (15)
we have

|w − zq0 | ≥ 4 · 0.99a−Sq0h.(16)
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Since Sp0 is a co-substantial cut, we have |c− cSq0
| ≤ 3h. Hence,

|c− zq0 | ≤ 3ha−Sq0 .(17)

Thus, from (16) and (17) we have

|c− w| ≥ 0.9a−Sq0h = 0.9a(SQ(k)−Sq0)a−SQ(k)h > 8a−SQ(k)h(18)

(remember that SQ(k) − Sq0 > 20).

Then |c− yk| = 8a−SQ(k)h and (18) imply that yk ∈ [c, w]. (In the proof
of Lemma 15, |c − y′k| = 8a−SQ(k)h and (18) imply that y′k ∈ [c, w].) Lastly,
an argument similar to that in the proof of Lemmas 12 and 13 now implies
that Sk is strongly ε-η-good.

In the next proposition we put together the above four lemmas to ob-
tain the induction property saying that if all “earlier” substantial and co-
substantial cuts are ε-η-good then so is the “next” one.

Proposition 3. Assume that k > K1 and let Sk be either a substantial

or co-substantial cut. If all substantial or co-substantial cuts Sk′ with SQ(k′) <
SQ(k) are ε-η-good , then Sk is ε-η-good.

P r o o f. Assume that all substantial or co-substantial cuts Sk′ with SQ(k′)

< SQ(k) are ε-η-good; when we refer to “the hypothesis” we mean precisely
this assumption. Let p0 and q0 be as in Lemma 10 or 11, depending on
whether Sk is a substantial or a co-substantial cut.

Case 1. Assume that Sp0 is not a co-substantial cut. Then, from Lemma
10 or Lemma 11, Sq0+l is a substantial cut and L = Sq0+l = Sq0 +SQ(q0+1) +
. . .+SQ(q0+l) ≤ SQ(k). Hence, SQ(q0+l) < SQ(k) and therefore (by hypothesis)
Sq0+l is ε-η-good. Thus, by Lemmas 12 and 13, Sk is strongly ε-η-good. Case
1 is complete.

If Sk is a substantial cut, then (using (4)) q0 = Q(Q(k) + 1) ≤ Q(k).
Since k > K1, we have Q(k) > 6 and hence |cSk

− cSQ(k)
| > 8|c− cSk−1

|. If Sk

is a co-substantial cut, then |c− cSQ(k)
| ≤ |c− cSk−1

|. Joining these two facts
gives |c− cSk

| ≥ |c− cSk−1
|. Thus, by (3), q0 = Q(k + 1) ≤ Q(k). Therefore,

whether Sk is a substantial or co-substantial cut, we have

Sq0 ≤ SQ(k).

Case 2. Assume that Sp0 is a co-substantial cut and that Sq0 < SQ(k).
Then, by hypothesis, Sp0 is ε-η-good, and therefore, by Lemmas 14 and 15,
Sk is strongly ε-η-good. Case 2 is complete.

Case 3. Assume that Sp0 is a co-substantial cut and that Sq0 = SQ(k),
i.e., q0 = Q(k). For ease of notation, set Sq0 = M .
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If Sk is a substantial cut, set C = cSQ(k)
and h = h′ = |c− cSQ(k)

|. If Sk

is a co-substantial cut, set C = cSk
, h = |c − cSk

| and h′ = |c − cSQ(k)
|. In

both cases h′ ≤ h and, since q0 = Q(k), cSp0
= TM

a (C).

Without loss of generality, assume that zq0 ∈ [c, C]. Denote by ψ0 the
linear mapping that is the extension of TM

a |[c, C] onto R. Thus, ψ0(c) = cSq0

and ψ0([c, C]) = [cSp0
, cSq0

]. Clearly, v0 ≡ zq0 = ψ−1
0 (c) and

|c− zq0 | = a−M |c− cSq0
| = a−Mh′.(19)

Set p1 = p0+1 and q1 = Q(p1). For Sk a substantial cut, Sp0 a co-substantial
cut, and q0 = Q(k) we obtain |c− cSp0

| > |c − cSQ(k)
| and hence (recall (3))

q1 = Q(p0 + 1) ≤ Q(Q(k) + 1) = q0. Also, for Sk a co-substantial cut, Sp0 a
co-substantial cut, and q0 = Q(k), we have |c−cSp0

| > |c−cSk
| and therefore

(recall (3)) q1 = Q(p0 + 1) ≤ Q(k + 1) = Q(p0) = q0. Either way, we have

q1 ≤ q0.

