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Spaces and equations
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Walter Tay l o r (Boulder, CO)

Dedicated to the memory of Garrett Birkhoff (1911–1996)

Abstract. It is proved, for various spaces A, such as a surface of genus 2, a
figure-eight, or a sphere of dimension 6= 1, 3, 7, and for any setΣ of equations, that
Σ cannot be modeled by continuous operations on A unless Σ is undemanding
(a form of triviality that is defined in the paper).

0. Introduction. A celebrated theorem of Adams [1] (and others) as-
serts that the only spheres that are H-spaces are S1, S3 and S7. In other
words, if n 6= 1, 3, 7, then it is impossible to have a continuous operation
F : Sn × Sn → Sn and a point e ∈ Sn such that the system of equations

e · x ≈ x · e ≈ x(1)

is satisfied up to homotopy on Sn. The result is known for many other
spaces (see e.g. Novikov [30, pp. 191–194] or Dieudonné [9, pp. 236–238]),
but not for other systems Σ of equations. The aim of this paper is to extend
the result (for known spaces) to many other Σ. In fact, our result is best
possible as far as Σ is concerned.

Let Σ be a set of equations involving operation symbols Ft (t ∈ T ). In
other words, for each t, Ft is a symbol for a finitary operation, i.e., a function
of n(t) variables for some finite n(t) (which may be zero). We say that Σ
is undemanding (or easily satisfied) if there exists a set A of more than one
element, and an interpretation of each Ft as either a constant function or
a projection function (from An(t) to the ktth factor, for some kt ≤ n(t)),
which satisfies the equations Σ on A. (Notice that for finite Σ there is a
simple algorithm for checking if Σ is undemanding or not. Indeed it suffices
to try the n(t) + 1 interpretations of each Ft by projections or a constant.)

For example, if each equation in Σ has the form σ ≈ τ , with σ and
τ each a composite term (i.e., not a variable standing alone), then Σ is
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undemanding. That is, if we interpret all the Ft as constant operations
with the same value, then the equations of Σ are obviously satisfied (albeit
somewhat trivially). Clearly the theory of commutative semigroups (whose
axioms are the associative and commutative laws) is in this category. For
a second example, the theory of idempotent semigroups, axiomatized by
this (1) Σ:

x · (y · z) ≈ (x · y) · z, x · x ≈ x,

is also undemanding, by using projections (but not by using constants). In
fact, in this example the product x · y may be interpreted as either x (first
co-ordinate projection) or y (second co-ordinate projection).

On the other hand, if Σ is given by

xx ≈ x,(2)
xy ≈ yx,(3)

then Σ is demanding. (Equation (2) rules out a constant for xy, and (3)
rules out both projections.) Thus the familiar theory of semilattices is also
demanding, for its axioms contain (2) and (3) along with the associative
law. Along the same lines, it is easy to see that Equations (1)—defining
H-spaces—form a demanding set.

For a space A and operations F t : An(t) → A we say that the operations
F t satisfy Σ, and write

(A,F t)t∈T |= Σ,(4)

if for each equation σ ≈ τ in Σ, both σ and τ evaluate to the same function
when the operations F t are substituted for the symbols Ft appearing in σ
and τ . (For the sake of our proofs, this notion will be defined more precisely
in §1.2.) Given a space A and a set of equations Σ, we write

A |= Σ,(5)

and say that A and Σ are compatible, if there exist continuous operations
F t on A satisfying Σ. (It will be a consequence of Theorem 1 that Σ is
undemanding iff it is compatible with every space—see §2.2.)

As we indicated at the start of this introduction, Adams’ result actually
ruled out the possibility of satisfaction of Equations (1) up to homotopy.
Operations F t are said to satisfy an equation σ ≈ τ up to homotopy if,
when we substitute F t for each Ft, the functions associated with σ and τ
are homotopic to each other (although not necessarily equal as functions).
In a similar way, one speaks of compatibility up to homotopy, and so on.
Theorem 1 will be stated and proved for satisfaction up to homotopy.

(1) In simple and familiar cases, we may dispense with the formal Ft(. . .)
notation. In this case we have T = {0}, and we write F0(x, y) as x · y.
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For example, it is an easy exercise that if Σ axiomatizes lattice theory,
then Σ is compatible with an interval I = [a, b], whereas the axioms of group
theory are not compatible with I. Up to homotopy, of course, both theories
are compatible with I. Further examples (mostly of incompatibility) are
scattered in the mathematical literature; some of them have been collected
in [39]. For an example of immediate concern to this paper, the equation-set
(1), which defines H-spaces, is compatible with spheres S1, S3 and S7 (us-
ing multiplication of unimodular complex numbers, quaternions and Cayley
numbers, respectively). According to the cited theorem of Adams et al.,
however, (1) is not compatible with spheres Sn (n 6= 1, 3, 7), not even up to
homotopy. Our main theorem, which we now state, has a similar conclusion
for any demanding theory.

Theorem 1. Let A be a path-connected space satisfying one of the
following seven hypotheses. If A is compatible with Σ up to homotopy ,
then Σ is undemanding.

1. A is homeomorphic to the sphere Sn (n 6= 1, 3, 7).
2. A has fundamental group isomorphic to a non-Abelian free group of

finite rank.
3. A has cohomology ring (over some field) isomorphic to the cohomol-

ogy ring of an even-dimensional sphere.
4. A has cohomology ring (over some field) isomorphic to the cohomol-

ogy ring of the orientable surface of genus 2.
5. A has cohomology ring (over the prime field of characteristic 2) iso-

morphic to the cohomology ring of the Klein bottle.
6. A has cohomology ring (over the prime field of characteristic 2) iso-

morphic to the cohomology ring of n-dimensional real projective space,
with n+ 1 not a power of 2.

7. A has cohomology ring (over a field of characteristic 6= 2) isomorphic
to the cohomology ring of the figure-eight space.

In referring to the part of this theorem that infers the conclusion from
the kth hypothesis, we will simply say “Part k,” without always mentioning
the theorem itself. Some further theorems (variations on this one) will be
stated in §2.3 and §11.3.

The rest of the paper is devoted mostly to the proofs of Theorem 1 and
of Theorem 2 (of §2.3). After a brief development of homotopy and free
groups in §§3–4, the proof of Part 2 of Theorem 1 is completed in §5. After
a brief development of the cohomology ring in §6.3, the proofs of Parts 3–
7 are completed in §7. After a brief development of degrees and the Hopf
invariant in §8, the proof of Part 1 is completed in §9. The proof of Theorem
2 is sketched in §10.
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It is our experience in speaking about this material that few mathe-
maticians are conversant in both the requisite equational logic (§1) and the
requisite algebraic topology (§3, §6, §8). Those who are conversant in either
of these subjects will find the corresponding sections elementary, and can
obviously move on, after possibly learning our notation.

In spite of the requisite attention to detail, the main spirit of the paper
is still categorical. We rely heavily on the functorial properties of the ho-
motopy group and the cohomology ring. See also the final remarks in §11.2,
where we give an alternate explication of our results in terms of abstract
clone theory (algebraic theories), which is a branch of category theory.

The main results here were announced on web pages at Vanderbilt Uni-
versity (http://atlas.math.vanderbilt.edu/˜jsnow/universal algebra/) and
at York University (http://at.yorku.ca/i/d/e/a/89.htm).
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1. Terms, equations and satisfaction

1.1. Terms and interpretations. The material of §1.1 is elementary but
subtle. In particular, we need to distinguish carefully between a term (sym-
bolic composite operation) τ and various composite operations such as τ ,
τ? and τ ′ that are patterned after τ . The operations τ are essential to a
precise understanding and a precise mathematical definition of the identical
satisfaction relation (4); and the recursive construction of τ , τ? and τ ′ is
essential to the inductive arguments that are needed in our proofs. The
reader who is familiar with this material can read quickly, while pausing to
take in our notation; although a little fussier than usual, it is essential to
the remainder of the article.

As in §0, we begin with an indexed collection of operation symbols Ft

(t ∈ T ). Attached to each t ∈ T is a non-negative integer n(t) called the
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arity of Ft. An interpretation of Ft on a non-empty set A is an n(t)-ary
operation on A, i.e., a function

F t : An(t) → A.

(Thus when we say “The operations F t interpret the function symbols Ft,”
the only real assertion is that each F t has the correct domain An(t).) In
many cases of interest, there are only one or two operations Ft, having
traditional designations like +, ·, ∧, ∨, etc. We will use these familiar
designations when they are available. Sometimes one omits the bar from
F t, allowing the context to differentiate the symbolic operation from the
concrete operation; this practice is especially widespread in the case of +,
∧, etc.

A term is a symbolic expression that is recursively defined to be either
a variable xi (for some i = 0, 1, 2, . . .), or Ft(τ1, . . . , τn(t)) for some t ∈ T
and some simpler terms τj . An equation is an ordered pair of terms (σ, τ).
This pair is usually written σ ≈ τ , with the bent equal-sign emphasizing the
role of equality in the interpretation of σ ≈ τ , which we describe presently.
Nevertheless, it should be remembered that “σ ≈ τ” merely symbolizes an
equation as a linguistic entity; by itself it makes no assertion. On the other
hand, “σ = τ” does make an assertion: it asserts that σ and τ are precisely
the same term.

Our proofs about terms are usually by induction. One way to say this
is that we induct over the well-founded order defined on the set of all terms
by always taking τj to lie below Ft(τ1, . . . , τn(t)). A more elementary plan—
which we adopt—is to assume we have |τ | ∈ ω for every term τ , with |τj |
always less than |Ft(τ1, . . . , τn(t))|, and then to carry out an elementary
inductive proof relative to the quantity |τ |. There are many possible ways
to define |τ |, such as the number of function symbols in τ .

If the operations F t interpret the symbols Ft on a set A, then every
term τ has an associated interpretation τ : Aω → A which is defined (2)
recursively on A via

xi(a) = ai,(6)
τ(a) = F t(τ1(a), . . . , τn(t)(a)),(7)

where
τ = Ft(τ1, . . . , τn(t)).(8)

Notice that the bar notation is not essential to the construction de-
scribed in (6) and (7). In §3 we will interpret the function symbols Ft

with operations F ?
t , and in §5 and §7 with function symbols F ′

t . In those
contexts, each term τ will have corresponding interpretations τ? and τ ′.

(2) Recall that ω = {0, 1, 2, 3, . . .}. We adopt the convention that if a ∈ Aω,
then ai denotes the ith component of a. In other words, a = 〈a0, a1, a2, . . .〉.
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In §7 we will need the N -restricted interpretation τN : AN → A. This
will be defined only when the variables appearing in τ are among {xi : i <
N}. In fact τN is also defined by Equations (6)–(8) that define τ , but with
the domain changed to AN . In §7 it will be helpful to have (7) recast as

τN = F t ◦ τ̂N(9)

where τ̂N : AN → An(t) is specified by the equations

π
n(t)
i ◦ τ̂N = τN

i(10)

for 1 ≤ i ≤ n(t). (Here πn(t)
i denotes the ith coordinate projection from

An(t) onto A.)
It will also be useful to be able to compare τN and τM for M > N . For

this purpose, we use the N -fold projection operations

ΠM
N : AM → AN , ΠN : Aω → AN

which are defined by

πN
i ◦ΠN = πi, πN

i ◦ΠM
N = πM

i(11)

for i < N . (In other words (11) says that the ith component of ΠM
N (a) is

the ith component of a.) It seems obvious that

τN ◦ΠN = τ , τN ◦ΠM
N = τM(12)

for M > N , and moreover these equations have an easy inductive proof
involving (9) (which we omit).

One easily proves by induction that τ(a) (or τN (a)) depends only on
the variables appearing in τ , i.e., that τ(a) = τ(b) if ai = bi for each i ∈ ω
with xi appearing in τ . If these variables are xi0 , xi1 , . . . , one sometimes
writes τ(ai0 , ai1 , . . .) in place of τ(a).

1.2. Identical satisfaction. An interpretation F t (t ∈ T ) on A is said to
model or identically satisfy an equation σ ≈ τ iff σ = τ (as functions defined
on Aω). (The word “identically” can be omitted in a context such as this
one, where identical satisfaction is the main topic. The reader is, however,
advised that, in general, satisfaction is a more elaborate topic.) Satisfaction
has the notation

(A,F t)t∈T |= σ ≈ τ,(13)

which relates the set A, the operations F t, and the formal terms σ and τ .
Sometimes we say instead that σ ≈ τ is an identity of (A,F t)t∈T . If (13)
holds for every equation σ ≈ τ in Σ, we write

(A,F t)t∈T |= Σ,(14)

and say that the interpretation F t (t ∈ T ) models or identically satisfies Σ.
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A tuple of the form (A,F t)t∈T , i.e., a set with operations, is an algebra,
and so quite often one reads (14) as saying that the algebra (A,F t)t∈T

models, or satisfies identically the equations Σ. That terminology is less
useful in this paper, since our main point is to prove that no interpretation
models Σ.

The notation (14) is of course still valid for A the underlying set of a
topological space (3), and this is the notation that we used in (4) of the
introduction. As noted there, if in addition the operations F t : An(t) → A
are continuous (with respect to the usual product topology on An(t)), then
we say that the operations F t model Σ continuously on A. (We may also
say that (A,F t)t∈T is a topological algebra satisfying Σ.) If there are any
operations F t continuously modeling Σ on A, then we say that Σ is con-
tinuously modelable (satisfiable) on the space A, or that A supports Σ, or
simply that A and Σ are compatible (as noted in the introduction).

