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Open maps between Knaster continua

by

Carl Eb e r ha r t, J. B. Fuga t e

and Shannon Schumann (Lexington, KY)

Abstract. We investigate the set of open maps from one Knaster continuum to
another. A structure theorem for the semigroup of open induced maps on a Knaster
continuum is obtained. Homeomorphisms which are not induced are constructed, and
it is shown that the induced open maps are dense in the space of open maps between
two Knaster continua. Results about the structure of the semigroup of open maps on a
Knaster continuum are obtained and two questions about the structure are posed.

1. Introduction. Following the notation of J. W. Rogers [10], for each
positive integer n let wn : I = [0, 1] → I denote the mapping which is 0 at
i/n for i even, 1 at i/n for i odd, and linear in between, that is,

wn(x) =

{

nx− i if i is even and 0 ≤ i/n ≤ x ≤ (i + 1)/n ≤ 1,
i + 1− nx if i is odd and 0 < i/n ≤ x ≤ (i + 1)/n ≤ 1.

The map wn is called the standard map of degree n, and the set of all
the maps wn is denoted by W. As noted in [6], the composition wnwm of
two standard maps is the standard map wmn, and so W is a semigroup of
mappings on I which is naturally isomorphic to the multiplicative semigroup
of positive integers under the function wn 7→ deg(wn) = n.

If π is any sequence of positive integers and Kπ denotes the inverse limit
lim←−{Ik, πk+1

k }, where Ik = I and πk+1
k = wπ(k), then Kπ is an indecompos-

able continuum (compact connected metric space) except in the case when
π(i) = 1 for all but finitely many i (cf. [9]).

If the sequence π is a constant sequence π(k) = n, then we denote Kπ

by Kn. The continuum K2 is the well-known “bucket handle” described in
the 1920’s by B. Knaster as an intersection of disks in the plane. We refer
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to Kπ as a Knaster continuum and denote the set of all homeomorphism
classes of Knaster continua by K.

Knaster continua have been studied by many authors, including Ro-
gers [10] and W. Ḑebski [6].

In [10], Rogers shows that each indecomposable metric continuum can
be mapped continuously onto any Knaster continuum, and that any inverse
limit lim←−{Ii, f

i+1
i } is (homeomorphic to) a Knaster continuum if each map

f i+1
i is a limit of open maps in the sup metric.

In [6], Ḑebski provides a complete classification of Knaster continua and
shows that there are uncountably many topologically different Knaster con-
tinua.

In the present paper, we investigate the structure of the open mappings
between Knaster continua. If π and ̺ are sequences of primes, then Oπ

̺

denotes the set, possibly empty, of all open mappings f : Kπ → K̺. In
case π = ̺, Oπ

π will be written Oπ. This last set forms a semigroup under
composition of functions, since the composition of open maps is open.

Let P be the set of primes and ω = {0, 1, . . . ,∞} the set of countable
cardinals.

Every sequence π of primes has associated with it an occurrence function

occπ : P→ ω

whose value at a prime p is the number of occurrences of p in the sequence π.
Since π is an infinite sequence of primes, either occπ(p) must be ∞ for

at least one prime p or occπ(p) must be nonzero for infinitely many primes
p. Conversely, given a function τ : P → ω such that τ(p) = ∞ for some
prime p or τ(p) > 0 for infinitely many primes p, we can arrange a sequence
π of primes such that occπ = τ .

The semigroup of open mappings on the interval is described in Section 2.
The structure we find in this semigroup is a key to unlocking the structure
of the open induced maps between Knaster continua, which we describe in
Section 3.

A map f : Kπ → K̺ is said to be an induced map provided that there
is an increasing sequence of subscripts ik and maps fk : Iik

→ Ik so that
̺kf = fkπik

for each k = 1, 2, . . . The sequence is called a defining sequence

of coordinate maps for f . The set of open induced maps from Kπ to K̺ is
denoted by OIπ

̺ . In the case π = ̺, write OIπ
̺ = OIπ.

We show that the composition of open induced maps is an open induced
map whenever the composition is defined. So the set OIπ is a subsemigroup
of the semigroup Oπ.

We show that an open induced map is determined by any one of its
coordinate maps. We obtain a structure theorem for the semigroup OIπ

which expresses it as a semidirect product of some of its subsemigroups.
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In Section 4, we show how to construct homeomorphisms of Knaster
continua which are not induced, and prove that each open mapping between
Knaster continua is the uniform limit of open induced mappings.

Before the open maps between Kπ and K̺ can be analyzed, we need to
look carefully at the open self-maps on I.

2. The semigroup of open maps on I. Let O denote the semigroup
of open maps from I to I under composition. We call an element f of O
order preserving provided that f(0) = 0 and denote the set of all these by
O+. Then O+ is clearly a subsemigroup of the semigroup O.

The following theorem is proved in [10].

2.1. Theorem. For each f ∈ O, f : I → I is a surjection. Further ,
there is a uniquely determined strictly increasing sequence ai, i = 0, . . . , n,
with a0 = 0, an = 1, such that the restriction of f to [ai, ai+1] is a homeo-

morphism into I, for each i = 0, . . . , n− 1.

The degree deg(f) of an open mapping f is defined to be the n that
satisfies the above theorem.

Let H (resp. H+) denote the group of homeomorphisms (resp. order
preserving homeomorphisms) of I. Then H is the group of units of O and
H+ = H ∩O+ is the group of units of O+.

Denote by α the homeomorphism x 7→ 1 − x on I. Then α2 = w1, the
identity map on I.

2.2. Lemma. Let 1 denote the constant function x 7→ 1 on I. Then for

any positive integer n,

(i) 1− wn = αwn 6= wnα = wn when n is even, and

(ii) 1− wn = αwn = wnα 6= wn when n is odd.

The next lemma is found in [10].

2.3. Lemma. If f : I → I is a continuous function and ai, i = 0, . . . , n, is

an increasing sequence in I on which the values of f alternate between 0 and

1, then there is a continuous function g such that wng = f . Furthermore, if

a0 = 0 = f(a0), an = 1, and the restriction of f to each interval [ai, ai+1]
is 1-1, then g is an order preserving homeomorphism of I.

If h ∈ H+ and wn ∈ W, then f = hwn ∈ O
+ and deg(f) = n, so the

graph of the map g defined in Rogers’ Lemma 2.3 to satisfy hwn = wng is
seen to be the union of n scaled copies of the graph of h (see Figure 1).

So it is reasonable to call g a multiple of h by n and to denote g by nh.
Also, we will denote h by 1

ng. Note that while nh always exists, 1
nh only

does when there is a homeomorphism k such that nk = h. This notation is
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Fig. 1

useful for stating the rule for multiplication in O, in the Structure Theorem
below.

2.4. Structure Theorem for O. Each f ∈ O can be written uniquely

as a product f = αiwnh, where i = f(0) ∈ Z2, deg(f) = n, and h is in H+.

Furthermore, the rule for multiplication in O is given by

(αiwnh)(αjwmg) = αi+njwnmm(αjhαj)g.