Assume that for r ≥ 1 we have defined pr = pr−1 + 1 and qr = Q(pr),
and that M ≡ Sq0 = Sq1 = . . . = Sqr

. Let vr−1 ∈ [c, C] be the unique point
such that ψr−1 ≡ T rM

a maps [vr−1, C] linearly onto [c, cSpr−1
]. Note that the

absolute value of the slope of ψr−1 is arM . Set hr−1 = |c− cSpr−1
|.

It follows from M ≡ Sq0 = Sq1 = . . . = Sqr
that Spr

is a co-substantial
cut (in fact, Spi

is a co-substantial cut for 0 ≤ i ≤ r).

Let ψr denote the linear extension of TM
a ◦ ψr−1|[vr−1, C]. Set vr =

ψ−1
r (c). Then

|vr − vr−1| = |ψ−1
r (c) − ψ−1

r (cSqr
= cSQ(k)

)| = a−(r+1)Mh′.(20)

Clearly, ψr maps [vr, C] linearly onto [c, cSpr
] and ψr = T

(r+1)M
a on [vr−1, C].

From (19), (20), |c − vr−1| = |c − zq0 |(1 + a−M + a−2M + . . . + a−(r−1)M ),
and |c− vr| = |c− vr−1| + |vr − vr−1| = |c− vr−1| + a−(r+1)Mh′, we obtain

|c− vr| ≤
∞∑

j=1

a−jMh′ =
a−M

1 − a−M
h′ < 1.1a−Mh.(21)

As previously done, for the numerical estimate of 1.1 in (21) we use the fact
that k > K1 and hence that M = Sq0 ≥ 20; also recall that h′ ≤ h.

Note that hr ≡ |ψr([vr, C])| = |c− cSpr
| = aMhr−1 − h′. If hr ≥ ε, then

the cut at Sk is ε-η-good. To see this, set J = [vr, C]. Then T
(r+1)M
a |J is

monotone and |T (r+1)M
a (J)| = hr ≥ ε. We need |J |/EJ > η, where EJ is the

length of the shortest closed interval containing both yk and J when Sk is a
substantial cut, or containing both y′k and J when Sk is a co-substantial cut.
We have EJ = h + |c − yk| if Sk is a substantial cut and EJ = h + |c − y′k|
if Sk is a co-substantial cut. Either way we have EJ = h + 4a−Mh. Next,
from (21) we obtain |c − vr| ≤ 0.002h. Hence, |J | = h − |c − vr| ≥ 0.99h.
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Putting these together we have

|J |
EJ

≥ 0.99h

h+ 4−Mh
> 0.8.

Thus, |J |/EJ > η, since η < 1/2.

Therefore, it remains to deal with the case where for some r ≥ 1 we have
qi = q0 for 1 ≤ i ≤ r, qr+1 < q0, and hr < ε. In this case Spr

is still a
co-substantial cut. Moreover, ε1 > 2ε > 2hr > |cSpr

− cSqr
| gives pr > K1

(by the definition of ε1). Thus, applying either Lemma 13 or Lemma 15 we
conclude that the co-substantial cut at Spr

is strongly ε-η-good.

More precisely, if Spr+1 is not a co-substantial cut, then we apply Lemma
13 with k = pr in the statement of the lemma. To do this we need the
fact that Sqr+l′′ is ε-η-good, where to avoid confusion we have replaced l in
Lemma 13 with l′′. However, from Lemma 11, we have qr+1 + l′′ ≤ qr = Q(k)
and hence, by (4), Q(qr+1 + l′′) < Q(k). Thus, by hypothesis, Sqr+1+l′′ is
ε-η-good.

Next, if Spr+1 is a co-substantial cut, then we apply Lemma 15 with
k = pr in the statement of the lemma. To do this we need the fact that
qr+1 < Q(k) = q0 (which we have) and that Spr+1 is ε-η-good. But qr+1 <
Q(k) and the hypothesis imply that Spr+1 is ε-η-good. Thus, Spr

is strongly
ε-η-good.

Let y′pr
be as in Definition 11, i.e., y′pr

is the point on the same side of c

as cSqr
such that |c− y′pr

| = 8a−Sqr |c− cSpr
| = 8a−Mhr. Set w = ψ−1

r (y′pr
).