An interpretation F t is said to model an equation σ ≈ τ up to homotopy
if σ and τ are homotopic (as functions Aω → A). We say that A and Σ are
compatible up to homotopy if there exist continuous operations F t on A such
that each equation of Σ is satisfied up to homotopy. Until §11 we make no
real distinction between compatibility and compatibility up to homotopy.
In fact, all the topological tools that we use (the homotopy groupoid, the
cohomology ring, degrees of maps) are homotopy invariants. Hence our
proofs are automatically strong enough to accommodate satisfaction up to
homotopy. The reader who chooses to disregard or de-emphasize homotopy
in the statement of Theorem 1 will suffer very little loss of understanding.

Let us call an algebra (A,F t)t∈T trite (4) iff each F t is either a constant
operation or a projection operation. To paraphrase what we said in the
introduction, a theory Σ is undemanding if it has a trite model based on a
set B of more than one element. The reader may easily check that the set
B itself is hardly relevant: if Σ is undemanding, then for every set B, Σ
has a trite model based on B.

(Equivalently, Σ is undemanding if it is possible to augment Σ with
equations of the form

Ft(x1, . . . , xn(t)) ≈ xkt(15)

or
Ft(x1, . . . , xn(t)) ≈ c(16)

(one equation for each t ∈ T ) with a consistent outcome. This means that
for each equation σ ≈ τ from Σ, if one reduces σ and τ each to a variable or
constant via Equations (15)–(16), then σ and τ reduce both to the constant
c or both to the same variable.)

(3) In this article, we denote a space and its underlying set by the same letter.
(4) We thank B. Banaschewski for suggesting this terminology.
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Obviously, for finite Σ, it is easy in principle to check if Σ is demanding
or not. One need only try all possible combinations of kt and c (as in
(15) and (16)), for t appearing in Σ. Jan Mycielski has shown [private
communication] that the problem is NP-complete, and hence most likely
the time needed to check whether Σ is demanding grows exponentially with
the size of T .

It is easily checked that if each equation in Γ is a consequence of Σ—
denoted Σ`Γ–then every space compatible with Σ is compatible with Γ .
It follows readily that if Σ1 and Σ2 axiomatize the same equational theory,
then Σ1 and Σ2 have exactly the same compatibilities. Clearly a similar sit-
uation holds for trite models of Σ and Γ , and hence if Σ1 and Σ2 axiomatize
the same equational theory, then Σ1 is undemanding iff Σ2 is undemanding.
These remarks should enhance one’s understanding of the material, but are
not needed in our proofs. Hence we omit any detailed treatment of the
consequence relation. In this article, in fact, we work with formal equations
σ ≈ τ in only one way: we invoke the definition of satisfaction to obtain
σ = τ (or σ homotopic to τ) for some interpretation F t (t ∈ T ).

2. The theorems. Our main result, Theorem 1, was stated in the in-
troduction. Theorem 2—which gives a relatively straightforward extension
to finite Cartesian powers of the spaces in Theorem 1—will be stated in
§2.3. Four relatively straightforward results, Theorems 41, 42, 45, 46, will
be stated and proved in §11.3.

2.1. Background to Theorem 1. As we mentioned in the introduction,
the specialization of Part 1 to the Equations (1) is an important classical
result in algebraic topology, whose proof has a long and influential history.
The classical result on H-spaces was easier to prove for some values of the
dimension n than for certain other values. The most difficult cases (n =
2k−1, k ≥ 4) were completed by J. F. Adams around 1960 [1]. The classical
proof, which will be outlined in §8, revolved around the notions of degree of
a map and the Hopf invariant of a map. Our proof of Part 1 will also make
essential use of these notions. As we shall see in §2.2, our Part 1 is the best
possible extension (5) of the classical result to other theories.

We asked in 1986—see page 38 of [39]—whether there is any simple space
A for which the conclusion of Theorem 1 holds. (We knew about, but were
not content with, the very complicated space of Cook that is mentioned in
§2.2.) In particular, we asked whether Theorem 1 holds for A taken to be a
figure-eight space or the 2-sphere S2. (These two spaces stood out because
they had no history of compatibility with any demanding Σ, and because

(5) The reader should note that we are not offering a slick new general-algebra
proof of a classical result. In fact, our proof of Part 1 applies the same deep
methods of algebraic topology—notably Theorem 38 below—that were used for
the H-spaces result.
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they were known to be incompatible with many Σ’s.) Problem 9.4 on page
83 of [39] in fact pointed out that for almost any space (A, T ) that one can
name, it is open whether A is compatible (5) with any non-trivial (6) Σ.
This article represents the first time that we can answer (7) the question
negatively for any relatively simple space (A, T ).

Parts 1, 2 and 3 of Theorem 1 have long been known for idempotent Σ.
(A set Σ of equations is called idempotent if the equation

Ft(x, . . . , x) = x

is a consequence of Σ for each t ∈ T .) The idempotent specialization of
Part 2 follows immediately from Theorems 3.1 and 5.1 of [37]; the idem-
potent specialization of Part 3 is a special case of Theorem 2.8 of [38]; the
idempotent specialization of Part 1 is a special case of Corollary 3.2 of [38].
(By the same token, the difficult and unmotivated tensor-algebra calcula-
tions on pages 80–85 of [38] are outmoded by the easier calculations in this
article.) At the homotopy level (Part 2), one methodological advance over
the earlier paper [37] is in the use of the full homotopy groupoid (§3). (The
homotopy group sufficed in the idempotent case.)

2.2. Remarks on Theorem 1. Notice that Parts 1 and 3 of the theorem
overlap, in that they both cover the even-dimensional spheres. However,
Part 1 is obviously stronger, and Part 3 is more general, since its hypotheses
are only about the cohomology ring of A. Similarly Parts 2 and 7 overlap
on the figure-eight space.

Projection functions and constant functions are always continuous;
hence a trite algebra (§1.2) can be topologized in any way one likes. One
immediately sees that if Σ is undemanding, then Σ is compatible with every
space A. As we mentioned in [39], the converse statement—if Σ is compati-
ble with every space A, then Σ is undemanding—follows immediately from
the existence of a space A with the extravagant property that every topo-
logical algebra based on A is trite. Such a space, the continuum of Cook (8),
has been known since 1967. It now seems (to the author) more intuitive
and accessible to base the converse on Theorem 1: if Σ is compatible with
every space, then Σ is compatible with each A in Theorem 1, and hence
undemanding.

(6) The concept of “undemanding” was not developed at that time.
(7) I am happy to say also that Problem 9.1 [loc. cit.] has been solved af-

firmatively by Vera Trnková. There do exist spaces A and B that are the same
at the first clone level, but whose clones satisfy different first-order sentences at
higher levels. See recent articles by V. Trnková [41]–[44], and by J. Sichler and V.
Trnková [32].
(8) Constructed by H. Cook in a series of articles culminating in [8]; a self-

contained exposition occupies a long appendix to [31].
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The preceding remarks make it clear that each part of Theorem 1 decides
the question of compatibility for every Σ, and hence is a best possible
incompatibility result for its space A. From other perspectives, e.g. the
perspective of fixing a consistent demanding theory Σ and characterizing
those spaces compatible withΣ, there is nothing even close to a best possible
result.

It is important to realize that the conclusion to Theorem 1 is a conclusion
about Σ, and not about any particular operations modeling Σ on A. For
example, if Σ consists of the commutative law

F (x, y) ≈ F (y, x),

then on the sphere S2 there are many ways to model Σ other than with a
constant operation—e.g., F (x, y) = φ(d(x, y)), where d represents Euclidean
distance, and φ is any continuous function from R to S2. Part 3 obviously
cannot preclude the existence of this F . Rather, its proof will use the
cohomology functor to construct a new operation F ′ from F , in such a way
that F ′ is either a projection or a constant, and F ′ also satisfies Σ. (In other
words, Theorem 1 asserts the possibility of constructing a trite algebra from
(S2, F ), but does not assert that (S2, F ) itself must be trite.)

The results here work a little differently than those found in 1977 [37],
in 1981 [38] or in 1986 [39]. In those earlier articles, some general properties
of the space (A, T ) (such as non-commutativity of its fundamental group)
were used to rule out the compatibility relation (5) for certain Σ’s (such
as Σ defining group theory). In this article, we narrow our focus down
almost to a single space (A, T ) (e.g. by specifying the isomorphism type of
its fundamental group), and then prove that in this context (5) fails for all
Σ (except for undemanding Σ).

2.3. Extension of Theorem 1 to qth powers. Our second theorem re-
quires a mild extension of the notion of an undemanding Σ. We call a set
Σ of equations easily satisfied in qth powers, or q-undemanding, if there is
a set A of more than one element, which is a qth power (i.e. A = Bq for
some set B), and there are operations F t : An(t) → A such that

(A,Ft)t∈T |= Σ

and such that, for each t ∈ T , and for i = 1, . . . , q, the composite map

An(t) = Bqn(t) F t→ A = Bq πi→ B

is either a projection or a constant.
For an example, consider Σ consisting of the single equation

F (F (x, y), F (y, x)) ≈ y.(17)

Clearly Σ is demanding. Nevertheless Σ can be satisfied on A = B2 by
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defining (9)
F ((b1, b2), (b3, b4)) = (b2, b3),

and so Σ is 2-undemanding.
One nice thing about interpretations of this type is that they respect

the product topology on Bq. That is, if B is a topological space, and A is
given the q-fold product topology of Bq, then (obviously) F t is a continuous
operation on A. Thus, if Σ is q-undemanding, then Σ is compatible with
every space A that is homeomorphic to a direct power Bq (for any space
B). The converse again follows from the existence of a Cook space: if B
is a Cook space and A = Bq, then all operations on A are of the desired
type; hence any Σ compatible with A is q-undemanding. As in Theorem 1,
we here present simpler qth power spaces that are compatible only with
q-undemanding sets of equations.

Theorem 2. If the space A = Bq, 1 ≤ q < ω, where B is as in
Theorem 1, and if A is compatible with Σ up to homotopy , then Σ is q-
undemanding.

2.4. A lemma for all parts of Theorem 1. Although the topological
methods vary, there is one simple lemma that unites our proofs for the
seven parts of Theorem 1. In each case, given operations F t on A satisfying
Σ, we will supply a construction (which depends on the situation) of a trite
algebra (B,F ′

t )t∈T . It will then be our job to show that the constructed
algebra (B,F ′

t )t∈T also satisfies Σ. That is the conclusion of Lemma 3.
Since we are discussing satisfaction, the lemma naturally refers to the

term operations τ (built from the operations F t) and τ ′ (built from the
operations F ′

t ).

Lemma 3. Given operations F t defined on A for t ∈ T , and operations
F ′

t defined on B for t ∈ T . If it is possible to define each term operation
τ ′ : Bω → B directly from the term operation τ : Aω → A (i.e., without
reference to the syntax of τ), and if the operations F t satisfy Σ, then the
operations F ′

t also satisfy Σ.
In the topological context , if it is possible to define each term opera-

tion τ ′ directly from the homotopy class of the term operation τ , and if
the operations F t satisfy Σ up to homotopy , then the operations F ′

t also
satisfy Σ.

The same conclusions hold if there is an algorithm defining τ ′ directly
from τN (or its homotopy class) whenever N is bigger than the subscript of
any variable appearing in τ .

(9) For an elementary, but very rich, exposition of some of the many possible
ways to define operations on A = Bq in terms of their components in B—and the
associated varieties—see Evans [11].
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P r o o f. (We prove the first assertion only.) Consider an equation σ ≈ τ
from Σ. Since the operations F t satisfy σ ≈ τ , the term operations σ and τ
are identical (as operations defined on Aω). It follows from our hypothesis
that the term operations σ′ and τ ′ are identical (as operations defined on
Bω). In other words, the operations F ′

t satisfy σ ≈ τ . Since this was an
arbitrary equation from Σ, we see in fact that the operations F ′

t satisfy Σ.

Much of the work that follows, therefore, has to do with establishing the
hypothesis of Lemma 3 in each of our various contexts. Each of Lemmas
14, 15, 26, 35 and 40 shows how to define τ ′ from τ (or from a τ? that is
readily obtained from τ). As one might imagine, those lemmas are proved
by induction on |τ |.

3. Path groupoids and fundamental groups. With every topologi-
cal space A there is associated an algebraic object known as its path groupoid
or fundamental groupoid, denoted Π(A). The fundamental group or first ho-
motopy group of A will appear (in Lemma 4) as a subgroup of Π(A). (This
definition of the path groupoid agrees with the one on page 139 of [23]. See
also [37].) The elements of Π(A) are the equivalence classes of continuous
maps (or paths) γ : [0, 1] → A with respect to the relation (denoted ∼) of
homotopy with endpoints fixed. (The ∼-class of γ is denoted [γ].)

A binary operation (“product”) is defined on the set Π(A) as follows.
If γ and δ are paths, as defined above, and if γ(1) = δ(0), then the product
γ · δ : [0, 1] → A is defined by

γ · δ(x) =
{
γ(2x), 0 ≤ x ≤ 1/2,
δ(2x− 1), 1/2 ≤ x ≤ 1.

It is not hard to check that the homotopy class of γ · δ depends only on
the homotopy classes of γ and δ, and hence [γ] · [δ] can unambiguously be
defined as [γ · δ]. It is also not hard to prove that if γ−1 is defined by

γ−1(x) = γ(1− x),(18)

then

γ · γ−1 ∼ γ(0),(19)
γ−1 · γ ∼ γ(1)(20)

(with the right-hand sides denoting constant maps).
For a ∈ A, we define the set of loops at a to be the subset of Π(A):

Πa(A) = {[γ] ∈ Π(A) : γ(0) = a = γ(1)}.(21)

Lemma 4. (Πa(A), ·,−1) is a group (whose unit element is the constant
path with value a). (This group is frequently known as the fundamental
group of A or the first homotopy group of A.)
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The reader can easily prove that if there is a path from a to b in A,
then Πa(A) ∼= Πb(A). See also Lemma 10 below. Thus in path-connected
spaces, all the fundamental groups are isomorphic.