P r o o f. Case 1: f is order-preserving. Since f(0) = 0, f is open,
and deg(f) = n, we know by Theorem 2.1 that there are numbers ai with
a0 = 0 < a1 < . . . < an = 1 such that f(ai) = 0 if i is even, f(ai) = 1 if i is
odd, and f is a homeomorphism on each subinterval [ai, ai+1]. In particular,
if x 6∈ {a0, a1, . . . , an}, then f(x) ∈ (0, 1). By Lemma 2.3, at least one map
h exists.

To show that h is unique, suppose h′ 6= h is also such a map. Then,
since f(ai) = wn(h(ai)) = wn(h′(ai)) and f(ai) ∈ {0, 1} for each i, we
conclude that h and h′ map {a0, . . . , an} into w−1

n ({0, 1}) = {0, 1/n, . . . , 1}.
Furthermore, since h and h′ are one-to-one and order preserving, we know
that h(ai) = i/n = h′(ai) for each i. Since h 6= h′, there exist i and x such
that ai < x < ai+1 and h(x) 6= h′(x). Then, since wn(h(x)) = wn(h′(x)),
it follows that there is a turning point p of wn between h(x) and h′(x).
Without loss of generality, we may assume that h(x) < p < h′(x). But h
and h′ are order preserving, so i/n = h(ai) < h(x) < p < h′(x) < h′(ai+1) =
(i + 1)/n. Hence p cannot be a turning point of wn, since i/n and (i + 1)/n
are consecutive turning points of wn.
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Case 2: f is order reversing. Since f(0) = 1, note that α(f(0)) = 0, so
Case 1 applies to αf to factor αf = wnh uniquely. This yields f = ααf =
αf(0)wnh.

To prove that the factorization is unique, suppose that f = αjwmg, with
g ∈ H+. Then i = f(0) = αj(wm(g(0))) = αj(wm(0)) = αj(0) = j. Hence
wmg = wnh, so m = deg(wmg) = deg(wnh) = n. Finally, by Case 1, h = g.

To verify the rule for multiplication, note that

(αiwnh)(αjwmg) = αiwn(αjαj)hαjwmg = (αiwnαj)(αjhαjwm)g.

Now in the second factor αjhαjwm of the last expression, αjhαj is in H+,
so by Case 1,

(αiwnαj)(αjhαjwm)g = (αiwnαj)wm(m(αjhαj))g.

Each of the last two factors above, m(αjhαj) and g, is in H+ so their
composition is in H+. Further, using Lemma 2.2, and taking the cases
j = 0, 1 and n even or odd, we can write αiwnαj = αi+njwn. Hence

(αiwnαj)wm(m(αjhαj))g = α(i+nj)wnmm(αjhαj)g.

This establishes the rule for multiplication.

The following corollary is immediate.

2.5. Corollary. The function deg : O → Z+ is a homomorphism of

the semigroup of open self-maps of I to the semigroup of positive integers

under multiplication.

The next result establishes cancellation properties for O.

2.6. Lemma. Suppose that f , g, and g′ are in O. Then:

(1) If deg(f) is odd and fg = fg′, then g = g′.
(2) If deg(f) is even, fg = fg′, and both g and g′ are order preserving

or both are order reversing , then g = g′.
(3) If gf = g′f , then g = g′.

P r o o f. Whether the assumption is fg = fg′ or gf = g′f , it follows by
Corollary 2.5 that deg(g) = deg(g′). By the Structure Theorem 2.4, there
are nonnegative integers m,n, i, j, l and homeomorphisms h, k, and k′ in H+

so that f = wmαih, g = wnαjk, and g′ = wnαlk′.
Invoking the multiplication rule from Theorem 2.4, we have

(∗∗) αi+mjwmnn(αjhαj)k = fg = fg′ = αi+mlwmnn(αlhαl)k′.

Thus, by the uniqueness, (i + mj) mod 2=(i + ml) mod 2, hence mj mod 2
= ml mod 2.

(1) If m is odd, then j = l and (∗∗) becomes

(∗∗) αi+mjwmnn(αjhαj)k = fg = fg′ = αi+mjwmnn(αjhαj)k′.
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Now we conclude from uniqueness that n(αjhαj)k = n(αjhαj)k′. Since
n(αjhαj) is a homeomorphism, k = k′. So g = αjwnk = αkwnk′ = g′.

(2) If m is even, and g and g′ are both order preserving or both order
reversing, then j = l = 0 or j = l = 1. In either case j = l and so we see
from (∗∗) that wmnn(αjhαj)k = wmnn(αjhαj)k′. As before, we get g = g′.

(3) The argument proceeds similarly to the above, except that no cases
are needed.

A semigroup S is left cancellative provided that for all x, y, z ∈ S, xy =
xz implies y = z. Right cancellative semigroups are defined similarly. S is
cancellative if it is both left and right cancellative.

2.7. Corollary. The semigroup O+ is cancellative. The semigroup O
is right cancellative, but not left cancellative.

P r o o f. Lemma 2.6 shows that O+ is cancellative, and O is right can-
cellative. To see that O is not cancellative, note that w2α = w2, but α is
not the identity.

Generally speaking, a cancellative semigroup need not be embeddable
into a group [4]. However, we show in Corollary 3.12 that there is a Knaster
continuum whose group of homeomorphisms contains a naturally embedded
copy of O+.

The semigroup O is also noncommutative, although the subsemigroup of
standard maps W is commutative. In fact, we have the following theorem.

2.8. Theorem. An open mapping f : I → I is a standard open mapping

if and only if it commutes with w2.

P r o o f. Suppose fw2 = w2f . Then f(0) = f(w2(0)) = w2(f(0)) = 0,
since f(0) ∈ {0, 1}. Thus by Theorem 2.4, f = wmh, where deg(f) = m
and h ∈ H+. Using the rule for multiplication in Theorem 2.4, we see that
w2mh = w2f = fw2 = w2m(2h). So by the uniqueness, we have h = 2h.
But then h = limn→∞ 2nh = w1.

2.9. Corollary. The semigroup W is a maximal commutative subsemi-

group of O.

P r o o f. Any f ∈ O which commutes with each standard map must be
a standard map by the above theorem.

3. Open induced maps between Knaster continua. Recall that
a map f : Kπ → K̺ is induced by the sequence of indices ik and maps
fk : Iik

→ Ik if ̺kf = fkπk for all positive integers k. This means that in
Figure 2, the trapezoid with sides fk and f commutes and the trapezoid with
sides fl and f commutes. It follows from this definition that for each k, l with
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k < l, the trapezoid with sides fk and fl commutes, that is, ̺l
kfl = fkπil

ik
.

To see this, note first that

fkπil

ik
πil

= fkπil
= ̺kf = ̺l

k̺lf = ̺l
kflπil

.

But πil
is a surjection and so can be cancelled on the right to establish the

claim.

Iik
Iil Kπ

Ik Il Iik
Iil

K̺

fk

wwooooooooooooo π
il
ikoo

fl

wwooooooooooooo � � � � � � � � � � � � �
f

��

"# πik

��

̺l
koo � � � � � � � � � � � � � ̺

il
ikoo � � � � � � � � � � � � �! 

̺k

OO

Fig. 2. f is induced by the sequences ik and fk

3.1. Lemma. A map f : Kπ → K̺, induced by sequences ik and fk, is

open if and only if all of the maps fk are open.

P r o o f. Suppose f is open. Since all of the bonding maps ̺i
j are open,

the projections ̺k are open. So ̺kf is open for each k. But ̺kf = fkπik

and since πik
is open, it follows that fk is open for all k.