Then

|vr − w| = a−(r+1)M |c− y′pr
| = 8a−(r+2)Mhr.(22)

Using (21) we get |C−vr| = h−|c−vr| ≥ h−1.1ha−M = h(1−1.1a−M). This
and hr = a(r+1)M |C − vr| give hr ≥ a(r+1)Mh(1 − 1.1a−M) > 0.99a(r+1)Mh.
Hence (also use (22)),

|vr − w| ≥ 8a−(r+2)M · 0.99a(r+1)Mh > 7a−Mh.(23)

It follows from (21) and (23) that w and vr lie on opposite sides of c. Hence,
(again, use (21) and (23))

|c− w| = |vr − w| − |c− vr| > 5a−Mh.(24)

Since the co-substantial cut at Spr
is strongly ε-η-good, we may choose

I ⊂ [c, cSpr
] and l ≥ 1 such that T l

a|I is monotone, |T l
a(I)| > ε, and |I| > ηEI ,

where EI is the length of the shortest closed interval containing both y′pr
and

I.

Set J = ψ−1
r (I). Then J ⊂ [vr, C] and denoting the length of the shortest

closed interval containing both w and J by EJ we have |J | > ηEJ , by the

linearity of ψ−1
r . However, |T (r+1)M+l

a (J)| > ε and T
(r+1)M+l
a |J is monotone,

since ψr|J = T
(r+1)M
a |J . From (24) we have |c−w| > 4a−Mh = 4a−M |c−C|.
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But 4a−M |c−C| equals |c−yk| when Sk is a substantial cut, and equals |c−y′k|
when Sk is a co-substantial cut. Therefore the cut at Sk is ε-η-good.

Definition 14. Fix δ < min{|c− c1|, |c− c2|}. For each k ∈ N such that
Sk is a substantial cut, set Ak,δ = {I ⊂ [c, cSQ(k)

] | there exists l ≥ 1 with

T l
a|I monotone and |T l

a(I)| > δ}.
Definition 15. Fix δ < min{|c− c1|, |c− c2|}. For each k ∈ N such that

Sk is a co-substantial cut, set Bk,δ = {I ⊂ [c, cSk
] | there exists l ≥ 1 with

T l
a|I monotone and |T l

a(I)| > δ}.
Remark. It follows from Proposition 2 that each of Ak,δ and Bk,δ is

nonempty.

Lemma 16. Fix δ < min{|c − c1|, |c − c2|} and suppose that Sk is a

substantial cut (resp. a co-substantial cut). Then there exists 0 < γ < 1 such

that for any I ∈ Ak,δ (resp. I ∈ Bk,δ) we have |I| < γEI , where EI is the

length of the shortest closed interval containing both yk (resp. y′k) and I.

P r o o f. We do the case when Sk is a substantial cut, the case of a
co-substantial cut being similar. Let I and EI be as above. Set g(x) =
x/(x+ |c− yk|) for x ∈ [0, 1]. On [0, 1] the function g(x) has a maximum
when x = 1; hence for x ∈ [0, 1], we have g(x) ≤ 1/(1 + |c− yk|). This,
|c− yk| + |I| ≤ EI , and |I| ≤ 1 give

|I|
EI

≤ |I|
|I| + |c− yk|

≤ 1

1 + |c− yk|
.

Thus,

|I| ≤ EI

1

1 + |c− yk|
.

The lemma now follows.

Definition 16. For each substantial cut Sk, set ηk = inf{γ < 1 | if
I ∈ Ak,ε, then |I| ≤ γEI}. Clearly, ηk > 0 since Ak,ε 6= ∅.

Definition 17. For each co-substantial cut Sk, set βk = inf{β < 1 | if
I ∈ Bk,ε, then |I| ≤ βEI}. Again, βk > 0.

Theorem 2. Set η∗ = inf{ηk | Sk is a substantial cut}. Then η∗ > 0.

P r o o f. Set

α = min{ηj | j ≤ K1 and Sj is a substantial cut},
β = min{βj | j ≤ K1 and Sj is a co-substantial cut},
τ = 1

2 min{α, β, 1
2},

B = {k | Sk is a substantial or a co-substantial cut that is ε-τ -good}.
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If either or both α, β are not defined (i.e., taking the minimum of an empty
set), then delete them from the definition of τ . We show that B = ∅ and
hence η∗ ≥ τ > 0, proving the theorem.