At the abstract level, a category is called a groupoid if for each γ there
exists γ−1 satisfying Equations (19) and (20). The construction of Πa(A)
from Π(A) has a counterpart in category theory of forming the monoid of
self-maps of a given object. If the category is a groupoid, then the individual
monoid is a group. Since they are not necessary for our work in this paper,
we omit the precise form of these abstract statements. The reader may
consult any basic work on category theory, or, for example, §3.6 of [23].
Also see Higgins [14] and Brown [5] and [6].

With no further assumptions, Π(A) might consist only of constant
paths, or indeed it might be the case that there are many non-constant
paths, but that any two paths with the same endpoints are homotopic to
each other. (The first possibility occurs for a totally disconnected space
like the Cantor set or the rational line; the second occurs e.g. for Euclidean
space Rn.) In such extreme cases Π(A) contains no useful information. The
fortunate fact is that some spaces A—such as A a figure-eight—have highly
complex and non-trivial Π(A). In fact this A has Πa(A) a free group on
two generators (regardless of the choice of a).

Now suppose that our space A is equipped with some continuous oper-
ations F t for t ∈ T , in other words, that (A,F t)t∈T is a topological algebra
based on A. We first observe that paths can be subjected to the opera-
tions F t, simply by performing the operations pointwise. In other words,
we extend the operations F t to paths γi : [0, 1] → A as follows:

F t(γ1, . . . , γn(t))(x) = F t(γ1(x), . . . , γn(t)(x))(22)

for t ∈ T and 0 ≤ x ≤ 1. In order to define counterparts of F t on Π(A), we
next need to consider the homotopy relation.

Lemma 5. The homotopy relation ∼ is a congruence relation on the
algebra of all paths. In other words, if γi ∼ δi for 1 ≤ i < n(t), then

F t(γ1, . . . , γn(t)) ∼ F t(δ1, . . . , δn(t)).

Now, in the usual way, one can form the quotient algebra with respect to
homotopy of the algebra of paths under the operations F t (for t ∈ T ). By §3
its universe is Π(A), and so we have constructed an algebra (Π(A), F ?

t )t∈T

whose operations F ∗
t : Π(A)n(t) → Π(A) are defined via

F ?
t ([γ1], . . . , [γn(t)]) = [F t(γ1, . . . , γn(t))].

We skip the proof of the following lemma, which involves a fairly obvious
induction on |τ |.
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Lemma 6. Let τ be a term in the operation symbols Ft (t ∈ T ). Let
τ be the term-operation defined by τ in (A,F t)t∈T , and let τ? be the term-
operation defined by τ in (Π(A), F ?

t )t∈T . Then

τ?([γ0], [γ1], . . .) = [τ(γ0, γ1, . . .)]

(where the right-hand side denotes the homotopy class of the indicated curve
from [0, 1] to A).

Lemma 7, which follows, is the conceptual underpinning of our proof of
Part 2, for it allows us to apply the hypothesis that A is compatible with
Σ. It is for this purpose that we require the fundamental groupoid; there is
no counterpart to Lemma 7 for the fundamental group.

Lemma 7. Let Σ be a set of equations in the operation symbols Ft

(t ∈ T ). If continuous operations F t model Σ on A up to homotopy , then
the operations F ?

t model Σ on Π(A). In other words

if (A,F t)t∈T |= Σ, then (Π(A), F ?
t )t∈T |= Σ.

P r o o f. Immediate from Lemma 6.

Lemmas 5–7 do not in themselves imply any particular advantage to
the path algebra Π(A). The real advantage of this algebra comes in the
combination of Lemma 7 with the following lemma.

Lemma 8. The operations F ?
t (t ∈ T ) commute with the multiplication

of paths in Π(A). In other words, if [γi], [δi] ∈ Π(A) (1 ≤ i ≤ n(t)), and if
[γi] · [δi] is defined for each i, then

F ?
t ([γ1] · [δ1], . . . , [γn(t)] · [δn(t)])(23)

= F ?
t ([γ1], . . . , [γn(t)]) · F ?

t ([δ1], . . . , [δn(t)]).

Lemma 8 may be summarized by saying that each operation F ?
t is a

groupoid homomorphism. We mostly use the following specialization of Lem-
ma 8 to the case where the γi and δi are loops at a single point a. The full
path groupoid is useful as a context for establishing satisfaction of Σ (as we
did in Lemma 7); on the other hand, for calculations about homomorphisms,
it is more useful to work at the level of Πa(A), since we have a whole theory
of group homomorphisms to draw on (see §4 below).

Lemma 9. Let t ∈ T , let a1, . . . , an(t) ∈ A, and let b = F t(a1, . . . , an(t)).
The operation F ?

t maps the group Πa1(A) × . . . × Πan(t)(A) to the group
Πb(A). Moreover the resulting map, which we also denote

F ?
t : Πa1(A)× . . .×Πan(t)(A) → Πb(A),

is a homomorphism of groups.
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Lemma 9 interests us especially in the case where the fundamental
groups Πa(A) are free on two (or more) generators, since, as we shall see in
§4, the homomorphisms between such groups are few and limited.

Lemma 10. If A is path-connected , then the homomorphism in Lemma
9 is independent , up to isomorphisms, of the choice of a1, . . . , an(t). More
precisely , for all a1, . . . , an(t), c1, . . . , cn(t) ∈ A, for b = F t(a1, . . . , an(t)),
and for d = F t(c1, . . . , cn(t)) there are group isomorphisms

λi : Πai
(A) → Πci

(A), µ : Πb(A) → Πd(A)

for 1 ≤ i ≤ n(t) such that

F ?
t (λ1([γ1]), . . . , λn(t)([γn(t)])) = µ(F ?

t ([γ1], . . . , [γn(t)]))(24)

for all [γi] ∈ Πai
(A) (1 ≤ i ≤ n(t)).

4. Operations on non-commutative free groups. In this section
we consider maps from a finite power of a finitely generated free group to
another finitely generated free group. We assume that the reader has some
background in the general subject of free groups. (See for instance Hall [13]
or Magnus, Karrass and Solitar [22]. There is also a short development of
free groups on pages 119–120 of [23].)

The only thing one needs to carry from §4 to the rest of the paper
is Lemma 13, which rather strictly curtails the homomorphisms that are
possible from a power Gn of a free group to G. The application of Lemma
13 (in §5) will be to the group homomorphisms described in Lemma 9 above.

Our first lemma is actually a rather deep theorem in free-group theory.
We will not include a proof. We quote Hall’s version of the statement.

Lemma 11. A free group Fr with a finite number r of generators is freely
generated by any set of r elements which generate it.

P r o o f. See Theorem 7.3.3 on page 109 of Hall [13], or Corollary 2.13.1
on page 110 of Magnus, Karrass and Solitar [22].

Lemma 12. If G is a free group on k generators (for some k < ω), and
f : G→ G maps onto G, then f is one-to-one.

P r o o f. Let g1, . . . , gk be free generators of G. Since f is onto, f(g1),
. . . , f(gk) generate G; by Lemma 11, they freely generate G. Hence there
exists a homomorphism h : G→ G such that

h(f(gj)) = gj (1 ≤ j ≤ k).

Since the gi generate G, h ◦ f is the identity map, and hence f is one-to-
one.

We thank the referee for suggestions leading to a simplification of the
proof of Lemma 13.
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Lemma 13. If G is a free group on k generators (for some k with
2 ≤ k < ω), and if F : Gn → G maps onto G, then there exist r (1 ≤ r ≤ n)
and an automorphism φ of G such that

F (x1, . . . , xn) = φ(xr)(25)

for all x1, . . . , xn ∈ G.

P r o o f. Let G be freely generated by g1, . . . , gk. Since F is onto, there
exist elements aij ∈ G (1 ≤ i ≤ k, 1 ≤ j ≤ n) such that

F (ai1, . . . , ain) = gi(26)

for 1 ≤ i ≤ k.
Now consider the k × n matrix M whose i, j-entry is

mij = F (1, . . . , 1, aij , 1, . . . , 1)(27)

with aij in the jth place. From the fact that F is a group homomorphism,
one easily sees that

mij commutes with mrs for j 6= s,(28)

and, using (26), that the elements in the ith row of M have product gi. In
other words

mi1mi2 . . . min = gi(29)

for each i. It readily follows from (28) and (29) that, for each i, the elements
of the ith row, namely mi1, . . . ,min, all lie in a commutative subgroup of
G containing gi. From elementary free-group theory we know that the only
such subgroup is the subgroup generated by gi. Therefore, we may write

mij = g
nij

i(30)

for some appropriate integers nij .
We claim that all non-unit mij must either lie in one column (i.e. have a

single value for i) or in one row (a single value for j). For suppose not: then
we have mij 6= 1 6= mrs with i 6= r and j 6= s. By (30), mij does not com-
mute with mrs. By (28), mij does commute with mrs. This contradiction
establishes our claim.

Equation (29) tells us that each row contains at least one non-unit mij ;
hence it must be that all non-unit mij lie in a single column, say the rth
column. In other words,

mij = 1 unless j = r.(31)

From (26) and (31), we deduce that

F (1, . . . , 1, air, 1, . . . , 1) = gi(32)

for each i.
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We now define φ : G→ G via

φ(x) = F (1, . . . , 1, x, 1, . . . , 1),(33)

with x appearing in the rth position. By (32), φ maps G onto G, and so φ
is an automorphism of G, by Lemma 12. (Notice that (33) is a special case
of the desired Equation (25).)

We next observe, for b1, . . . , bn ∈ G, that if br = 1, then (b1, . . . , bn)
commutes with (1, . . . , 1, x, 1, . . . , 1) in the group Gn. By (33), F (b1, . . . , bn)
commutes with every φ(x), and hence with every element of G, since φ is
onto. In a non-commutative free group, the only element commuting with
every element is the unit element. Thus

F (b1, . . . , bn) = 1(34)

whenever br = 1. (Another special case of (25).)
Our final calculation is now immediate from (33) and (34):

F (x1, . . . , xn) = F (1, . . . , 1, xr, 1, . . . , 1) · F (x1, . . . , xr−1, 1, xr+1, . . . , xn)
= φ(xr) · 1 = φ(xr).

5. The proof of Part 2 of Theorem 1. As in the statement of the
theorem, we let A be a path-connected topological space whose fundamental
group is free on k generators (2 ≤ k < ω)—for instance, a figure-eight space.

We assume that A is homotopy-compatible with a set Σ of equations.
That is, we are given continuous operations F t : An(t) → A such that

(A,F t)t∈T |= Σ

up to homotopy. Our objective is to prove that Σ is undemanding. In other
words, we need to find special operations F ′

t modeling Σ, i.e. operations F ′
t

on a set B with more than one element, such that

(B,F ′
t )t∈T |= Σ

and such that each F ′
t is either a constant operation or a projection opera-

tion.
According to §3, we have operations F ?

t defined on the groupoid Π(A)
such that

(i) (Π(A), F ?
t )t∈T |= Σ (Lemma 7).

(ii) The subset Πa(A) has the structure of a free group on k generators
(Lemma 4).

(iii) For arbitrary a1, . . . , an(t) ∈ A, and for b = F t(a1, . . . , an(t)), the
restriction of F ?

t is a group homomorphism from Πa1(A) × . . .×Πan(t)(A)
to Πb(A) (Lemma 9). When we say that F ?

t is onto, we mean that this
restricted map has Πb(A) as its image.
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(iv) The homomorphism of (iii) is onto or not, independently of the
choice of a1, . . . , an(t) (Lemma 10).

Definition of the operations F ′
t . We now define the set B and the op-

erations F ′
t on B. In fact B can be taken as any set with more than one

element. We then let c be any element of B, and define the operations F ′
t

as follows:

(A) If F ?
t is not onto (see (iii) above; by (iv) this condition is independent

of a1, . . . , an(t)), we define F ′
t (x1, . . . , xn(t)) = c.

(B) If F ?
t is onto, then by Lemma 13 we have F ?

t (x1, . . . , xn(t)) = φ(xi)
for some i and some automorphism φ. It is an easy application of Lemma
10 to see that in fact i does not depend on the choice of a1, . . . , an(t). In
this case we define F ′

t (x1, . . . , xn(t)) = xi.

This completes the definition of the operations F ′
t for t ∈ T . Evidently

each F ′
t is either a constant or a projection operation. What remains is to

show that they model Σ.
In (6) and (7) we saw how an interpretation of symbols Ft by operations

F t leads to an interpretation of any term τ by a function τ : Aω → A. It is
merely a change of notation to do the same thing for the interpretations F ?

t :
they lead in the same way to an associated interpretation τ? : Π(A)ω →
Π(A). And, much as before, for any sequence a0, a1, . . . ∈ A, the restriction
of τ? to the group Πa0(A) × Πa1(A) × . . . is a homomorphism from that
group to Πτ(a0,...)(A). When we say that τ? is onto (in the statements and
proofs of Lemmas 14 and 15 below), we are referring to the surjectivity of
this restricted homomorphism. An obvious analog of Lemma 10 tells us
that τ? is onto or not, regardless of the choice of a0, a1, . . .

Similarly, interpretations F ′
t of the operation symbols lead to an inter-

pretation τ ′ of each term τ . In these terms, our plan for the rest of §5 can
be expressed as follows: we are given that σ? = τ? for an equation σ ≈ τ of
Σ; we need to prove that σ′ = τ ′.

Lemma 13 and (B) are special cases of the next lemma.

Lemma 14. If τ? is onto, then τ?(x) = φ(xj) for some j and some
automorphism φ of the fundamental group. In this case τ ′(x) = xj.