Now suppose all of the maps fk are open. Let U be a basic open set
in Kπ. Then there is a natural number ij and an open set V ⊂ Iij

such

that U = π−1
ij

(V ). We claim that f(U) = ̺−1
j fjπij

(U) = ̺−1
j fj(V ), which

is clearly open in K̺.

Indeed suppose that y ∈ f(U), i.e. there is a point x ∈ U such that
f(x) = y. Then ̺jf(x) = fjπij

(x), by the definition of f , so y = f(x) ∈

̺−1
j fjπij

(U). Now suppose that y ∈ ̺−1
j fjπij

(U). We construct a point
x ∈ U such that f(x) = y. For each k, let yk = ̺k(y). Now for each k > j,
we claim the following two statements are true:

(1) π−1
ik

f−1
k (yk) is closed in Kπ.

(2) If k > n, then π−1
ik

f−1
k (yk) ⊂ π−1

in
f−1

n (yn).

The first one is easy to see, since the set in question is the continuous
preimage of a singleton, which is closed in Ik.

To see the second one, suppose that p ∈ π−1
ik

f−1
k (yk). Then fkπik

(p) =

yk. Next, fnπin

ik
πik

(p) = ̺n
kfkπik

(p). But this yields fnπin
(p) = ̺n

k(yk) = yn,

so p ∈ π−1
in

f−1
n (yn).

Since (1) and (2) hold, we know that the set
⋂

k>j π−1
ik

f−1
k (yk) is non-

empty and contains some point x. For each k > j, ̺kf(x) = fkπik(x).
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Since x ∈ π−1
ik

f−1
k (yk), we know that fkπik

(x) = yk. Also, for each k < j,

̺kf(x) = fkπik
(x) = ̺k

j fjπij
(x) = ̺k

j (yj) = yk, so f(x) = y.

Kπ is said to be an even Knaster continuum if occπ(2) = ∞, otherwise
it is an odd Knaster continuum.

In order to simplify matters we will require that, when choosing a repre-
sentative K̺ of an odd Knaster continuum, the sequence ̺ contains no 2’s
at all, i.e., occπ(2) = 0.

3.2. Lemma. If a sequence ik of indices and maps fk : Iik
→ Ik induces

an open map f : Kπ → K̺, then fk ∈ O
+ for all k or fk ∈ αO+ for all k.

P r o o f. If K̺ is an even Knaster continuum, it follows from part (i)
of Lemma 2.2 that all the maps fk are order preserving. For if fk is order
reversing for some k, then choosing l > k so large that ̺l

k has even degree, we
obtain ̺l

kfl = fkπil

ik
. But ̺l

kfl(0) = ̺l
k(1) = 0 while fkπil

ik
(0) = fk(0) = 1, a

contradiction.

If K̺ is an odd Knaster continuum (with no 2’s in ̺), then it follows
from part (ii) of Lemma 2.2 that fk(0) = f1(0) for all k, so all the maps fk

are order preserving or all maps are order reversing.

3.3. Lemma. If a sequence ik of indices and maps fk : Iik
→ Ik induces

an open map f : Kπ → K̺, then the map f is completely determined by

any map in the defining sequence.

P r o o f. Fix a map fn : Iin
→ In in the defining sequence for f and

suppose that g : Kπ → K̺ is an induced open map with a defining sequence
jk of indices and maps gk : Ijk

→ Ik in which jn = in and gn = fn.
It is required to show that g = f . Let x = (x1, x2, . . .) ∈ Kπ. Then
f(x) = (y1, y2, . . .) ∈ K̺ and g(x) = (z1, z2, . . .) ∈ K̺ where we know that
yn = fn(xin

) = gn(xin
) = zn. Hence yk = zk for k = 1, . . . , n. Let k > n,

and assume without loss of generality that jk ≥ ik. Then we have

fnπjk

in
= gnπjk

in
= ̺k

ngk

since fn = gn and g is an induced map. But also we have

fnπjk

in
= fnπik

in
πjk

ik
= ̺k

nfkπjk

ik

since f is an induced map. Hence ̺k
ngk = ̺k

nfkπjk

ik
. Now by Lemma 3.2, all

the maps in the defining sequence for f are order preserving or all the maps
are order reversing. The same is true for g, and since gn = fn we can apply
parts (1) and (2) of Lemma 2.6 to cancel ̺k

n on the left and get gk = fkπjk

ik
.

Hence

yk = fk(xik
) = fkπjk

ik
(xjk

) = gk(xjk
) = zk.
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This shows that f(x) = g(x) for all x ∈ Kπ and completes the proof that
f = g.

Given an f ∈ O+ and an integer k, let (f)k
1 be the map f considered

as a map from Ik to I1. Now (f)k
1 may or may not be the first term in a

defining sequence of maps for some induced open map from Kπ to K̺. If it

is, we use the symbol (f)k
1(π, ̺) to stand for the induced map. If it is clear

from the context, we will drop the reference to π and ̺. Also, f is used as
an abbreviation of (f)11(π, π).

Note. It will shorten some statements if we agree that π1
1 = w1, the

identity map on I.

3.4. Lemma. Let Kπ and K̺ be Knaster continua.

(1) If fk : Iik
→ Ik is a defining sequence for an open induced map

f ∈ OIπ
̺ , then for each n ≥ 1, f = (̺n

1 fn)in

1 (π, ̺).

(2) For each f ∈ O+ and each integer n ≥ 1, (πn
1 f)n

1 = (πn
1 f)n

1 (π, π)

exists. In particular , (πn
1 )n

1 is the identity map on Kπ. In addition, if

g ∈ O+, then (πn
1 g)n

1 (πn
1 f)n

1 = (πn
1 gf)n

1 . Further , if f is a homeomorphism

then (πn
1 f)n

1 is a homeomorphism.

(3) If π is an odd sequence with occπ(2) = 0, then α exists. If π is even,
then α does not exist.

P r o o f. (1) This identity is established by applying both maps to an
arbitrary point x = (x1, x2, . . .) ∈ Kπ:

f(x) = (f1(xi1), f2(xi2), . . .) = (̺n
1 fn(xin

), . . .) = (̺n
1 fn)in

1 (x).

(2) Let p1 = f and apply 2.4 repeatedly to construct a sequence of open
maps pk : In+k−1 → In+k−1 so that πn+k

n+k−1pk+1 = pkπn+k
n+k−1 for k ≥ 1.

Define

fk = πn+k−1
k pk : In+k−1 → Ik for each k.

This sequence induces a map F : Kπ → Kπ which is open because all its
coordinate maps are open (3.1). Further, by part (1), F = (πn

1 f)n
1 and so

(πn
1 f)n

1 exists. To see that (πn
1 )n

1 is the identity map on Kπ, apply the map
to a point (x1, x2, . . .) ∈ Kπ:

(πn
1 )n

1 (x1, x2, . . .) = (πn
1 (xn), . . .) = (x1, . . .).

If g ∈ O+, then after constructing the defining sequences gk = πn+k−1
k qk

and (gf)k = πn+k−1
k sk (with qk and sk defined analogously to pk) for the

maps (πn
1 g)n

1 and (πn
1 gf)n

1 , note that
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(πn
1 g)n

1 (πn
1 f)n

1 (x1, . . . , x2n−1, . . .)