Suppose to the contrary that B is not empty. Then choose k′ ∈ B such
that Q(k′) ≤ Q(l) for all l ∈ B. Since k′ ∈ B, Sk′ is either a substantial or a
co-substantial cut that is not ε-τ -good. First suppose that k′ > K1. From the
definition of B, all substantial or co-substantial cuts Sm with Q(m) < Q(k′)
are ε-τ -good and therefore, by Proposition 3, Sk′ is ε-τ -good, a contradiction.
Thus, k′ ≤ K1. But then the definitions of α, β, and τ imply that Sk′ is also
ε-τ -good, again a contradiction. Hence, B = ∅.

Corollary 1. There exists η̃ > 0 such that every substantial cut Sk is

ε-η̃-good.

Proposition 4. Let δ > 0. Then there exists a closed interval J ′ ⊂
(a− δ, a), k, l ∈ N, and η1 ∈ (0, 1) such that

(i) J ′ ⊂ ωSk
(a),

(ii) ξSk+l′ |J ′ is monotone for 0 < l′ ≤ l,

(iii) |ξSk+l(J
′)| > ε/2, and

(iv) |J ′|/EJ′ ≥ η1, where EJ′ is the length of the shortest closed interval

containing J ′ and a.

Moreover , η1 is independent of δ (depends only on a and ε).

P r o o f. Let η̃ be as in Corollary 1 and without loss of generality assume
that η̃ < 1/10. We write cSk

for cSk
(a) and cSQ(k)

for cSQ(k)
(a). For any k,

one endpoint of ξSk
(ω′

Sk
(a)) is cSk

and we denote the other endpoint by c′Sk
;

here we take ω′
Sk

(a) to be closed. In Figure 1, c′Sk
= ξSk

(u). Choose k ∈ N
such that Sk is a substantial cut, ω′

Sk
(a) ⊂ (a− δ, a], k > K0 from Lemma 2,

(1 + ε0)a
−Sk/(αη̃(a− 1)) < min{0.1, ε/8} (here α is from Lemma 3), and

|c′Sk
− cSQ(k)

|
|cSk

− c′Sk
| <

η̃

1000
.(25)

For (25) use Lemma 7. From the definition of η̃, Sk is ε-η̃-good and hence
choose I ⊂ [c, cSQ(k)

] and l ≥ 1 such that T l
a|I is monotone, |T l

a(I)| > ε, and

|I| ≥ η̃EI ,(26)

where EI is the length of the shortest interval containing both yk and I. Let
I ′ ⊂ I be concentric with I and such that |I ′| = 0.8|I|. From (25) and (26) it
follows that I ′ ⊂ ξSk

(ω′
Sk

(a)) = [cSk
, c′Sk

]. In what follows we will write ξ−1
Sk

for the well defined (since ξSk
is strictly monotone on ω′

Sk
(a)) inverse of ξSk

restricted to ω′
Sk

(a). Set J ′ = ξ−1
Sk

(I ′). Since ω′
Sk

(a) ⊂ (a − δ, a], we obtain
(i), i.e. J ′ ⊂ ωSk

(a).
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Let DI′ be the smallest closed interval containing cSk
and I ′; denote the

length of DI′ by EI′ . It is not difficult to see that DI′ ⊂ ξSk
(ω′

Sk
(a)). Notice

that

EI′ < EI ≤ |I|/η̃.(27)

For x ∈ ξSk
(ω′

Sk
(a)) = [cSk

, c′Sk
] set e(x) = ξ−1

Sk
(x). From Lemma 2 we

have
1

1 + ε0
|ξ′Sk

(a)| ≤ |ξ′Sk
(e(x))| ≤ (1 + ε0)|ξ′Sk

(a)|

for any x ∈ ξSk
(ω′

Sk
(a)). Similarly we have,

1

1 + ε0
|e′(cSk

)| ≤ |e′(x)| ≤ (1 + ε0)|e′(cSk
)|(28)

for any x ∈ ξSk
(ω′

Sk
(a)). From Lemma 3 and (28) we have

1 + ε0
α

a−Sk ≥ |e′(x)| ≥ 1

β(1 + ε0)
a−Sk(29)

for any x ∈ ξSk
(ω′

Sk
(a)) ⊃ DI′ .