P r o o f. The proof is by induction on |τ |. If τ is a variable, the conclusion
clearly holds (with φ taken as the identity map). Otherwise, by (6)–(8), τ
is formed as Ft(τ1, . . . , τn(t)), and

τ?(x) = F ?
t (τ?

1 (x), . . . , τ?
n(t)(x)).(35)

Since τ? was assumed to be onto, we know that F ?
t must also be onto.

Hence, by Lemma 13,

F ?
t (x1, . . . , xn(t)) = ψ(xi)(36)
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for some i and some automorphism ψ. By (B), we have F ′
t (x1, . . . , xn(t)) =

xi for all x. It follows immediately that

τ ′(x) = τ ′i(x).(37)

Now from (35) and (36) we immediately deduce that τ?
i = ψ−1 ◦ τ? and

hence that τ?
i is onto. Therefore, by induction,

τ?
i (x) = λ(xj)(38)

for some j and some automorphism λ, and moreover

τ ′i(x) = xj .(39)

Now by (35), (36) and (38), we have

τ?(x) = F ?
t (τ?

1 (x), . . . , τ?
n(x)) = ψ(τ?

i (x)) = ψ(λ(xj)) = φ(xj)

(where φ = ψ ◦ λ). And by (37) and (39), τ ′(x) = xj .

Lemma 15. If τ? is not onto, then τ ′(x) = c.

P r o o f. The proof is by induction on |τ |. Clearly τ is not a variable, so

τ = Ft(τ1, . . . , τn(t))(40)

for some terms τ1, . . . , τn(t).
Case 1: F ?

t is not onto. Then F ′
t (x1, . . . , xn(t)) = c, by (A). Clearly

then τ ′ is the same constant, and the proof is complete in this case.
Case 2: F ?

t is onto. In this case, by (B),

F ?
t (x1, . . . , xn(t)) = φ(xi)(41)

for some i and some automorphism φ, and moreover F ′
t (x1, . . . , xn(t)) = xi.

From (40) and (41) we have

τ?(x) = F ?
t (τ?

1 (x), . . . , τ?
n(t)(x)) = φ(τ?

i (x))

and so τ?
i is not onto. By induction, τ ′i(x) = c, and so

τ ′(x) = F ′
t (τ ′1(x), . . . , τ ′n(x)) = τ ′i(x) = c.

Completion of the proof of Part 2. We begin by establishing the hy-
pothesis of Lemma 3 (from §2.4). Clearly Lemma 7 (or Lemma 6) implies
that the operation τ? depends only on the homotopy class of the operation
τ , and clearly Lemmas 14 and 15 define τ ′ from τ?. All in all, we have τ ′

defined from the homotopy class of τ , and so the hypothesis of Lemma 3 is
satisfied. Thus the operations F ′

t satisfy Σ, and hence Σ is undemanding.
This completes the proof of Part 2.

6. CGR’s and cohomology. In §6.3 below, we will summarize the
needed facts about the (absolute) cohomology ring H?(A,R), with coeffi-
cients in a fixed commutative ring R with unit. We preface that section
with two purely algebraic sections.
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6.1. Commutative graded rings. Let R be a commutative ring with unit.
All of §6.1 (a list of definitions) makes sense in this general context. Many
of the proofs that come later (notably Lemmas 16 and 25, and Theorem
21) require further assumptions on R—either that it is a field or at least
an integral domain. To make matters simpler, therefore, until §8, we will
assume that R is a field. In some of our work, such as Lemma 28 of §7.3,
it will be necessary to assume that the characteristic of R is not 2. On the
other hand, in §7.4 (the Klein bottle) and §7.5 (real projective space), we
will work with the field Z/2 of integers modulo 2. Then, in defining degrees
in §8 below, we will take R to be Z, the ring of integers. Lemma 43 below
also requires integral coefficients.

A graded ring over R is an associative bilinear algebra H over R with
unit (see page 15 of [23]), which has designated R-submodules Hi (i ∈ ω)
such that

(i) H =
⊕

i∈ω Hi,
(ii) HiHj ⊆ Hi+j .

It follows, of course, that the unit element 1 lies in H0. A commutative
graded ring over R (to which we will refer as an R-CGR) is a graded ring
over R that also satisfies

(iii) xy = (−1)pq yx

for x ∈ Hp and y ∈ Hq.
In fact, the reader of this article need only be concerned with the specific

CGR’s that are defined (rather simply) in Lemmas 20, 27, 29, 31 and 33,
and finite tensor powers of these CGR’s.

A homomorphism from an R-CGR H to an R-CGR K is a homomor-
phism f : H → K of bilinear algebras that also satisfies

(i) f [Hp] ⊆ Kp,
(ii) f(hk) = f(h)f(k),

for p, q ∈ ω, h ∈ Hp and k ∈ Kq.
The tensor product H⊗K of R-CGR’s H and K is the R-CGR with the

following presentation. Its generators are all ordered pairs (h, k) ∈ H ×K.
Such a pair, in the context of the tensor product, is traditionally denoted
h⊗ k. The relators for the presentation are

(i) all relations of R-multilinearity:

r(h⊗ k) = (rh)⊗ k = h⊗ (rk),
(h1 + h2)⊗ k = (h1 ⊗ k) + (h2 ⊗ k),
h⊗ (k1 + k2) = (h⊗ k1) + (h⊗ k2),
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(ii) the relations

(h1 ⊗ k1) · (h2 ⊗ k2) = (−1)pq(h1h2 ⊗ k1k2)

for (10) h2 ∈ Hp and k1 ∈ Hq.
Finally,
(iii) H ⊗K is made into a graded algebra by defining

(H ⊗K)p = {h⊗ k : (∃s ≤ p)(h ∈ Hs and k ∈ Kp−s)}.

The reader may easily check that the mapping

η1 : h 7→ h⊗ 1(42)

is a homomorphism η1 : H → H⊗K—called the first-coordinate injection—
and that

η2 : k 7→ 1⊗ k(43)
is a homomorphism η2 : K → H ⊗ K, the second-coordinate injection.
Moreover, categorically speaking, the diagram

�����1

PPPPPq
H ⊗K

H

K

η1

η2

is a co-product. In other words, given R-CGR homomorphisms f1 : H → G,
f2 : K → G, there is a unique homomorphism f : H ⊗ K → G such that
f ◦ ηi = fi (for i = 1, 2). In other words, the diagram

�����1
�

PPPPPq
�����)

PPPPPi H ⊗KG
f

H

K

η1f1

η2f2

commutes. (The interested reader may prove this for himself.)

6.2. Some technical lemmas on CGR’s. We present, mostly without
proof, some particular results on R-CGR’s. They will be useful in the proofs
of Parts 4, 5 and 7 in §7 below. (Lemma 17 appears in the proofs of Lemma
34 and Lemma 30, and Lemma 19 appears in the proof of Lemma 28.) On
a first reading one may be well advised to skip §6.2 and proceed directly to

(10) For the proof of Part 3 the reader may disregard the minus signs that
crop up for elements of odd degree, both here and in the foregoing definition of
commutativity. In fact, the R-CGR for the proof of Part 3 has H2n+1 = {0} for
n ≥ 0. Nevertheless, the minus sign explains why the proof of Part 3 does not
extend to odd dimensions. Moreover, the minus sign is used in an essential way
in the (omitted) proof of Lemma 17 below. In §7.4 and §7.5, the minus sign will
not appear; the characteristic is 2.
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§6.3. Then one could focus first on the proof of Part 3, which epitomizes
the cohomological method, without requiring the technicalities of §6.2.

As noted at the start of §6.1, we are assuming that R is a field.

Lemma 16. Suppose that H is an R-CGR, and that a, c ∈ Hp with
a 6= 0. Then there exists λ ∈ R such that , for all b, d ∈ Hq, if

a⊗ b = c⊗ d,(44)

then b = λd. Moreover , if either b 6= 0 or d 6= 0, then (44) implies also that
c = λa.

For an R-CGR H, we will call Hp a prime homogeneous component of H
if p = m1 + . . .+mn (with n > 1 and each mi > 0) implies that Hmi = {0}
for some i. For example, H1 is always a prime homogeneous component.

Lemma 17. Suppose that p is odd , and that Hp is a prime homogeneous
component of an R-CGR H. Suppose that z1, z2 lie in this component
of

⊗n
H, i.e., z1, z2 ∈ (

⊗n
H)p. If z1z2 = 0, then either (a) the space

generated by z1 and z2 is one-dimensional , or (b) there exists i, with 1 ≤
i ≤ n, such that

zk = 1⊗ . . .⊗ 1⊗ ai
k ⊗ 1⊗ . . .⊗ 1(45)

for k = 1, 2.

Lemma 18. Suppose that H, p, z1 and z2 are as in Lemma 17, with
z1z2 = 0. If

z1 = 1⊗ . . .⊗ 1⊗ ai
1 ⊗ 1⊗ . . .⊗ 1

for some non-zero ai
1 ∈ Hp, then

z2 = 1⊗ . . .⊗ 1⊗ ai
2 ⊗ 1⊗ . . .⊗ 1

for some ai
2 (possibly 0) in Hp.

Lemma 19. Suppose that p is odd , and that Hp is a prime homogeneous
component of an R-CGR H. Suppose that z1, z2, z3, z4 lie in this component
of

⊗n
H, i.e., z1, z2, z3, z4 ∈ (

⊗n
H)p. If

z1z3 = z1z4 = z2z3 = z2z4 = 0,(46)

then either (a) z1 = z2 = 0, or (b) z3 = z4 = 0, or (c) z1, z2, z3, z4
all lie in a single one-dimensional subspace of (

⊗n
H)p, or (d) there exist

i ∈ {1, . . . , n} and ai
k ∈ Hp (k = 1, 2, 3, 4) such that

zk = 1⊗ . . .⊗ 1⊗ ai
k ⊗ 1⊗ . . .⊗ 1(47)

for k = 1, 2, 3, 4.

P r o o f. If (a) and (b) are both false, then we may assume, without loss
of generality, that z1 6= 0 and z3 6= 0.
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Case 1: Each of the pairs {z2, z3}, {z3, z1}, {z1, z4} is linearly depen-
dent. From this condition and the fact that both z1 and z3 are non-zero, it
is easy to see that all four zi lie in a single one-dimensional subspace.

Case 2: One of the pairs {z2, z3}, {z3, z1}, {z1, z4} is linearly indepen-
dent. We will look in detail at one subcase:

Subcase 2a: {z2, z3} is linearly independent. Since z2z3 = 0, it follows
from Lemma 17 that there exists i, with 1 ≤ i ≤ n, such that

zk = 1⊗ . . .⊗ 1⊗ ai
k ⊗ 1⊗ . . .⊗ 1

for k = 2, 3. Obviously ai
3 6= 0, since z3 6= 0. Since z3z1 = 0, we have

z1 = 1⊗ . . .⊗ 1⊗ ai
1 ⊗ 1⊗ . . .⊗ 1,

by Lemma 18. Since z1 6= 0 and z1z4 = 0, we have

z4 = 1⊗ . . .⊗ 1⊗ ai
4 ⊗ 1⊗ . . .⊗ 1,

by another application of Lemma 18. This completes the proof for Sub-
case 2a.

Subcases 2b, 2c: {z3, z1} is linearly independent, {z1, z4} is linearly
independent. The proofs in these two cases are similar to the proof for
Subcase 2a, and hence may be omitted.

6.3. The cohomology ring of a topological space. We will deal with
H?(A;R), the absolute (11) cohomology ring of a space A, with coefficients
from a ring R with unit. Generally speaking, we take R to be a fixed field
(except in §8, where R = Z), we suppress mention of R, and we merely
write H?(A).

In fact, until §8, our proofs require only three basic understandings about
H?:

• The fact that H? is a functor from topological spaces and homotopy
classes of maps to the dual of the category of R-CGR’s.

• A certain version of the Künneth Theorem (see Theorem 21 below),
which relates the cohomology of An to that of A.

• For each space A of interest, a description of the isomorphism type of
H?(A). Typically, such a description is formally given by a presentation.
For the five cohomology rings of interest to us in this paper, we supply
(without proof) presentations in Lemmas 20, 27, 29, 31, and 33 below.

The reader who knows little or no cohomology theory can simply take
these three points as given. As we shall see, in combination they can have
powerful consequences. On the other hand, it is a non-trivial task to con-
struct H? from scratch so as to satisfy our three points (or to satisfy the
more traditional axiom system for H?). The construction of H?, and the

(11) Of course, relative cohomology plays a background role, especially in §8,
but we do not need to mention it expressly.
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derivation of its many properties, may be found in standard sources (e.g.
[26], [15], [33]). Except for our use of Čech cohomology in Lemma 43 of §11.3
below, our spaces are simplicial complexes, and any elementary version of
cohomology theory will work.

As an illustration of H?, we include here one of the presentations men-
tioned in the third point just above. The others are in §§7.3–7.6.

Lemma 20. The R-CGR H?(S2, R) = H has the presentation

〈a | a ∈ H2, a
2 = 0〉.(48)

In other words, H0 is the R-module consisting of all R-multiples of the
unit element 1, and H2 is the R-module consisting of all R-multiples of a.
All other Hj are {0}, and all products are zero, except for

(r1) · (s1) = (rs)1, (r1) · (sa) = (rs)a,

and linear consequences of these products.
We conclude §6.3 with some elementary consequences of functoriality.

Some of these equations will be used later in our recursive analysis of the
terms appearing in Σ. The fact that H? is a functor to the dual category
(a so-called contravariant functor) causes some of the equations to seem
somewhat non-intuitive. Along the way, we will state the version that we
need of Künneth’s Theorem.