= (πn
1 g)n

1 (πn
1 f(xn), . . . , π2n−1

n p2n−1(x2n−1), . . .)

= (πn
1 gπ2n−1

n p2n−1(x2n−1), . . .) = (πn
1 gfπ2n−1

n (x2n−1), . . .)

= (πn
1 gf(xn), . . .) = (πn

1 gf)n
1 (x1, . . .)

Finally, if f is a homeomorphism of I, then by what has just been shown,

(πn
1 f)n

1 (πn
1 f−1)n

1 = (πn
1 f−1)n

1 (πn
1 f)n

1 = (πn
1 )n

1 ,

and (πn
1 )n

1 is the identity map on Kπ.
(3) In case π has no 2’s, the sequence fk = α induces an open map α

on Kπ by Lemma 2.2. If π is an even sequence, then no order reversing map
can induce an open map on Kπ, again by Lemma 2.2.

Let n be a positive integer. An induced map g ∈ OIπ is said to be

vertically induced with order at most n provided g = (πn
1 f)n

1 for some f ∈ O.
The order of a vertically induced map is the smallest n for which it is
vertically induced with order at most n. The next theorem shows that there
are lots of isomorphisms of O+ into Oπ.

3.5. Theorem. For each positive integer n, define Fn : O+ → Oπ by

Fn(f) = (πn
1 f)n

1 . Then Fn is an isomorphism from O+ onto the set of ver-

tically induced open maps with order at most n. The set of images Fn(O+) is

an increasing tower ; that is, Fn(O+) ⊂ Fn+1(O
+). Finally , if occπ(2) = 0,

then Fn extends to all of O.

P r o o f. That Fn is a well-defined homomorphism follows from parts
(1) and (2) of Lemma 3.4. To see that Fn is 1-1, suppose Fn(f) = Fn(g).
Then the first terms of the defining sequences for these maps are equal,
i.e., πn

1 f = πn
1 g. But O+ is (left) cancellative, so f = g. To see that

Fn(O+) ⊂ Fn+1(O
+), note that

Fn(f) = (πn
1 f)n

1 = (πn
1 fπn+1

n )n+1
1

= (πn
1 πn+1

n p2)
n+1
1 = (πn+1

1 p2)
n+1
1 = Fn+1(p2).

Finally, assume π is a sequence of odd primes. Then by Lemma 2.2, α
commutes with all the bonding maps of Kπ, and hence induces an open map
α : Kπ → Kπ. By the structure theorem for O, Theorem 2.4, each open
map f ∈ O which is not order preserving looks like αg where g = αf ∈ O+,
and hence maps to αg.

Let OVπ be the union of the tower of subsemigroups Fn(O+) (Fn(O)
if π is odd with no 2’s). Then it follows from Theorem 3.5 that OVπ is a
subsemigroup of OIπ, to which we refer as the semigroup of open vertically

induced maps of Kπ. Similarly, let HVπ be the union of the increasing tower
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of groups Fn(H+). By part (2) of 3.4, the maps inHVπ are homeomorphisms
of Kπ. Using 3.5, we can see that HVπ is a subgroup of the group of units
of Oπ. We refer to it as the group of vertically induced homeomorphisms

of Kπ.
Note that for any m,n, Fn(wm) = F1(wm) = wm, so the image of the

standard mapsW remains the same under the isomorphisms Fn. We denote
this common image by Wπ and refer to it as the semigroup of standard

induced maps on Kπ.
The next lemma gives a factorization of an arbitrary open induced map

from Kπ to K̺.

3.6. Lemma. Let g ∈ OIπ
̺ . Then g can be factored into α iqv where

i ∈ {0, 1}, q = (wm)n
1 (π, ̺), and v ∈ HVπ.

P r o o f. Let ik and gk : Iik
→ Ik be a sequence of indices and maps

inducing g. First, by Theorem 2.4, factor gk = αjkwmk
hk, where hk is an

order preserving homeomorphism. By Lemma 3.2, we know that jk = 0
for all k or jk = 1 for all k. Denote this common value by j. Let v =

(πi1
1 h1)

i1
1 (π, π) = Fi1(h1). This vertically induced homeomorphism exists

by Lemma 3.4. Next, note that for each k,

gkπ
ik+1

ik
= ̺k+1

k gk+1.

Substituting in the factorizations, we have

αjwmk
hkπ

ik+1

ik
= ̺k+1

k αjwmk+1
hk+1.

If j = 0, we can erase the αj on both sides of the equation. If j = 1, then
̺k+1

k is odd and α = αj commutes with it by 2.2, so we can multiply both
sides of the equation by α and erase it. In either case, we have

wmk
hkπ

ik+1

ik
= ̺k+1

k wmk+1
hk+1.

Now hkπ
ik+1

ik
= π

ik+1

ik
hk+1, and so

wmk
π

ik+1

ik
hk+1 = ̺k+1

k wmk+1
hk+1.

Now multiply on the right by (hk+1)
−1 to obtain

wmk
π

ik+1

ik
= ̺k+1

k wmk+1
.

We have shown that q = (wm1
)i1
1 (π, ̺) exists. If j = 1, let α j = α(̺, ̺),

which we know exists because ̺ is odd with no 2’s. If j = 0, let αj be
w1(̺, ̺). In either case, we can calculate that

αj(wm1
)i1
1 (π, ̺)(πi1

1 h1)
i1
1 (π, π) = g.

One consequence of 3.6 is that there is an open induced map from Kπ to

K̺ (if and) only if there is one of the form (wm)k
1(π, ̺) for some m and k.
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For each positive integer n and Knaster continua Kπ and K̺, define a
function dn(π, ̺) : P→ ω which we will call the n deficit of π over ̺, by

dn(π, ̺)(p) = max{0, occ̺(p)− occ(πi)∞i=n
(p)}.

We will say that dn(π, ̺) is trivial if it never takes ∞ as a value and all but
finitely many of its values are 0.

The next lemma tells when (wm)n
1 (π, ̺) exists and gives a factorization

of it which will prove useful.

3.7. Lemma. The map (wm)n
1 (π, ̺) exists if and only if dn(π, ̺) is trivial

and m = dt for some integer t, where d =
∏

p∈P
pdn(π,̺)(p). In this case,

(wm)n
1 (π, ̺) = (wd)n

1 (π, ̺)(wt)11(π, π).

P r o o f. First suppose that (wm)n
1 (π, ̺) exists. Let fk = wmk

: Ink
→ Ik

be a defining sequence for (wm)n
1 (π, ̺). Suppose d does not divide m. Then

there is a prime p such that the highest power pj that divides d does not
divide m. Choose k so large that if ̺i+1

i = wp then i < k and if πi+1
i = wp

then i < n. Let pl and ps be the highest powers of p dividing deg(̺k
1) and

deg(πnk
n ) respectively. Then by the definition of d, p does not divide fk, and

so pjps = pl. But m deg(πnk
n ) = deg(̺k

1)fk. It follows that pj must divide
m, a contradiction.

Now suppose that the condition holds. We will show that (wd)n
1 exists.