Assume that a′ ∈ ξ−1
Sk

(DI′) and let x′ = ξSk
(a′). Then, from (29),

|a− a′| = |e(cSk
) − e(x′)| ≤

\
DI′

|e′(x)| dx ≤ 1 + ε0
α

a−SkEI′ .(30)

It follows from (30) and Lemma 6 that

|T l′

e(x)(x) − T l′

a (x)| ≤ |a− e(x)|a
l′ − 1

a− 1
< |a− e(x)| al′

a− 1
(31)

<
1 + ε0
α

a−SkEI′

al′

a− 1

for any x ∈ DI′ and 0 < l′ ≤ l.

Claim 1. For 0 < l′ ≤ l, ξSk+l′ |J ′ is monotone, i.e., (ii) holds.

P r o o f. Suppose to the contrary that there exists some x ∈ I ′ = ξSk
(J ′)

such that ξSk+l′(e(x)) = T l′

e(x)(x) = c. Then from (27) and (31),

|T l′

a (x) − c| = |T l′

a (x) − T l′

e(x)(x)| <
1 + ε0
α

a−SkEI′

al′

a− 1
(32)

<
1 + ε0
α

a−Sk
|I|
η̃

· al′

a− 1
< 0.1|I|al′ .

Since x ∈ I ′, it follows that [x − 0.1|I|, x + 0.1|I|] ⊂ I. Next, since T l′

a |I is
monotone, we obtain

[T l′

a (x) − 0.1al′ |I|, T l′

a (x) + 0.1al′ |I|] ⊂ T l′

a (I)(33)
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for 0 < l′ ≤ l. Now, (32) and (33) imply that c ∈ T l′

a (I). However, by
assumption, T l′

a is monotone on I for 0 < l′ ≤ l and hence c 6∈ T l′

a (I). This
contradiction completes the proof of Claim 1.

Claim 2. We have |ξSk+l(J
′)| > ε/2, i.e., (iii) holds.

P r o o f. It follows from Claim 1 that ξSk+l′ |J ′ is monotone for all 0 <
l′ ≤ l and hence, in particular, ξSk+l|J ′ is monotone. Choose a1 and a2 such
that J ′ = [a1, a2]. Then, [ξSk

(a1), ξSk
(a2)] = I ′ and

|T l
a(ξSk

(a1)) − T l
a(ξSk

(a2))| = al|I ′| = al |I ′|
|I| |I| =

|I ′|
|I| |T

l
a(I)| ≥ 8

10
ε.(34)

For i = 1, 2 (recall (27) and (31)),

|T l
a(ξSk

(ai)) − ξSk+l(ai)| = |T l
a(ξSk

(ai)) − T l
ai

(ξSk
(ai))|(35)

<
1 + ε0
α

a−SkEI′

al

a− 1

≤ 1 + ε0
α

a−Sk
|I|
η̃

· al

a− 1

=
1 + ε0
α

a−Sk
1

η̃
· 1

a− 1
|T l

a(I)|

≤ 1 + ε0
α

a−Sk
1

η̃
· 1

a− 1
<
ε

8
.

Lastly, (34) and (35) imply that |ξSk+l(J
′)| = |ξSk+l(a1) − ξSk+l(a2)| > ε/2.

Claim 2 is thus proved.

Again, |I ′| = 0.8|I| ≥ 0.8η̃EI > 0.8η̃EI′ and hence (recall (29))

|J ′| =
\
I′

|e′(x)| dx ≥ 1

β(1 + ε0)
a−Sk |I ′| > 1

β(1 + ε0)
a−Sk · 0.8η̃EI′ .(36)

Letting DJ′ denote the shortest interval containing a and J ′ and setting
EJ′ = |DJ′ | we have (recall (29))

EJ′ ≤
\

DI′

|e′(x)| dx ≤ 1 + ε0
α

a−SkEI′ .(37)

Joining (36) and (37) we obtain

|J ′|
EJ′

>
0.8η̃α

β(1 + ε0)2
≡ η1.(38)

Thus, (iv) holds.

7. Proof of Theorem 1. We have already shown that P and H = {a ∈
[
√

2, 2] | lim infk→∞Qa(k) < ∞ and a 6∈ D ∪ P} are σ-porous. Hence, to
prove Theorem 1, it remains to show that I is σ-porous.
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For each pair r1 < r2 ∈ Q set

Ir1,r2 = {a | (r1, r2) ⊂ [ξ2(a), ξ1(a)], ξn(a) 6∈ (r1, r2) for all n,

and lim
k→∞

Qa(k) = ∞}.