In order to investigate continuous operations on a space A, we must be
able to examine maps defined on finite powers An. We begin by considering
the ith co-ordinate projection maps πi : An → A. Their H?-images are

H?(πi) : H?(A) → H?(An)(49)

for i ≤ i ≤ n. As in the coproduct of two factors discussed above, we have
n copower injections

ηi : H?(A) → H?(A)⊗ . . .⊗H?(A)

given by
ηi(x) = 1⊗ . . .⊗ 1⊗ x⊗ 1⊗ . . .⊗ 1,(50)

with the x appearing in the ith position on the right-hand side of (50). Since
the maps ηi define a copower, there is a unique map

×n : H?(A)⊗ . . .⊗H?(A) → H?(An)(51)

such that
×n ◦ ηi = H?(πi)(52)

for i ≤ i ≤ n.
Consider the diagonal map ∆ : A→ An defined by ∆ : a 7→ (a, . . . , a). It

too has an image under the function H?, and so we may form the composite
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map

H?(A)⊗ . . .⊗H?(A) ×n→ H?(An)
H?(∆)−→ H?(A).

We claim that H?(∆) ◦×n represents (12) multiplication of n factors in the
ring H?(A) (see (54) below). (Munkres attributes (54) to Lefschetz [26,
Theorem 61.3, p. 362]. It will not be needed until the proof of Lemma 36
in §8 below.) To see this, we note that

H?(∆) ◦H?(πi) = identity

(since πi ◦∆ = identity), and hence, by (52),

[H?(∆) ◦ ×n](1⊗ . . .⊗ z ⊗ . . .⊗ 1) = H?(∆) ◦ ×n ◦ ηi](z)(53)
= H?(∆) ◦H?(πi)(z) = z.

Taking products of (53), we see that

[H?(∆) ◦ ×n](z1 ⊗ . . .⊗ zn) =
n∏

j=1

[H?(∆) ◦ ×n](1⊗ . . .⊗ zj ⊗ . . .⊗ 1)(54)

=
n∏

j=1

zj .

Under certain conditions of finite-dimensionality (which hold for S2 and
the other spaces of this paper), the Theorem of Künneth has the corol-
lary [26, Theorem 61.6, p. 364], [33, §5.6] that ×n is an isomorphism. (In
other words, finite products are preserved by H?.) We state the version of
Munkres (who writes × where we would write ×n).

Theorem 21. If the graded group H? is finitely generated in each di-
mension, then the cross product × defines a monomorphism of rings

H?(X)⊗H?(Y ) → H?(X × Y ).

If F is a field , it defines an isomorphism of algebras

H?(X;F )⊗F H?(Y ;F ) → H?(X × Y ;F ).
In the case of no torsion, similar results hold for H?(X × Y,Z), with Z

the ring of integers. See e.g. Hilton and Wylie [15, 9.4.13, page 377].

7. The proofs of Parts 3-7 of Theorem 1. In each part, as before,we
are given continuous operations F t :An(t)→A such that (A,F t)t∈T |=Σ up
to homotopy, and we need to construct operations F ′

t (each a constant or a
projection) and prove that they satisfy Σ. As before we will establish this

(12) This argument shows that, if there is to be any functor from spaces to
R-CGR’s, then n-fold multiplication in H?(A) must be given by H?(∆) ◦ ×n. In
other words, it is a sort of uniqueness result for multiplication. Using H?(∆)◦×n
for an ab initio construction of multiplication, i.e. for an existence result, is a
more complex endeavor.
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last fact by invoking Lemma 3 of §2: we shall prove (in §§7.2-7.6) that τ ′

can be defined directly from the homotopy class of τ . We begin with a con-
struction and some lemmas that are common to all the proofs of §§7.2-7.6.

7.1. The co-operations F ?
t and their properties. Much as in §5 (the proof

of Part 2), the desired construction of τ ′ from τ proceeds via some interme-
diate operations F ?

t . Since cohomology is a functor into the dual category,
the F ?

t in this section goes in a direction opposite to ordinary operations
(see (55) just below). Such reversed operations are sometimes called co-
operations.

Definition of the co-operations F ?
t . We begin by letting H stand for

H?(A,R), and then defining co-operations

H
F ?

t→
⊗n(t)

H(55)

via
F ?

t = ×−1
n(t) ◦H

?(F t).(56)

(For ×n see (51)–(52). The existence of ×−1
n comes from Theorem 21 at the

end of §6.3 just above.)

Recursive definition of τ?. As in (9)–(10), it is convenient to define, by
recursion, a function τ? associated with each term τ . Since the functions
F ?

t are co-operations, the τ? must be co-operations, and therefore (9)–(10)
cannot be applied in their original form. We remark informally that the
following definition is a natural dualization of (9)–(10) (although this remark
is not subject to proof, since we do not have available a precise definition
of “natural dualization”).

For each term τ , and for N large enough so that i < N if xi appears in
τ , we define τ? : H →

⊗N
H as follows.

(i) If τ = xi, then τ? = ηi (defined above).
(ii) If τ = Ft(τ1, . . . , τn(t)), then

τ? = τ• ◦ F ?
t ,(57)

where τ• :
⊗n(t)

H →
⊗N

H is defined by

τ• ◦ ηi = τ?
i(58)

for 1 ≤ i ≤ n(t). (Of course τ?
i : H →

⊗N
H is available recursively.

Notice that (58) uniquely defines τ•, by the co-product property of tensor
products.)

We shall need the recursive definition of τ? for the inductive proofs of
Lemmas 26 and 35 below. On the other hand, Lemma 22 just below gives us
an immediate (non-recursive) definition of τ? from the homotopy class of the
operation τN that is defined in (9) of §1. Later (§§7.2–7.6), in a particular



Spaces and equations 219

manner for each Parts 3–7, we will show how to define τ ′ directly from τ?,
thereby furthering our objective of establishing the hypotheses of Lemma 3.

Lemma 22. For any term τ , τ? = ×−1
N ◦H?(τN ).

P r o o f. By induction on |τ |.
Case 1: τ = xi. Then by (52),

τ? = ηi = ×−1
N ◦H?(πi) = ×−1

N H?(xi
N ).

Case 2: τ = Ft(τ1, . . . , τn(t)). Applying the cohomology functor H? to
(10) of §1, we obtain

H?(τiN ) = H?(τ̂N ) ◦H?(πn(t)
i )

for each i. Premultiplying by ×−1
N , and again invoking (52), we obtain

×−1
N H?(τiN )=(×−1

N H?(τ̂N )×n(t))(×−1
n(t)H

?(πn(t)
i ))=(×−1

N H?(τ̂N )×n(t))ηi.

By induction, the left-hand side of these equations is equal to τ?
i , and so

τ?
i = (×−1

N H?(τ̂N )×n(t))ηi

for 1 ≤ i ≤ n(t). Since (58) uniquely defines τ•, the last equation gives

τ• = ×−1
N H?(τ̂N )×n(t) .(59)

It now follows immediately from (57), (59), (56) and (9) that

τ? = τ• ◦ F ?
t = ×−1

N H?(τ̂N )×n(t) ×−1
n(t)H

?(F t)

= ×−1
N H?(F t ◦ τ̂N ) = ×−1

N H?(τN ).

Now the general construction of τ? depended on the arbitrary integer N .
We will show that this dependence is not essential. (We obviously need such
a result, because we wish to talk about interpretations of all terms, and no
single N will simultaneously cover all terms.) To facilitate our exposition,
we temporarily append a superscript N to τ? and ηi, to indicate the N that
was used in their construction.

Lemma 23. Let A be a topological space, with H denoting H?(A), and
suppose that N < M ∈ ω. There exists a homomorphism ψM

N :
⊗N

H →⊗M
H such that

ηM
i = ψM

N ◦ ηN
i(60)

for all i < M , and
τ?M = ψM

N ◦ τ?N(61)

for all terms τ such that j < N for all xj appearing in τ .

P r o o f. We note first that really (60) is a special case of (61) (by taking
xi for τ), and so we need only prove (61). We define

ψM
N = ×−1

M ◦H?(ΠM
N ) ◦ ×N ,(62)
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where ΠM
N is defined by (11) of §1. In the following calculation, the first

line is by Lemma 22, the second line comes from (12) of §1, and the third
line comes from the functorial property of H?:

τ?M = ×−1
M ◦H?(τM )

= ×−1
M ◦H?(τN ◦ΠM

N )
= ×−1

M ◦H?(ΠM
N ) ◦H?(τN )

= (×−1
M ◦H?(ΠM

N ) ◦ ×N ) ◦ (×−1
N ◦H?(τN ))

= ψM
N ◦ τ?N .

Lemma 24. Let A be a topological space, with H denoting H?(A), and
suppose that N < M ∈ ω. Let τ be a term such that j < N for each xj

appearing in τ . If τ?N (a) = ηN
i (b) for some a, b ∈ H, then τ?M (a) = ηM

i (b).

P r o o f. Immediate from Lemma 23.

With this general framework established, we now attend to the individual
spaces (and their cohomology rings) appearing in Parts 3–7.

7.2. Even-dimensional spheres (Part 3). Let A be a space satisfying the
conditions of Part 3, for example, the 2-sphere S2. By Lemma 20 we know
that H = H?(A,R) is an R-CGR with a single generator a that lies in H2

and satisfies a2 = 0.

Lemma 25. For any continuous F : An → A, there exist λ ∈ R and
i ∈ {1, . . . , n} such that

F ?(a) = λ(1⊗ . . .⊗ a⊗ . . .⊗ 1) = ληi(a)

(with a in the ith position and all other entries 1). (In fact , the conclusion
holds for any CGR-homomorphism F ? : H →

⊗n
H.)

P r o o f. Let us define

ei = ηi(a) = 1⊗ . . .⊗ a⊗ . . .⊗ 1

with a in the ith position. Since H1 = {0}, it is not hard to check that ei

(1 ≤ i ≤ n) form a basis of (
⊗n

H)2, and so we must have F ?(a) =
∑n

i=1 λiei

for some scalars λi ∈ R. Since a2 = 0, we have

0 = F ?(a2) = (F ?(a))2 =
∑
i 6=j

λiλjeiej(63)

(where the products eiei are obviously 0, and hence have been eliminated
from this sum). It is not hard to check that the products eiej (j 6= i) form a
basis of (

⊗n
H)4, and hence all coefficients appearing in (63) must be zero.

In other words, λiλj = 0 for i 6= j. Since R is an integral domain, this
means that for i 6= j, either λi or λj must be zero. In other words, all but
one of the λi must be zero, and the conclusion of the lemma is immediate.
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Definition of the operations F ′
t . We now define the set B and the op-

erations F ′
t on B. In fact B can be taken as any set with more than one

element. We then let c be any element of B, and define the operations F ′
t

as follows:

(A) If F ?
t (a) = 0, then F ′

t (x1, . . . , xn(t)) = c.
(B) If F ?

t (a) 6= 0, then by Lemma 25 we have F ?
t (a) = ληi(a) for some

i and some λ with λ 6= 0. In this case we put F ′
t (x1, . . . , xn(t)) = xi.

The conditions defining (A) and (B) are independent of N , by Lemma
24. As in §5, we use (6) and (7) to create an associated interpretation τ ′

for any term τ . We continue to let a denote the generator of H = H?(A).

Lemma 26. For any term τ , if τ?(a) = 0, then τ ′(x) = c for any
x ∈ Bω. If τ?(a) = ληi(a) with λ 6= 0, then τ ′(x) = xi for any x ∈ Bω.

P r o o f. By induction on |τ |.
Case 1: τ = xi. Then τ? = ηi, by part (i) of the definition of τ?.

Therefore τ?(a) = ηi(a) = λei with λ = 1. The lemma asserts in this case
that τ ′(x) = xi, and indeed this holds by (6).

Case 2: τ = Ft(τ1, . . . , τn(t)). Then F ?
t (a) = λei for some λ and some

i, by Lemma 25, and again, for this i, we have τ?
i (a) = µej for some µ and

some j. And thus we have, by (57) and (58),

τ?(a) = τ•F ?
t (a) = τ•(λei) = λτ•ηi(a) = λτ?

i (a) = λµej .

Case 2A: τ?(a) = 0. This means that λµ = 0. Since the ring R is an
integral domain, either λ = 0 or µ = 0. If λ = 0, then F ?

t (a) = 0, and
F ′

t (x) = c for all x by (A) above. Clearly in this case τ ′(x) = c, as required.
On the other hand, if λ 6= 0 and µ = 0, then F ′

t (xi, . . . , xn(t)) = xi (by (B)),
and τ?

i (a) = 0. Thus τ ′i(x) = c by induction, and so τ ′(x) = c, as required.
Case 2B: τ?(a) 6= 0. This means that λµ 6= 0, and hence λ 6= 0 and

µ 6= 0. In this case F ?
t (a) 6= 0 and τ?

i (a) 6= 0. Thus F ′
t (x) = xi by (B) above,

and τ ′i(x) = xj by induction. One then easily checks that τ ′(x) = xj , as
required.

Completion of the proof of Part 3. We begin by establishing the hypoth-
esis of Lemma 3 (from §2). As we remarked at the time, Lemma 22 defines
τ? from the homotopy class of the operation τN , and clearly Lemma 26
defines τ ′ from τ?. All in all, we have τ ′ defined from the homotopy class
of τN , and so the hypothesis of Lemma 3 is satisfied. Thus the operations
F ′

t satisfy Σ, and hence Σ is undemanding. This completes the proof of
Part 3.

7.3. The orientable surface of genus 2 (Part 4). In fact, the proof for
S2 in §7.2 is valid in this case also, with only minimal changes, and so we
will not repeat it in detail. The only needed modifications are, first, that we
need a specific presentation of the cohomology ring of this surface (Lemma
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27 below), and, second, that we need a lemma to replace Lemma 25, whose
proof was specific to even-dimensional spheres. The necessary replacement
is Lemma 28. Instead of considering F ?(a), Lemma 28 considers F ?(Ω),
where Ω = g1g2 = g3g4 in the presentation that follows. Similarly, the
definition of the operations F ′

t should refer to F ?(Ω) instead of F ?(a).
For the cohomology ring of the surface of genus 2, see e.g. Munkres [26],

especially Exercise 2(b) of §6 (page 40), §49, pages 293–295, page 298. We
state the result without proof.