Let f1 = wd : In → I1, and suppose fk : Ink
→ Ik has been defined so

that fk−1π
nk
nk−1

= ̺k
k−1fk. Let p be the prime such that ̺k+1

k = wp. Let

pj , ps and pl be the highest powers of p dividing m, deg(πnk
n ) and deg(̺k

1)
respectively. If πi+1

i 6= wp for all i ≥ nk, then l < j + s. Hence p divides
deg(fk) and so we can choose nk+1 = nk + 1 and define fk+1 = wr where
r = deg(fk) deg(π

nk+1

nk )/p. Otherwise, choose i > nk so that πi+1
i = wp, and

define nk+1 = i + 1 and fnk+1
= wr, where r = deg(fk) deg(πnk

1 )/p. Thus

(wd)n
1 (π, ̺) exists. Now (wdt)n

1 (π, ̺) = (wd)n
1 (π, ̺)(wt)11(π, π) exists.

If π = ̺, the result of Lemma 3.7 can be sharpened. As we shall see,
the map (wd)

n
1 (π, π) can be factored nicely. First we need some invertibility

lemmas.

3.8. Lemma. Suppose that p and q are distinct prime numbers and p is

odd. Then wp permutes each of w−1
q (0) and w−1

q (1).

P r o o f. First, when n = 2, wp fixes each of w−1
n (0) and w−1

n (1), so the
result is trivially true.

Now suppose that n is odd. Note that for each x ∈ w−1
n (0), we have

x = 2k/n for some 0 ≤ k ≤ (n− 1)/n, and that either

wp(x) = −i +
p · 2k

n
=
−ni + 2pk

n
for some i ∈ 2N
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or

wp(x) = i + 1− p ·
2k

n
=

n(i + 1)− 2pk

n
for some i + 1 ∈ 2N.

In either case, there is an integer r such that wp(x) = 2(r − pk)/n ∈
I ∪w−1

n (0). Similarly, if x ∈ w−1
n (1) it can be shown that for some integer r,

we have wp(x) = (2(r − pk) + 1)/n ∈ I ∪ w−1
n (1). So wp(w

−1
n (0)) ⊂ w−1

n (0)
and wp(w

−1
n (1)) ⊂ w−1

n (1).

We now show that wp is one-to-one on w−1
n (0) ∪ w−1

n (1). Suppose that
for some 0 ≤ a, b ≤ n, there are points a/n and b/n such that wp(a/n) =
wp(b/n). By the definition of wp, there are three cases to consider:

1. wp has positive slope at both a/n and b/n. Then there are natural
numbers i and k so that −i + pa/n = −b + pb/n. This means that pa/n −
pb/n=p(a− b)/n is an integer. Since n and p are relatively prime, we know
that n divides a − b. Now, since 0≤ a, b≤ n, we know that either a= b or
that a∈ {0, n} and b= n − a. If a= 0 and b= n, then wp(a/n)= wp(0) =
0 6= wp(1) = wp(b/n). This means that it must be the case that a = b.

2. wp has negative slope at both a/n and b/n. This case is essentially
the same as case 1.

3. wp has positive slope at one of {a/n, b/n} and negative slope at the
other. We will assume the notation is chosen so that wp has positive slope
at b/n. Then there are natural numbers i and j so that i + 1 − pa/n =
−k +pb/n. In this case, pa/n+pb/n = p(a+ b)/n is an integer. Since p and
n are distinct primes, we know that n divides a+b. Now, since 0 ≤ a, b ≤ n,
we have one of the following cases to consider:

(a) a + b = 0. Then a = b = 0, so a/n = 0 = b/n.

(b) a + b = 2n. Then a = b = n, so a/n = 1 = b/n.

(c) a + b = n. Then 0 < a < n and b = n − a. This means that
b/n = 1 − a/n. Since p is odd, and therefore the graph of wp is symmetric
about the point (1/2, 1/2), it follows that wp has the same slope at a/n as
it does at 1− a/n = b/n. So this case is impossible.

Now, since wp takes each of w−1
n (1) and w−1

n (0) into itself, and since wp

is one-to-one on w−1
n (0) ∪w−1

n (1), we know that wp permutes each of these
sets.

Note, in particular, that if p and n are distinct primes and p is odd, then
wp permutes w−1

n (0).

3.9. Lemma. If n is an odd prime, then w2 maps each of w−1
n (0) and

w−1
n (1) one-to-one onto w−1

n (0). In particular , w2 permutes w−1
n (0).

P r o o f. Note that 1/2 6∈ w−1
n (0) ∪ w−1

n (1), because n is odd. We first
show that w2(w

−1
n (0)) ⊂ w−1

n (0). Observe that x ∈ w−1
n (0) if and only
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if for some 0 ≤ k ≤ (n − 1)/2 we have x = 2k/n. If x < 1/2, then
w2(x) = 2(2k)/n ∈ w−1

n (0), and if x > 1/2, then

w2(x) = 2−
2(2k)

n
=

2(n − 2k)

n
∈ w−1

n (0).

We next show that w2 is one-to-one on w−1
n (0). To see this, first note

that w2 is one-to-one on each of w−1
n (0)∪ [0, 1/2] and w−1

n (0)∪ [1/2, 1]. Now
if x ∈ w−1

n (0)∪ [0, 1/2], then x = 2k/n for some k and w2(x) = 4k/n. Since
n is odd, we know that the numerator of this expression is an even multiple
of 2. Now, if x ∈ [1/2, 1] ∪ w−1

n (0), we have

w2(x) = 2−
2k

n
=

2n− 4k

n
=

2(n − 2k)

n

for some natural number k. Since n is odd, we see that the numerator of
this expression is an odd multiple of 2. Therefore, w2(w

−1
n (0) ∪ [0, 1/2]) ∪

w2(w
−1
n (0) ∪ [1/2, 1]) = ∅ and wn permutes w−1

n (0).

Finally, since for each x ∈ I, w2(x) = w2(1− x), and since the function
α(x) = 1 − x is a bijection from w−1

n (1) onto w−1
n (0), w2 maps w−1

n (1)
one-to-one onto w−1

n (0).

A standard map wn on I is not invertible in O. However, its image
wn ∈ Oπ will be invertible when the prime factors of n occur infinitely often
in π, i.e., occπ(p) =∞ for each prime divisor p of n.

3.10. Invertibility Theorem. The standard induced map wn is in-

vertible in Oπ if and only if for each prime factor p of n, occπ(p) = ∞.

Furthermore, if p is a prime such that occπ(p) =∞, then w−1
p = (πk−1

1 )k
1 ,

where k is chosen so that πk
k−1 = wp.

P r o o f. First, suppose that the condition fails. Without loss of gener-
ality, we can assume that some prime factor p of n does not occur in π at
all. We show that wp is not 1-1. It is clear that wp((0, 0, . . .)) = (0, 0, . . .).
By Lemmas 3.8 and 3.9, for each πi+1

i of Kπ, πi+1
i permutes w−1

p (0). Thus,
there is at least one point x = (2/p, x2, x3, . . .) 6= (0, 0, . . .) ∈ Kπ for which
xi ∈ w−1

p (0) for each i, and so wp(x) = (0, 0, . . .). Hence wp is not 1-1 and
so is not invertible. But this implies that wn is not invertible, since wp is a
factor of it. This completes the proof of the only if part.