We will show that each nonempty Ir1,r2 is porous and therefore that I is
σ-porous. Theorem 1 will then immediately follow.

Fix r1 < r2 ∈ Q such that Ir1,r2 6= ∅ and fix a ∈ Ir1,r2 . Let ε > 0 be as
defined in Section 6 for the fixed a. Let {δi > 0} be such that limi→∞ δi = 0.
For each i apply Proposition 4 with the fixed a, ε, and δ = δi, to generate
sets J ′

i and positive integers ki and li which satisfy for each i the conditions
(i)–(iv) of Proposition 4. Since η1 from Proposition 4 is independent of the
choice of δ (depends only on a and ε) we have a common η1 for all i.

Let P be a partition of [0, 1] into subintervals of length ε/4, with perhaps
the partition element containing 0 having a smaller length. Set r′1 = r1 +
(r2 − r1)/4 and r′2 = r2 − (r2 − r1)/4. Since Ta is leo, for each I ∈ P there
exists a closed interval UI ⊂ I and kI ∈ N such that T kI

a (UI) ⊂ (r′1, r
′
2).

Let γ > 0 be such that if a′ ∈ (a − γ, a). Then for each I ∈ P we have
T kI

a′ (UI) ⊂ (r1, r2). Passing to a subsequence if needed, assume that

J ′
i ⊂ (a− γ, a)(39)

for all i.

Since P is a finite partition, |ξSki
+li(J

′
i)| > ε/2 for all i, and |I| ≤ ε/4

for all I ∈ P , we may choose I∗ ∈ P such that I∗ ⊂ ξSki
+li(J

′
i) for in-

finitely many i. Again, passing to a subsequence if needed, assume that
I∗ ⊂ ξSki

+li(J
′
i) for all i. Next for each i set

J∗
i = ξ−1

Ski
+li

(UI∗).

Then for all i, J∗
i ⊂ J ′

i and

ξSki
+li+kI∗

(J∗
i ) = ξkI∗

(UI∗).(40)

It follows from (39) and (40) that for all i, ξSki
+li+kI∗

(J∗
i ) ⊂ (r1, r2). Hence,

J∗
i 6⊂ Ir1,r2(41)

for all i.

Claim 1. For each i,

|J ′
i | ≤

1 + ε0
|UI∗ | |J

∗
i |.

P r o o f. For each i set Hi = ξSki
+li(J

′
i). Set M = maxx∈J′

i
{|ξ′Ski

+li
(x)|}

and m = minx∈J′

i
{|ξ′Ski

+li
(x)|}. Then

|UI∗ |=
\

J∗

i

|ξ′Ski
+li

(x)| dx ≤M |J∗
i |,(42)
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|Hi|=
\
J′

i

|ξ′Ski
+li

(x)| dx ≥ m|J ′
i |.(43)

Combining (42) and (43) and using Lemma 2 we have

|UI∗ |
|Hi|

≤ M |J∗
i |

m|J ′
i |

≤ (1 + ε0)
|J∗

i |
|J ′

i |
.

Hence,
|J∗

i |
|J ′

i |
≥ 1

1 + ε0
· |UI∗ |
|Hi|

≥ |UI∗ |
1 + ε0

;

use |Hi| ≤ 1. This shows Claim 1.

For each i let ∆i be the length of the smallest closed interval containing
a and J∗

i . We need to find λ > 0 such that

|J∗
i |/∆i ≥ λ

for all i. Write
|J∗

i |
∆i

=
|J∗

i |
|J ′

i |
· |J

′
i |

∆i

.(44)

From Proposition 4 we have |J ′
i |/EJ′

i
≥ η1 for each i, and by definition

∆i ≤ EJ′

i
for all i; therefore

|J ′
i |/∆i ≥ η1(45)

for all i. Joining (44) and (45), we see that to get a lower bound for |J∗
i |/∆i

it suffices to have a lower bound for |J∗
i |/|J ′

i |; but this is precisely Claim 1.
Thus Claim 1, (44), and (45) give

|J∗
i |
∆i

≥ |UI∗ |
1 + ε0

η1 ≡ λ

for all i; note that λ is independent of i. Recalling (41) we now have, for each
i,

|J∗
i |/∆i ≥ λ and J∗

i ∩ Ir1,r2 = ∅.
Thus Ir1,r2 is porous.
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Eötvös Loránd University
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