Lemma 27. If A is the orientable surface of genus 2, then the R-CGR
H?(A) = H has the presentation

〈g1, g2, g3, g4 | g1g3 = g1g4 = g2g3 = g2g4 = 0; g1g2 = g3g4;
g2
1 = g2

2 = g2
3 = g2

4 = 0〉,

with gi ∈ H1 (for 1 ≤ i ≤ 4).

As we mentioned above, Ω denotes g1g2.

Lemma 28. Suppose that the ring R has characteristic 6= 2. For any
continuous F : An → A, there exist λ ∈ R and i ∈ {1, . . . , n} such that

F ?(Ω) = λ(1⊗ . . .⊗Ω ⊗ . . .⊗ 1) = ληi(Ω)

(with Ω in the ith position and all other entries 1). (In fact , the conclusion
holds for any CGR-homomorphism F ? : H →

⊗n
H.)

P r o o f. Let gk (k = 1, 2, 3, 4) be as in the presentation. Let zk = F ?(gk)
(k = 1, 2, 3, 4). Obviously

F ?(Ω) = z1z2 = z3z4.

Clearly the zk obey the hypotheses of Lemma 19, and so one of the alter-
native conclusions (a)–(d) of that lemma holds. Clearly (a) and (b) imply
that F ?(Ω) = z1z2 = z3z4 = 0, and our proof is complete. Conclusion (c)
also implies, in characteristic 6= 2, that F ?(Ω) = z1z2 = z3z4 = 0. Finally
(d) implies that there exist i ∈ {1, . . . , n} and ai

k ∈ Hp (k = 1, 2) such that

z1z2 = 1⊗ . . .⊗ 1⊗ ai
1a

i
2 ⊗ 1⊗ . . .⊗ 1.

Since H2 is in fact a one-dimensional space generated by Ω, we in fact have

z1z2 = λ(1⊗ . . .⊗ 1⊗Ω ⊗ 1⊗ . . .⊗ 1),

and the proof of the lemma is complete.

7.4. The Klein bottle (Part 5). Again we can use the proof that has
already appeared in §7.2 and §7.3, with only minimal changes, and so we
will not repeat it in detail. The only needed modifications are, first, that
we need a specific presentation of the cohomology ring of the Klein bottle
(Lemma 29 below), and, second, that we need a lemma to replace Lemmas
25 and 28, whose proofs were specific to spheres and the surface of genus 2.
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The necessary replacement is Lemma 30. This new lemma again considers
F ?(Ω), but this time Ω = g2

1 = g2
2 in the presentation that follows. Again,

the definition of the operations F ′
t should reflect this change.

For the Klein bottle, it is useful to have cohomology with coefficients
taken from Z/2, the prime field of characteristic 2. Notice that in the
special case of characteristic 2, it does not follow that x2 = 0 for elements x
of odd degree. The following presentation of the Klein bottle’s cohomology
can be found on page 296 of Munkres [26].

Lemma 29. (Coefficient ring = Z2, the field of integers modulo 2.) If A
is the Klein bottle, then the Z2-CGR H?(A) = H has the presentation

〈g1, g2 | g1g2 = 0; g2
1 = g2

2 ; g3
1 = g3

2 = 0〉,

with gi ∈ H1 (for 1 ≤ i ≤ 2).

We will let Ω denote the product g2
1 = g2

2 . Obviously Ω ∈ H2. The
following lemma is the counterpart for the Klein bottle to Lemma 25 (which
applied to A = the 2-sphere) and to Lemma 28 (which applied to A = the
surface of genus 2).

Lemma 30. Suppose that R is the ring Z/2 of integers modulo 2. For
any continuous F : An → A, there exist λ ∈ Z/2 and i ∈ {1, . . . , n} such
that

F ?(Ω) = λ(1⊗ . . .⊗Ω ⊗ . . .⊗ 1)(64)

(with Ω in the ith position and all other entries 1). In other words, either
F ?(Ω) = 0 or

F ?(Ω) = 1⊗ . . .⊗Ω ⊗ . . .⊗ 1.

(In fact , the conclusion holds for any CGR-homomorphism F ? : H →⊗n
H.)

P r o o f. Let zi = F ?(gi) (i = 1, 2). Obviously F ?(Ω) = z2
1 = z2

2 . If
either z1 = 0 or z2 = 0, then F ?(Ω) = 0, and we are done. Therefore we
will assume z1 6= 0 6= z2.

If the space generated by z1 and z2 is one-dimensional, then in fact (with
this coefficient field) we have z1 = z2, and hence F ?(Ω) = z2

1 = z1z2 = 0,
and we are done, as before.

It is not hard to see from Lemma 17 that the only remaining possibilities
are that

zk = 1⊗ . . .⊗ 1⊗ gk ⊗ 1⊗ . . .⊗ 1

for (k = 1, 2) (see (45)) or the same values with z1 and z2 interchanged.
Hence

F ?(Ω) = z2
k = 1⊗ . . .⊗ 1⊗ g2

k ⊗ 1⊗ . . .⊗ 1 = 1⊗ . . .⊗ 1⊗Ω⊗ 1⊗ . . .⊗ 1.
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7.5. Real projective space (Part 6). Again we can use the proof that has
already appeared in §§7.2–7.4, with only minimal changes, and so we will not
repeat it in detail. The only needed modifications are, first, that we need a
specific presentation of the cohomology ring of projective space (Lemma 29
below), and, second, that we need a lemma to replace Lemmas 25, 28 and
30. The necessary replacement is Lemma 32. Where the previous lemmas
considered F ?(a) and F ?(Ω), this one considers F ?(g), where g is the unique
generator appearing in the presentation below. Again, the definition of the
operations F ′

t should reflect this change.
For the real projective space Pn, we will again use cohomology with

coefficients from Z/2. The following presentation of the cohomology of
projective space can be found on page 403 of Munkres [26]. It defines what
has been called a truncated polynomial algebra over Z/2.

Lemma 31. (Coefficient group = Z2, the field of integers modulo 2.) If
Pn is the real projective space of dimension n, then the Z2-CGR H?(Pn) =
H has the presentation

〈g | gn+1 = 0〉

with g ∈ H1.

The following lemma is the counterpart for projective space to Lemma
25 for the 2-sphere, to Lemma 28 for the surface of genus 2, and to Lemma
30 for the Klein bottle.

Lemma 32. Suppose that R is the ring Z/2 of integers modulo 2, and
suppose that A is a space agreeing in cohomology with projective space Pn

for some n such that n + 1 is not a power of 2. Then for any continuous
F : Am → A, either F ?(g) = 0 or there exists i ∈ {1, . . . ,m} such that

F ?(g) = 1⊗ . . .⊗ 1⊗ g ⊗ 1⊗ . . .⊗ 1 = ηi(g),(65)

with the g in the ith position. (In fact , the conclusion holds for any CGR-
homomorphism F ? : H →

⊗n
H.)

P r o o f. We present the proof first for binary operations, i.e., F with
m = 2. By way of contradiction, let us assume that the conclusion of the
lemma is false, i.e. that

F ?(g) = g ⊗ 1 + 1⊗ g.

Then the following equations hold modulo 2:

0 = F ?(0) = F ?(gn+1) = (F ?(g))n+1 = (g ⊗ 1 + 1⊗ g)n+1

=
n+1∑
j=0

(
n+ 1
j

)
gj ⊗ gn+1−j .
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The summands for j = 0 and j = n + 1 are automatically zero (since
gn+1 = 0). The other summands involve the linearly independent ring ele-
ments gj ⊗ gn+1−j , and hence their coefficients must all be zero. In other
words, the binomial coefficients

(
n+1

j

)
(j = 1, . . . , n) must all be zero (mod-

ulo 2). As is well known (and not hard to prove), this condition implies
that n + 1 is a power of 2. The resulting contradiction to our hypotheses
completes the proof of the lemma for m = 2.

Now for arbitrary m ≥ 2, we must have

F ?(g) =
∑
k∈K

1⊗ . . .⊗ 1︸ ︷︷ ︸
k

⊗g ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
m−k−1

for some K ⊆ {1, . . . ,m − 1}. If the conclusion of the theorem were false,
then we would have this representation with |K| ≥ 2; without loss of gen-
erality, 1, 2 ∈ K, and hence

F ?(g) = g ⊗ 1⊗ . . .⊗ 1 + 1⊗ g ⊗ 1⊗ . . .⊗ 1 + . . .

Now select an arbitrary element a ∈ Pn, and define the binary section
F 2 : (Pn)2 → Pn by

F 2(x1, x2) = F (x1, x2, a, . . . , a).

It is not hard to check that F ?
2 (g) = g ⊗ 1 + 1⊗ g, and so the proof can be

completed by reference to the case m = 2.

7.6. The figure-eight (Part 7). Let A be a space satisfying Hypothesis
7 of Theorem 1, for example, the figure-eight space (wedge of two circles).
The following description of H?(A) can be inferred from various items in
Munkres [26].

Lemma 33. If A is the figure-eight space, then the R-CGR H?(A) = H
has the presentation

〈g1, g2 | g1g2 = 0; g2
1 = g2

2 = 0〉

with gi ∈ H1 (for 1 ≤ i ≤ 2).

The following lemma is a rough cohomology counterpart to Lemma 13
(which dealt instead with the homotopy group). In the cohomology context,
it plays the same role as Lemmas 25, 28, 30 and 32 above.

Lemma 34. For any continuous F : An → A, either F ?(H1) is at most
one-dimensional , or there exist i ∈ {1, . . . , n} and a linear automorphism φ
of H1 such that

F ?(v) = 1⊗ . . .⊗ φ(v)⊗ . . .⊗ 1 = ηi(φ(v))(66)

for all v ∈ H1 (with φ(v) in the ith position and all other entries 1). (In
fact , the conclusion holds for any CGR-homomorphism F ? : H →

⊗n
H.)
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P r o o f. Let the generators of H1 be g1, g2 (as above) with g1g2 = 0.
Let zk = F ?(gk) (k = 1, 2). We first suppose that the space generated by
z1 = F ?(g1) and z2 = F ?(g2) is at most one-dimensional. Since {g1, g2}
spans H1, it follows readily that F ?(H1) is at most one-dimensional, and
the proof of the lemma is complete.

On the other hand, if this space is two-dimensional, then {z1, z2} is
linearly independent. It is obvious that z1z2 = 0 (since g1g2 = 0). Therefore
we know from Lemma 17 that there exists i with 1 ≤ i ≤ n such that

F ?(gk) = zk = 1⊗ . . .⊗ 1⊗ ai
k ⊗ 1⊗ . . .⊗ 1

for k = 1, 2. Since g1, g2 generate H1, and since F ? is linear, we have

F ?(v) = 1⊗ . . .⊗ 1⊗ φ(v)⊗ 1⊗ . . .⊗ 1

for some endomorphism φ of H1. Since F ?(H1) has dimension at least two,
φ must be an automorphism.

Definition of the operations F ′
t . We now define the set B and the op-

erations F ′
t on B. In fact B can be taken as any set with more than one

element. We then let c be any element of B, and define the operations F ′
t

as follows:

(A) If F ?
t (H1) is at most one-dimensional, then F ′

t (x1, . . . , xn(t)) = c.
(B) If there exist i ≤ N and a linear automorphism φ such that τ?(v) =

ηi(φ(v)) for all v (this is (66)), then F ′
t (x1, . . . , xn(t)) = xi.

It follows from Lemma 23 that condition (A) is independent of N , and
from Lemma 24 that condition (B) is independent of N .

We now prove an analog of Lemma 26, namely

Lemma 35. For any term τ , if τ?(H1) is at most one-dimensional ,
then τ ′(x) = c for any x ∈ Bω. If τ?(v) = ηi(φ(v)) for some i and some
automorphism φ, then τ ′(x) = xi for any x ∈ Bω.

P r o o f. The proof will be by induction on |τ |.
Case 1: τ = xi. Then τ? = ηi, by part (i) of the definition of τ?

(found between (56) and (57)). In other words, τ?(v) = ηi(φ(v)), with φ
the identity automorphism. In this case the lemma asserts that τ ′(x) = xi,
and indeed this holds by (6).

Case 2: τ = Ft(τ1, . . . , τn(t)). Then

τ?(v) = τ• ◦ F ?
t (v) where τ• ◦ ηi = τ?

i(67)

by (57) and (58). Lemma 34 obviously divides Case 2 into Cases 2A and
2B that follow.

Case 2A: F ?
t (H1) is at most one-dimensional. In this case F ′

t (x) = c
for all x, by clause (A) of the definition of F ′

t . It follows immediately from
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(67) that τ?(H1) is at most one-dimensional, and from (6) that τ ′(x) = c
for all x. This proves the lemma in Case 2A.

Case 2B: There exist i ≤ n(t) and a linear automorphism φ of H1 such
that F ?

t (v) = ηi(φ(v)) for all v. It follows from (67) that

τ? = τ• ◦ ηi ◦ φ = τ?
i ◦ φ.(68)

Moreover, by clause (B) of the definition, we have F ′
t (x) = xi for all x, and

hence
τ ′(x) = τ ′i(x)(69)

for all x, by (7). Lemma 34 again divides Case 2B into Cases 2B-I and 2B-II
that follow:

Case 2B-I: τ?
i (H1) is at most one-dimensional. By induction, τ ′i(x) = c

for all x. Hence τ ′(x) = c for all x, by (69). It is clear from (68) that τ?(H1)
is at most one-dimensional. This proves the lemma in Case 2B-I.