Now suppose that wn is invertible. It is enough to assume that n is a
prime; since if p and q are primes with wp and wq invertible, then wpwq =
wpq is invertible. When n is prime, we know that it occurs infinitely often
in π, so there is an increasing sequence of integers 1 < k1 < k2 < . . . for
which πki

ki−1 = wn. For each i, define gi : Iki
→ Ii by gi = πki−1

i . Note that
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for each i,

giπ
ki+1

ki = πki−1
i π

ki+1

ki
= πki−1

i π
ki+1−1
ki

wn = πki−1
i wnπ

ki+1−1
ki

= πki−1
i πki

ki−1π
ki+1−1
ki

= π
ki+1−1
i = πi+1

i π
ki+1−1
i+1 = πi+1

i gi+1,

so the sequence of maps gi induces a map g : Kπ → Kπ. Finally, note that
for each i,

πigwn(x) = giπki
wn(x) = giwnπki

(x)

= πki−1
i πki

ki−1πki
(x) = πki

i πki
(x) = πi(x),

and hence gwn = w1, the identity map on Kπ. So w−1
n exists and equals

g = (g1)
k1

1 = (πk1−1
1 )k1

1 .

In particular, note that when π is the constant sequence n, then w−1
n is

the shift map, s : Kπ → Kπ, defined by s(x1, x2, x3, . . .) = (x2, x3, . . .).

We can now state an existence and factorization theorem for maps

(wn)k
1(π, π).

3.11. Theorem. Write πk
1 = wswf , where for each prime factor p

of s, occπ(p) < ∞ and for each prime factor p of f , occπ(p) = ∞.

Then (wn)k
1(π, π) exists if and only if n = st for some t. In that case,

(wn)k
1(π, π) = wtw

−1
f .

P r o o f. The first statement follows from Lemma 3.7 upon noting that
the d in that lemma is the s of this theorem. The second statement fol-
lows from the factorization given in Lemma 3.7 and the Invertibility Theo-
rem 3.10.

Theorem 3.10 also enables us to answer affirmatively the question raised
in the previous section about the embeddability of O+ into a group. Let γ
denote the sequence 2, 3, 2, 3, 5, 2, 3, 5, 7, . . . of primes in which each prime
occurs infinitely often.

3.12. Corollary. The induced open maps of Kγ form a group. Hence

O+ is embeddable into the group of units of Kγ .

P r o o f. Each prime occurs infinitely often in γ, and so for each positive
integer n, 3.10 says that wn is invertible in Oγ , hence the isomorphism F1

takes O+ into the group of units of Oγ .

In [6], D/ebski defines the degree of an arbitrary open map between
Knaster continua. For the moment, we now define the degree of an induced
map in a simpler fashion. Later, in the next section, we show that the two
definitions agree on the induced open maps.
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Suppose K̺ and Kπ are Knaster continua with K̺ ≤ Kπ. For any map
f ∈ OIπ

̺ , define the degree of f by

deg(f) =
deg(f1)

deg(πi1
1 )

,

where f1 : Ii1 → I1 is the first coordinate map of f and π1
1 is by decree w1.

3.13. Theorem. (1) If f ∈ OIπ
̺ and g ∈ OI̺

δ , then

deg(gf) = deg(g) deg(f).

(2) If π = ̺ = δ, then deg : OIπ → Q+ is a homomorphism into the

group Q+ of positive rational numbers under multiplication.

(3) The open induced maps with degree 1 consist precisely of the verti-

cally induced homeomorphisms HVπ, and the open induced maps of positive

integer degree consist precisely of the open vertically induced maps OVπ.

(4) The image deg(OIπ) is the subsemigroup Qπ of Q+ consisting

of all positive rationals n/m such that for each prime divisor p of m,
occπ(p) =∞.

P r o o f. (1) Let fk : Iik
→ Ik and gl : Ijl

→ Il be defining sequences for
f and g. Now

gf = (g1)
j1
1 (f1)

i1
1 = (g1)

j1
1 (̺j1

1 fj1)
ij1

1 = (g1fj1)
ij1

1 .

Hence, the degree of gf is

deg(gf) =
deg(g1fj1)

deg(π
ij1

1 )
=

deg(g1)

deg(̺j1
1 )

deg(̺j1
1 ) deg(fj1)

deg(π
ij1

1 )
= deg(g) deg(f).

(2) This follows immediately from (1).

(3) Let f ∈ HVπ. Then f = (πi1
1 h)i1

1 , where h ∈ H. So

deg(f) =
deg(πi1

1 h)

deg(πi1
1 )

= deg(h) = 1.

Conversely, suppose f ∈ OVπ has degree 1. Let f1 = αjwmg : Ii1 → I1 be
the first coordinate map of f , where g is a homeomorphism of I. Then

1 = deg(f) =
deg(f1)

deg(πi1
1 )

=
m

deg(πi1
1 )

,

hence wm = πi1
1 , and f ∈ HVπ.

(4) Let f ∈ OVπ; then by 3.7, f = αjqv where q = (wm)n
1 (π, π), and v ∈

HVπ. Hence by the results of the above paragraphs, deg(f) = deg(q). But

now, by 3.7 again, q factors into (wd)m
1 (wt)11, where d =

∏

p∈P
pd(m,π,π)(p)

and m = dt. Hence

deg(q) = deg((wd)
m
1 ) deg((wt)

1
1) =

d

deg(πm
1 )

t.
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Let deg(πm
1 ) = M . Now, by 3.11, d = s divides M and we can write

πm
1 = wM = wdwk, where for each prime factor p of k, occπ(p) =∞ and for

each prime factor p of d, occπ(p) <∞. Hence

deg(q) =
d

deg(πm
1 )

t =
d

dk
t =

t

k
∈ Qπ.

All that is left is to show that each t/k ∈ Qπ is the degree of some
open induced map. This follows from the easily established facts that (1)
Qπ is generated by the primes and the reciprocals of the primes p which
occur infinitely often in π, and (2) if p is a prime, then deg(wp) = p and if
occπ(p) =∞, then deg(w−1

p ) = 1/p.

LetW∗
π denote the subsemigroup of OIπ generated by the induced stan-

dard maps wn together with w−1
p where occπ(p) = ∞. The proof of the

following theorem is immediate.

3.14. Theorem. The function deg takes W∗
π isomorphically onto Qπ.

Hence:

(1) W∗
π is commutative.

(2) Each element f of W∗
π can factored uniquely as f = wm w−1

n where

m and n are relatively prime. Further , if f = wm w−1
n and g = wsw

−1
t are

in W∗
π then fg = (wm w−1

n )(ws w−1
t ) = wms w−1

nt .

(3) If wn is invertible in Oπ and f = wm w−1
n , then deg(f) = m/n.

We now introduce some notation. Given a rational number m/n ∈ Qπ

with gcd(m,n) = 1, let wm/n denote wm w−1
n . Further, if v = (πi1

1 h)i1
1 is a

vertically induced homeomorphism, then mv is defined to be the vertically

induced homeomorphism (πi1
1 (mh))i1

1 , where mh is the multiple of h defined
above 2.4. Now we introduce 1

nv. First, we define 1
pv, where occπ(p) =∞, as

follows: Choose k > 1 so large that π
ik+1

ik
= wp. Then v = (π

ik+1

1 hk+1)
ik+1

1 .