Case 2B-II: There exist j ≤ N and a linear automorphism ψ such
that τ?

i (v) = ηj(ψ(v)) for all v. By induction, τ ′i(x) = xj for all x. Hence
τ ′(x) = xj for all x, by (69). Moreover, τ? = ηj ◦ψ ◦φ, by (68). This proves
the lemma for Case 2B-II, and hence for all cases.

Completion of the proof of Part 7. We begin by establishing the hy-
pothesis of Lemma 3 (from §2). As ever, Lemma 22 defines τ? from the
homotopy type of the operation τN , and clearly Lemma 35 defines τ ′ from
τ?. All in all, we have τ ′ defined from τN , and so the hypothesis of Lemma 3
is satisfied. Thus the operations F ′

t satisfy Σ, and hence Σ is undemanding.
This completes the proof of Part 7.

8. Degrees and the Hopf invariant. For the proof, in §9, of Part 1
of Theorem 1, we will need the notion of the degree of a continuous map

F : (Sn)k → Sn.(70)

For that proof, it is enough to know that the degree is a vector of integers
(d1, . . . , dk) for which the following five facts are true:

• The degree is an invariant of the homotopy class of F .
• The degree of a constant map is (0, . . . , 0).
• The ith projection map has degree (0, . . . , 0, 1, 0, . . . , 0) with 1 in the

ith co-ordinate.
• The degree of a composite map may be calculated from a simple bi-

linear formula (see (76) below).
• If n 6= 1, 3, 7, then at most one component of the degree is odd (see

Corollary 39 below).

The first four of these points are relatively straightforward. As we shall
explain more fully, the last of them essentially contains the deep facts of
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algebraic topology that Adams developed in [1] for his celebrated result on
H-spaces. We will say a few words about the definition of the degree and
the verification of these properties, but the reader who wishes may proceed
directly to the proof in §9.

Let us use the ring of integers for R. For any continuous map

f : Sn → Sn,(71)

the functor H? yields a homomorphism of R-CGR’s

H?(f) : H?(Sn, R) → H?(Sn, R).(72)

Recalling from (48) of §7 that H?(Sn, R) has the presentation

〈a | a ∈ Hn, a
2 = 0〉,(73)

we see that [H?(f)](a) = da for some integer d. This integer d is defined to
be the degree of f . Every integer d is the degree of some map.

Now, given an operation (70) and i with 1 ≤ i ≤ k, we define an i-section
of F to be any function fi : Sn → Sn that is defined by

fi(x) = F (a1, . . . , ai−1, x, ai+1, . . . , an)(74)

for some choice of aj ∈ Sn (j 6= i). There are many different i-sections,
depending on the choice of the aj , but all are homotopic to one another
(since Sn is path-connected), and hence the degree

di = degree(fi)(75)

is a well-defined integer. We then say that the degree of F is the vector
(d1, . . . , dn).

We state without proof the following lemma for computing degrees of
composite operations. The proof requires a small amount of homological
algebra, including (54).

Lemma 36. Suppose that F : (Sn)k → Sn has degree (e1, . . . , ek), and
that Gj : (Sn)N → Sn has degree (gj

1, . . . , g
j
N ) (1 ≤ j ≤ k). Then the

composite map H : (Sn)N → Sn defined by

H(x) = F (G1(x), . . . , Gk(x))

(for x ∈ (Sn)N ) has degree (d1, . . . , dN ), where

di =
k∑

j=1

ejg
j
i .(76)

Incidentally, the categorical import of Lemma 36 is as follows. Let Cn

denote the full subcategory of topological spaces whose objects are the pow-
ers (Sn)k for k ∈ ω. For each map G : (Sn)N → (Sn)k, let D(G) denote the
N × k matrix whose ith column is the degree of Πi ◦ G (1 ≤ i ≤ k). The
lemma may then be interpreted as asserting that D is a functor from Cn to
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the category of all rectangular matrices of integers. This functor makes a
second appearance in Theorem 41 below, where the image category appears
as the abstract clone (algebraic theory) of Abelian groups.

We have now covered the first four of our essential points about the
degree. We go on to look into odd components of the degree (the fifth
point). We first note that, for n = 1, 3 or 7, the multiplication of unimodular
complex numbers, quaternions or Cayley numbers, respectively,

(x1, . . . , xk) 7→ (. . . ((x1x2)x3) . . .)xk(77)

has degree (1, . . . , 1). We will very briefly sketch the reasons why, for other
values of n, there can be at most one odd component.

Continuous maps
G : S2n+1 → Sn+1(78)

are classified according to an integral invariant Γ (G), which is known as
the Hopf invariant of G (introduced by H. Hopf in 1935 [16]). The original
definition (recapitulated in Dieudonné [9, pp. 314–317]) involved the linking
number of G−1[u] and G−1[v] for u, v ∈ Sn+1. An alternate definition may
be found in Steenrod [34, p. 12]. See also, e.g., Novikov [30, p. 207], Hu [17,
p. 326], Whitehead [45, p. 494]. For a comparison of the various available
definitions, see Hu [17, pp. 334–335]. The two significant facts relating this
invariant to our work are stated in the next lemma and theorem.

Lemma 37. For any binary operation F : Sn × Sn → Sn, there is a
mapping G as in (78) such that

Γ (G) = ±d1d2,(79)

where (d1, d2) is the degree of F .

Theorem 38. If G as in (78) has odd Hopf invariant , then n=1, 3 or 7.

It should be apparent to the reader that this lemma and theorem imme-
diately entail the result of Adams mentioned at the outset, that if n 6= 1, 3, 7,
there is no Hopf-algebra structure (Equation (1)) definable on Sn. We shall
soon see that they are also adequate to entail Part 1.

Lemma 37 is due originally to H. Hopf [16]; his proof is recapitulated on
page 319 of Dieudonné [9]. The result is stated without proof in Novikov
[30, p. 194]. For a short proof see also page 13 of Steenrod [34].

As for Theorem 38, its hypotheses cannot hold for even n (those Hopf
invariants are zero), and so the theorem is trivial for even n. In 1950,
G. W. Whitehead proved it for all n ≡ 1 (mod 4). Using relations between
Steenrod squares, J. Adem proved it around 1956 [3] for all n not equal
to 2k − 1 for some k. H. Toda proved n = 15 as a special case. The final
step was the hardest: in 1958, using secondary cohomology operations, J. F.
Adams proved it for all remaining 2k−1. A nice recapitulation of the proofs
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is in Dieudonné [9, pp. 549–551]. Adams’ proof was greatly simplified using
K-theory by Adams and Atiyah [2] in 1966.

Corollary 39. If n 6= 1, 3, 7, and

F : (Sn)k → Sn(80)

is a continuous k-ary operation of degree (d1, . . . , dn), then at most one di

is odd.

P r o o f. Contrapositively, we will assume that two di are odd, and work
to prove that n = 1, 3 or 7. Without loss of generality, suppose that d1 and
d2 are odd. Choose a2, a3, . . . , an−1 ∈ Sn and define H : Sn × Sn → Sn

via

H(x1, x2) = F (x1, x2, a3, . . . , an−1).

Clearly H has degree (d1, d2), and hence by Lemma 37, there exists G :
S2n+1 → Sn+1 of Hopf invariant ±d1d2, which is odd. Theorem 38 tells us
immediately that n = 1, 3 or 7.

9. The proof of Part 1 of Theorem 1. As in previous proofs, we are
given continuous operations F t : (Sn)n(t) → Sn such that (Sn, F t)t∈T |= Σ
up to homotopy, and we need to construct operations F ′

t modeling Σ, each
a constant or a projection.

Definition of the operations F ′
t . We now define the set B and the op-

erations F ′
t on B. In fact B can be taken as any set with more than one

element. We then let c be any element of B, and define the operations F ′
t

as follows:

(A) If the degree of F t is (d1,. . . , dn(t)) with each di even, then F ′
t (x1,. . . ,

xn(t)) = c.

(B) If di is odd, then F ′
t (x1, . . . , xn(t)) = xi.

(Of course, in clause (B), only one di can be odd, by Corollary 39 above.)
As in §5, we use Equations (6) and (7) to create an associated interpre-

tation τ ′ for any term τ . As we remarked before, to complete the proof of
Part 1 we need only establish that (B,F ′

t )t∈T |= Σ.

In the next lemma, τ is any term in the language ofΣ, andN is a positive
integer chosen large enough that i < n for all variables xi appearing in τ .
As was said in remarks following (8), τN is the continuous N -ary operation
on Sn that is defined by (6)–(8). The proof is like proofs that have come
before, and hence left to the reader. (It is an inductive argument that
seems to require a straightforward division into cases. The first four points
at the start of §8 will be useful for some of the cases. For example, for τ a
composite term, one needs Lemma 36 to calculate the degree of τN .)
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Lemma 40. For any term τ , if the degree of τN is (d1, . . . , dN ) with each
di even, then τ ′(x) = c for any x ∈ Bω. If some di is odd , then τ ′(x) = xi

for any x ∈ Bω.

Completion of the proof of Part 1. Lemma 40 immediately yields a
construction of τ ′ from the homotopy class of the operation τN . Hence, by
Lemma 3, the operations F ′

t satisfy Σ, and the theorem is proved.

10. A sketch of the proof of Theorem 2. We consider only the
case where A is Bq, and the fundamental group G = Πb(B) is free on k
generators (2 ≤ k < ω). Then the fundamental group Πa(A) ∼= Gq, a qth
power of the free group G.

Thus for each t∈ T , the homomorphism F ?
t :Πa(A)n(t)→ΠF t(a,...,a)(A)

takes the form of a homomorphism

F ?
t : Gqn → Gq.

Now for 1 ≤ j ≤ q, the composite homomorphism

jF
?
t = Gqn F ?

t→ Gq πj→ G

is a homomorphism to which we can apply Lemma 13. Either

(i) jF
?
t fails to be onto, or

(ii) jF
?
t (x1, . . . , xqn) = φ(xi) for some i with 1 ≤ i ≤ qn, and for some

automorphism φ of G.

We now define operations F ′
t on C = Dq, of the type required for q-

undemanding, as follows. First choose an element d ∈ D. Then define
F ′

t : Dqn → D in terms of its component mappings

jF
′
t = Dqn F ′

t→ Dq πj→ D,

namely, if (i) holds, then jF
′
t should be a constant map with value d; if (ii)

holds, then jF
′
t should be the ith projection function.

The proof now proceeds in the manner of the proof of Part 2 (in §5).
One needs to prove inductively, for every component of every term, that
a failure to be onto ((i) above) corresponds to a constant value of that
component, and that condition (ii) above corresponds in a similar way to
an ith coordinate projection. We omit the details.

11. Final remarks and problems. One overall difficulty with the
subject of topological algebra is the scarcity of examples. From this per-
spective, Theorem 1 is somewhat discouraging, making it seem harder than
ever for us to discover new and interesting examples. Some possibilities of
examples can be seen in §11.4 below.
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11.1. Generalizations and extensions. We have omitted some obvious
generalizations. E.g. the surface of genus k for k > 2, various one-point
joins of three or more spheres (of varying dimensions), and so on. In many
cases such generalizations should be pretty straightforward. More generally,
it would be an interesting study in CGR’s to find the best possible common
generalization of Lemmas 25, 28, 30, 32 and 34 (and of the technical Lemmas
17 and 19 on which they rely). Such endeavors might yield the best possible
extension of our cohomological method.

Likewise, it would be a valuable project to find extensions of the group-
theoretic results in §4, in order to extend the homotopy-theoretic proofs of
§5 in the best possible way.

11.2. Our results, interpreted in clone theory. For some more general
remarks, it will be useful to speak in the context of the clone C(A) which
is described in [39] and [40]. C(A) is the clone whose elements are the
continuous operations on A, and whose operations are formed in the usual
way by substituting n continuous m-ary operations F 1, . . . , Fn into a single
n-ary operation G to form a single m-ary operation H. In other words

H(x1, . . . , xm) = F (G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm)).(81)

(Another designation of this object—in the school of F. W. Lawvere [19],
[20]; see also [46] or the appendix to [36]—is the algebraic theory of A in the
category of spaces and continuous maps.)

We have avoided speaking of C(A), since the results proved here can in
fact be stated and proved without any very complex categorical machinery.
Nevertheless, those familiar with C(A) will recognize that each part of The-
orem 1 is tantamount to the existence of a clone homomorphism F 7→ F ′

from C(A) to the clone (13) of a trite algebra.
To see this, we let A be any of the spaces described in Theorem 1. We

let F t (t ∈ T ) be an indexed collection of all continuous operations on A.
Every time (81) holds for some operations H, F , G1, . . . , Gn among the
collection of operations Ft, we include the formal equation

H(x1, . . . , xm) ≈ F (G1(x1, . . . , xm), . . . , Gn(x1, . . . , xm))(82)

in Σ, and we let Σ consist precisely of all Equations (82). Clearly (81) tells
us that the continuous operations F t model Σ, and hence A is compatible
with Σ. Hence any part of Theorem 1 will tell us that Σ is undemanding.
In other words, there are operations F ′

t (t ∈ T ) satisfying Σ such that

H ′(x1, . . . , xm) = F ′(G′
1(x1, . . . , xm), . . . , G′

n(x1, . . . , xm))(83)

(13) Among clones with a constant, this one is the smallest (in the sense of
§11.3 below). S. /Swierczkowski showed that it is not completely meet-irreducible
in the lattice of §11.3 (reported in [24]).
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holds whenever (82) holds; which is to say, whenever (81) holds. In other
words, (81) implies (83), and so F 7→ F ′ is a clone homomorphism.

In fact, since Theorem 1 assumes only satisfaction up to homotopy, we
easily see that we really have a homomorphism from the clone of homotopy
classes of continuous operations on A to the clone of a trite algebra.