By the definition above 2.4, hk = 1
p
hk+1, and we let 1

p
v = (π

ik+1

1 hk)
ik+1

1 .

Now 1
nv is defined by induction on the sum of the exponents of the prime

factors of n.

3.15. Lemma. Let v ∈ HVπ and let m and p be integers, where p is a

prime with occπ(p) =∞. Then

(1) vwm = wm(mv),
(2) vw−1

p = w−1
p

(

1
p
v
)

.

P r o o f. By Theorem 3.10, we can choose k so large that w−1
p = (πk−1

1 )k
1

and v = (πk
1h)k

1 =
(

πk−1
1

(

1
ph

))k−1

1
. Also choose n > k so that πn

n−1 = wp

and so w−1
p = (πn−1

1 )n
1 .
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To prove (1), note that

vwm = (πk
1h)k

1 (πk
1wm)k

1 = (πk
1hwm)k

1

= (πk
1wm(mh))k

1 = (πk
1wm)k

1 (πk
1 (mh))k

1 = wm(mv).

I1 Ik−1 Ik In−1 In

I1 Ik−1 Ik In−1 In

I1 Ik−1 Ik

� � � � � � � � � � � � wpoo � � � � � � � � � � � � �
πk−1

1

vvmmmmmmmmmmmmmmm1p h

��

wpoo

πn−1

k

vvmmmmmmmmmmmmmmm g

��� � � � � � � � � � � �
1
p

h

��

wpoo � � � � � � � � � � � � �
h

��

wpoo

πn−1

k

vvmmmmmmmmmmmmmmm� � � � � � � � � � � � wpoo

Fig. 3. vw−1p = w
−1
p ( 1

p
v)

To prove (2), refer to the diagram in Figure 3. Choose g : In → In so
that hπn−1

k = πn−1
k g. Hence wphπn−1

k = wpπ
n−1
k g. But wphπn−1

k = πn
k and

wph =
(

1
ph

)

wp, so πn
k g =

(

1
ph

)

wpπ
n−1
k =

(

1
ph

)

πn
k . Thus 1

pv =
(

πk
1

(

1
ph

)k

1

)

=

(πn
1 g)n

1 . Now we compute

w−1
p

(

1

p
v

)

= (πn−1
1 )n

1 (πn
1 g)n

1 = (πn−1
1 g)n

1

= (πk
1hπn−1

k )n
1 = (πk

1h)k
1 (πn−1

1 )n
1 = vw−1

p .

Now we can prove a structure theorem for the semigroup OIπ of induced
open maps on Kπ.

3.16. Structure Theorem for OIπ. If Kπ is even, then each

f ∈ OIπ can be factored uniquely into the product wa/bu, with deg(f) =

a/b ∈ Qπ, wa/b ∈ W
∗
π and u ∈ HVπ. The rule for multiplication in OIπ is

wa/buwc/dv = wac/(bd)

(

c

d
u

)

v.

If Kπ is odd , then α exists and each f ∈ OIπ can be factored uniquely into

the product α iwa/bu, with i ∈ {0, 1} = Z2, deg(f) = a/b ∈ Qπ, wa/b ∈ W
∗
π

and u ∈ HVπ. The rule for multiplication is

α iwa/buαjwc/dv = α i+njwac/(bd)

(

c

d
(α juα j)

)

v.

P r o o f. Let g ∈ OIπ. Then by Lemma 3.6, g = α iqu, where i ∈ {0, 1},

q = (wn)k
1 for some positive integers n and k, and u ∈ HVπ. By Corol-

lary 3.11, n = st for some positive integer t, where πk
1 = wsf is as defined
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in 3.11, and (wn)k
1 = wt w−1

f . Let a = t/gcd(t, f) and b = f/gcd(t, f).

Then q = wa gcd(t,f) wb gcd(t,f)
−1 = wa w−1

b . By Theorem 3.13, deg(g) =
a/b ∈ Qπ.

To prove the uniqueness of the factorization, suppose g = α jwa′/b′v is
also a factorization of g. We consider two cases.

Case (i):π is an even sequence. Then α does not exist by Lemma 3.4, and
so i= j = 0. Since deg(g)= a′/b′ = a/b, we can assume that gcd(a′, b′)= 1
and so wa = wa′ and wb = w−1

b′ . Hence wau = wav. Now we can choose

k so large that u = (πk
1h1)k

1 and v = (πk
1h2)k

1 for some h1, h2 ∈ H
+. But

then wau= (πk
1wah1)k

1 and wav= (πk
1wah2)k

1 . So by Lemma 3.3, πk
1wah1 =

πk
1wah2 and so h1 = h2 by Lemma 2.6. Thus u= v, and Case (i) is proved.

Case (ii): π is an odd sequence. Then by Lemma 3.4, α does exist, and
all the coordinate maps of g are order preserving or all are order reversing.
In the first case i = j = 0, and in the second case i = j = 1. If i = 0, use
the same argument as in Case (i). If i = 1, multiply by α and use the same
argument as in Case (i).

This completes the proof of the uniqueness of the factorization.
The rule for multiplication for the case of π even follows from Theo-

rem 3.14 and Lemma 3.15 (part (2) is used repeatedly). Thus,

wa/buwc/dv = wa/buwcw
−1
d v = wa/bwc(cu)w−1

d v

= wac/bw
−1
d

(

1

d
(cu)

)

v = wac/(bd)

(

c

d
u

)

v.

Note that the assumption that π is even was not used in the calculations
above, so we know the rule for multiplication in the case π is odd holds
when i = j = 0. The general rule for π odd is established using this and
using additionally these properties of α, which follow from Theorem 3.5:

(1) αj = α−j ,
(2) if b is odd, then αjwb = wb αj , and
(3) α iwa α j = α (i+aj) mod 2 wa.

We compute

α iwa/buα jwc/dv

= α iwa w−1
b uαjwc/dv = α iwa w−1

b α−jαjuαjwc/dv

= α iwa(α jwb)
−1αjuαjwc/dv

= α iwa(wbα
j)−1αjuαjwc/dv = α iwa αjw−1

b αjuαjwc/dv

= α (i+aj) mod 2wa w−1
b αjuαjwc/dv = α (i+aj) mod 2wac/(bd)

(

c

d
αjuα j

)

v.
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3.17. Corollary. Each open induced map f : Kπ → Kπ is no more

than n-to-1, where n is the numerator of the degree of f reduced to lowest

terms.

P r o o f. By Theorem 3.16, f = α iwnw−1
m u. All of the factors are 1-1

maps, except wn, so for any x ∈ Kπ, the cardinality of f−1(x) is the same
as the cardinality of Ax, the set of points y ∈ Kπ such that wn(y) = x. If
card(Ax)>n for some x∈Kπ, then in some coordinate k, card(πk(Ax))>n.
But wn(πk(Ax)) = xk and wn is at most n-to-1, a contradiction.

4. Open maps on Kπ. In this section, we show that there are open
maps on Knaster continua which are not induced, but that each open map is
a uniform limit of induced open maps. Specifically, we construct an example
of a homeomorphism on K2 that is not induced. We also show that each
open map f ∈ Oπ

̺ is a uniform limit of induced open maps. In addition, we
show that D/ebski’s degree function deg : Oπ

̺ → Q+ is continuous.
Throughout the section, if f, g : X → I are maps on a compact space X,

then |f − g| denotes the distance from f to g in the sup metric, that is,

|f − g| = sup{|f(x)− g(x)| : x ∈ X}.