As an aside, we mention that an operad (see [21]) is like a clone in com-
prising maps An → A and operators that act on tuples of maps. (In this
case, one has all permutations of variables and a sort of distinct-variable
composition of operations.) For discriminating classes defined by equations
Σ, the operad is a coarser instrument than the clone (see [21, page 16]).
Nevertheless, there is a large body of results linking operads to algebraic
topology, and so there might be some payoff to investigation of operads
in the context of this paper. (Thanks to the referee for pointing to oper-
ads.)

11.3. The lattice of interpretability. The existence of the homomorphism
F 7→ F ′ (in §11.2) tells us that A lies as low as possible in the lattice of
varietal interpretation L, which was introduced by W. D. Neumann in [28],
and later described in more detail by Garćıa and Taylor in [12]. (There is
also a brief description in [40]. For some sidelights on the theory of this
lattice, see Mycielski and Taylor [27].)

Now obviously, there exist spaces A such that no retraction F 7→ F ′

exists. This is of course the case when any demanding Σ is satisfiable on
A, for instance, if A is the underlying space of a topological group. In this
case, we wonder if, in some cases, we could find a concrete interpretation
of Σ onto which one can retract C(A). In other words, we would like to
know theorems of the following type for a specific space A, and a specific
demanding Σ: Σ can be continuously modeled on A, and moreover the clone
of all operations on A retracts onto the operations that model Σ. Another
way to say this would be that Σ and C(A) have exactly the same location
in the lattice L.

Actually we know three kinds of space A for which we can prove a result
of the desired kind: the qth-power spaces of Theorem 2, the circle S1 (see
Theorems 41 and 42 below), and the solenoid (see Theorems 45 and 46
below).

As for the qth-power spaces of Theorem 2, we leave it to the reader
that the corresponding Σ is the set of all operations of the type required
for q-undemanding, together with the equations that hold among them.
For S1 and the solenoid, we prove some theorems that are relatively easy
extensions of the material that we already have. The first result is true
for any n, but of course we already knew something stronger (Part 1) for
n 6= 1, 3, 7.
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Theorem 41. The abstract clone C(Sn) lies below the theory of Abelian
groups in the interpretability lattice. The same is true of the homotopy
quotient of C(Sn).

P r o o f. Suppose F : (Sn)k → Sn is a k-ary operation. Let its degree
(as defined in §8) be (e1, . . . , ek). Now define

Φ(F ) = e1x1 + . . .+ ekxk;(84)

in other words, Φ(F ) is the Abelian-group term appearing on the right-hand
side of (84). (More properly, one should restore the parentheses that are
obviously missing from (84), and then consider the equivalence class of this
term, modulo the theory of Abelian groups.)

Now to see that Φ respects the formation of composite operations, we
suppose that Gj : (Sn)N → Sn has degree (gj

1, . . . , g
j
N ) (1 ≤ j ≤ k). Ap-

propriate applications of (84) tell us that

Φ(Gj) = gj
1x1 + . . .+ gj

NxN

(1 ≤ j ≤ k). Substituting these equations into (84) yields

Φ(F )(Φ(G1), . . . , Φ(Gk)) =
N∑

i=1

( k∑
j=1

gj
i ej

)
xi.(85)

According to Lemma 36, the coefficients of the variables xi appearing on
the right-hand side of (85) are precisely the degrees of the composite map
H : (Sn)N → Sn defined by

H(x) = F (G1(x), . . . , Gk(x)).

Therefore, the term appearing on the right-hand side of (85) is Φ(H). There-
fore Φ respects the formation of composite operations, and the theorem is
proved.

On the other hand, when n = 1, the reverse inequality is immediate since
(by multiplication of complex numbers of unit modulus) S1 is an Abelian
group:

Theorem 42. In the interpretability lattice, the abstract clone C(S1)
lies above the theory of Abelian groups.

Now Theorems 41 and 42 tell us that the abstract clone C(S1), and its
homotopy quotient, are both precisely the same as the theory of Abelian
groups, as far as the interpretability lattice is concerned.

As for the spheres S3 and S7, we do not know their position in the lattice,
except that they lie below Abelian groups, by Theorem 41. By James [18],
these two spheres cannot be Abelian groups, even up to homotopy, and
hence they lie strictly below Abelian groups.
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For another example of this kind of equality, we consider the case of
solenoids. For the sake of definiteness, we will consider the so-called dyadic
solenoid. This space is most simply defined to be the closed, hence compact,
subset S2 of the infinite product

(S1)ω = S1 × S1 × . . .

defined by

S2 = {x ∈ (S1)ω : x0 = 2x1; x1 = 2x2; x2 = 2x3; . . .}.(86)

(Obviously, the definition is easily modified to form other solenoids by
changing the multipliers: x0 = n1x1, x1 = n2x2, and so on.)

We will analyze this space with the Čech cohomology Ȟ?(S2). Much
of what we said about ordinary cohomology in §6.3 holds true for Čech
cohomology—Ȟ? is a functor from spaces into graded R-modules. For sub-
tle spaces like the dyadic solenoid, Čech cohomology can differ from the
ordinary cohomologies (such as the singular cohomology) that are described
in §6.3. In particular H?(S2) is zero, while Ȟ?(S2) is not (see Lemma 43
below). A version of the Künneth formula (Theorem 21) holds for Čech
cohomology with integer coefficients—see Spanier [33, Chapter 6, Exercise
E5, page 360].

Obviously we need integer coefficients for the following lemma: a field
would yield too much divisibility.

Lemma 43. In dimension 1, the Čech cohomology of the dyadic solenoid ,
Ȟ?(S2), is isomorphic (as an Abelian group) to the group of rational num-
bers (under addition) with universe

Z(2) = {m/2k : m, k ∈ Z, k ≥ 0}.
P r o o f. This is essentially Exercise 5 on page 444 of Munkres [26]. That

exercise contains an interesting alternate description of the dyadic solenoid
as the intersection of a nested sequence of polyhedra. Then Theorem 73.4
on page 440 of [26] yields the Čech cohomology as the direct limit of the
sequence

Z → Z → Z → . . .

with each arrow indicating multiplication by 2. Up to isomorphism, this
limit is clearly the group Z(2) described above.

We omit the proof of the following easy lemma.

Lemma 44. If φ : Z(2) → Z(2) is a group homomorphism, then there
exists a rational α, with denominator a power of 2, such that φ(x) = αx
for all x ∈ Z(2).

Let us note that, as a set of rational numbers, Z(2) is closed under
multiplication as well as addition, and hence is a ring. Hence we may speak
of Z(2)-modules. Here is a result analogous to Theorem 41 above.
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Theorem 45. The abstract clone C(S2) lies below the theory of Z(2)-
modules in the interpretability lattice. The same is true of the homotopy
quotient of C(S2).

P r o o f. Suppose F : (S2)k → S2 is a k-ary operation. In the usual way,
it defines a group homomorphism

F̌ ? : Ȟ?(S2) → Ȟ?(S2)⊗ . . .⊗ Ȟ?(S2),

which in dimension 1 is a group homomorphism

F̌ ? : Z(2) → Z(2) ⊗ . . .⊗ Z(2).

As usual, we let
ei = ηi(e) = 1⊗ . . .⊗ e⊗ . . .⊗ 1,

where 1 is the generator of Ȟ0(S2), e denotes the unit element of Z(2) =
Ȟ1(S2), and the e appears in the ith of k tensor-factors. From Lemma 44
it is not hard to determine that

F̌ ?(e) = α1e1 + . . .+ αkek

for scalars α1, . . . , αk ∈ Z(2). Now as in the proof of Theorem 41 above, we
define

Φ(F ) = α1x1 + . . .+ αkxk,

which may be regarded as a k-ary operation in the theory of Z(2)-modules.
We leave to the reader the job of proving that Φ respects the formation of
composite operations.

Theorem 46. The abstract clone C(S2) lies above the theory of Z(2)-
modules in the interpretability lattice.

P r o o f. By its very definition (86), S2 is a topological subgroup of
(S1)ω. To complete the proof, we need, in essence, to define division by 2 in
a continuous way. Taking the representation of S2 given in (86), we simply
define

θ(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

This θ is clearly continuous, and moreover, it is apparent from the defining
equations appearing in (86) that 2θ(x) = x for all x ∈ S2.

Now Theorems 45 and 46 tell us that the abstract clone C(S2), and its
homotopy quotient, are precisely the same as the theory of Z(2)-modules,
as far as the interpretability lattice is concerned.

Of course, we already represented the theory of Abelian groups with
C(S1) in Theorems 41 and 42, and so Theorems 45 and 46 would be redun-
dant if Abelian group theory and the theory of Z(2)-modules happened to
occupy the same spot in the interpretability lattice. In fact, as is pointed
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out in [25], this would be true only if there were a unit-preserving ring-
homomorphism from Z(2) to Z. Obviously there is no such homomorphism,
and so in fact Z(2)-modules are strictly higher in the lattice.

11.4. A construction for topological algebras. Suppose that A is a space
that can continuously satisfy only undemanding Σ (such as the spaces of
Theorem 1), and that B is the Σ-free algebra on A, with the Świerczkowski
topology [35] (or a related topology—see [37], [4] or [7]). By construction,
B is compatible with Σ; but one might suppose that there are no further
compatibilities beyond those that follow from this one. More formally, the
author asked in 1986 [39, page 38] whether the operations of C(B) will
retract onto operations satisfying Σ.

In fact, even at that time, a negative answer was available in the litera-
ture. For n a fixed natural number ≥ 2, let F be an n-ary operation symbol.
The equations

F (x1, . . . , xn) ≈ F (xσ(1), . . . , xσ(n)),(87)
F (x, . . . , x) ≈ x(88)

(with σ ranging over all permutations of {1, . . . , n}) define the variety of
n-means. In 1963, Eckmann, Ganea and Hilton [10] proved that if the
space B is a CW-complex that admits a continuous n-mean (i.e., if B is
compatible with Equations (87)–(88)), thenB is an H-space up to homotopy,
i.e. satisfies (1) with equality replaced by homotopy. We now let B be the
Σ-free algebra over A, for Σ the theory of n-means, and let A be one of
the spaces of Theorem 1. According to Bateson [4], B is a CW-complex,
and hence the Eckmann–Ganea–Hilton result applies, and so B admits a
continuous n-mean. But H-space operations do not retract onto n-mean
operations (as the reader may check), and hence the answer to the original
question is negative in general. (At least from the homotopy point of view.)

Nevertheless, the material of this paper gives some hope for obtaining a
positive answer in some special cases: at least there are now simple spaces
A for which one can begin to consider the free Σ-algebra on A. This makes
it possible to begin some further research in this direction.

11.5. Compatibility and H-spaces

Problem. Does condition (i) below imply condition (ii) for every topo-
logical space A?

(i) A is compatible with some Σ that is not q-undemanding for any q.
(For q-undemanding, see before the statement of Theorem 2 in §2.)

(ii) A admits the structure of an H-space (Equations (1)) up to homo-
topy.

Certainly the weakened form of (i),

(i′) A is compatible with some demanding Σ,



238 W. Taylor

is not strong enough in general to imply (ii). For example, Equation (17) of
§2 is demanding, but is compatible with spaces (such as the square of the
figure-eight) that cannot be H-spaces, not even up to homotopy. On the
other hand, there are several special cases where (i′) is known to imply (ii):

• If A is a suspension and Σ is idempotent [38, Theorem 3.1].
• If A is a CW-complex and Σ defines n-means (as in (87)–(88)).
• If A is a CW-complex and Σ is either congruence-modular or congru-

ence-k-permutable for some k [38, Theorem 6.1].

Theorem 1 supplies a certain evidence for the supposition that (i) might
imply (ii); or at least, it eliminates some possible counterexamples. The
spaces A studied in those theorems were known to satisfy the negation of
(ii). (That, in fact, was our motivation for studying them in this context.)
Our results say, of course, that for each suchA we also have a strong negation
of (i), namely that every Σ compatible with A is undemanding.

If there is any hope of creating a space satisfying (i) but failing to satisfy
(ii), then the method of the Świerczkowski topology, outlined in §11.4 above,
might be one place to look. If Σ is demanding and A is not an H-space, why
should we expect F in general to be an H-space, where F is the (suitably
topologized) Σ-free algebra over A?

11.6. Compatibility and commutativity of homotopy

Problem. Does Condition (i) of §11.5 imply

(iii) A has commutative fundamental group?

As is well known, condition (ii) of §11.5 implies (iii), and hence an affirmative
solution to the Problem in §11.5 would imply a positive solution to the
problem stated here. Moreover, much as before, condition (i′) of §11.5 does
not imply (iii). (Equation (17) of §2 is demanding, and also compatible with
spaces (such as the square of the figure-eight) that have non-commutative
fundamental group.)

We know that (i′) implies (iii) when Σ is idempotent [37, Theorem 5.1],
but such a result is unknown for (i′)⇒(ii).
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[35] S. Świerczkowski, Topologies in free algebras, Proc. London Math. Soc. (3)
14 (1964), 566–576.

[36] W. Taylor, Characterizing Mal’cev conditions, Algebra Universalis 3 (1973),
351–397.

[37] —, Varieties obeying homotopy laws, Canad. J. Math. 29 (1977), 498–527.
[38] —, Laws obeyed by topological algebras—extending results of Hopf and Adams,
J. Pure Appl. Algebra 21 (1981), 75–98.

[39] —, The Clone of a Topological Space, Res. Exp. Math. 13, Heldermann, 1986.
[40] —, Abstract clone theory , in: Algebras and Orders (Montreal, 1991), I. G.
Rosenberg and G. Sabidussi (eds.), Kluwer, 1993, 507–530.
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