Also, if f, g : Kπ → K̺, then |f − g| denotes the distance from f to g in the
sup metric, that is,

|f − g| = sup

{ ∞
∑

i=1

|πif(x)− πig(x)|

2i
: x ∈ Kπ

}

.

An example. Let B be the standard bucket handle continuum con-
structed as a union of semicircles (see [8], p. 205) situated in the (r, θ)
plane so that the endpoint of B is the point (1, π) and the semicircle con-
taining the endpoint is the upper half of the unit circle, centered at the
origin. Define B∗ to be the visible composant of B. Note that B∗ is com-
prised of a sequence Qi of quarter-circles joined end to end. Denote the
center of Qi by ci. We will define a continuous bijection p : [0,∞) → B∗.
First define p(0) to be the endpoint of B∗ and p(1/4) to be the midpoint of
the first quarter circle Q1. Next, p(1/2) = (1, π/2), the other endpoint Q1.
For i > 1, define p(i/4) to be the first endpoint of Qi in the natural ordering
of B∗. Now extend p to all of [0,∞) as follows:

p(t) =























the point q ∈ Q1 such that
6 (p(0)c1q)

π/2
=

t

1/2
for 0 < t < 1/2,

the point q ∈ Qi such that
6 (p(i/4)ciq)

π/2
=

t− i/4

1/4

for i > 1 and i/4 < t < (i + 1)/4.

Figure 4 shows the first portion of B∗.
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Fig. 4

Now for each k, let Jk = p([0, 2k]) ⊂ B∗, and for l < k define the bonding
map fk

l : Jk → Jl by fk
l = f l+1

l . . . fk
k−1 for l < k − 1. For l = k − 1,

fk
k−1(p(t)) =







































p(t) if 0 ≤ t ≤ 2k−1,

p(2k−1 − (t− 2k−1)) if 2k−1 ≤ t ≤ 2k − 1/2,

p

(

1

2
+

1− 2k

2k−1

(

t−

(

2k−
1

2

)))

if 2k−1/2 ≤ t ≤ 2k−1/4,

p

(

−1

2k−1
(t− 2k)

)

if 2k − 1/4 ≤ t ≤ 2k.

Denote the inverse limit of the arcs Jk and maps fk
l by W2. Note that

each bonding map has degree 2, so W2 is homeomorphic to K2.

These definitions of Jk and fk
l were constructed to satisfy the conditions

of the Anderson–Choquet embedding theorem (see p. 23 of [9]), and so the
mapping h : W2 → B given by h((xi)

∞
i=1) = limi→∞ xi is a homeomorphism.

Now define a homeomorphism F : B → B as follows:

F (r, θ) =







(r, rθ) if 0 ≤ θ ≤ π/2, 1/3 ≤ r ≤ 1,

(r, rπ/2 + (2− r)(θ − π/2)) if π/2 ≤ θ ≤ π, 1/3 ≤ r ≤ 1,

(r, θ) otherwise.

4.1. Theorem. The homeomorphism G = h−1Fh : W2 → W2 is not

induced.

P r o o f. Consider the subset X = π−1
1 (p(1/2)) of W2. Note that X is

homeomorphic to the Cantor set, and hence is uncountable. The home-
omorphism h carries X to the set Y consisting of all (r, π/2) ∈ B, and
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applying F to Y yields the set Z of all (r, rπ/2) ∈ B. Now the map
π1h

−1 takes each point (r, rπ/2) ∈ Z to the point (1, rπ/2) and so we
conclude that π1(G(X)) is uncountable. But if G is induced by a sequence
gl : Jkl

→ Jl of open maps, then π1(G(X)) = g1(πk1
(X)) is finite, since

πk1
(X) = πk1

(π−1
1 (p(1/2))) = (fk1

1 )−1(p(1/2)) is finite.

The manner in which the homeomorphism G is defined on W2 could be
duplicated on any Knaster continuum, because they can be embedded in
the plane in the same manner as W2 (see Watkins [11]).

The open induced approximation theorem. The next three lemmas lead to
a proof of Theorem 4.7: any open map from Kπ to K̺ can be approximated
by an induced open map of the same degree.

4.2. Lemma. If f, g ∈ O and |f − g| ≤ 1/2, then

(1) deg(f) = deg(g),

(2) there is an order preserving homeomorphism h such that f = gh.

P r o o f. Since |f − g| ≤ 1/2, we have f(0) = g(0). By Theorem 2.1,
there are numbers 0 = a0 < a1 < . . . < an = 1 for which f |[ai,ai+1] is

a homeomorphism onto I. For each i, let ai+1/2 = f |−1
[ai,ai+1]

(1/2), IL =

[0, 1/2], and IU = [1/2, 1]. Note that for each i, f([ai+1/2, ai+3/2]) ⊆ IL or
f([ai+1/2, ai+3/2]) ⊆ IU. Since |f − g| ≤ 1/2 and g is open, it follows that

g|−1
[ai,ai+1]

({0, 1}) is a singleton for each i, which makes deg(g) ≤ deg(f).

Similiarly, deg(f) ≤ deg(g). Next, using Theorem 2.4, write f = αiwnh1

and g = αiwnh2 for some order preserving homeomorphisms h1 and h2. Let
h = h−1

2 h1. Then f = gh.

4.3. Lemma. If f, g ∈ O+ with f(0) = g(0) and |wnf−wng| < 1/2, then

for any i and any t ∈ I, the interval between f(t) and g(t) cannot contain

both i/n and (i + 1)/n.

P r o o f. Suppose the lemma is false. Let t1 be the smallest t which
violates the lemma and let i be the smallest such that i/n and (i+1)/n both
lie between f(t1) and g(t1). We may assume that f(t1) is less than g(t1).
Now t1 > 0, for otherwise f(t1) = g(t1), since f(0) = g(0). Further, either
f(t1) = i/n or g(t1) = (i+1)/n, for otherwise f(t1) < i/n < (i+1)/n < g(t1)
and by the continuity of f and g, there is a t < t1 such that f(t) < i/n <
(i + 1)/n < g(t), a violation of the choice of t1.

Case (i): f(t1) = i/n. In this case, g(t1) > (i + 1)/n, otherwise g(t1) =
(i+1)/n and so |wng(t1)−wnf(t1)| = 1, a violation of the assumption that
|wng − wnf | < 1/2. Also, g(t1) ≤ (i + 2)/n, otherwise by the continuity of
f and g there is a t < t1 such that f(t) < (i + 1)/n < (i + 2)/n < g(t), a
violation of the choice of t1.
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Now as t decreases from t1, f(t) must increase by the minimality of t1.
Further, since f is open, f(t) must continue to increase until it reaches 1.
Let t′ = max{t ∈ [0, t1] : f(t) = (i + 1)/n}. Likewise, since g is open, as t
decreases from t1, g(t) must either increase from g(t1) to 1 or decrease from
g(t1) to 0.

Subcase 1: g(t) increases to 1. Let t′′ = max{t ∈ [0, t1] : g(t) =
(i + 2)/n}. First note that t′ < t′′ is false, for otherwise (i + 1)/n and
(i + 2)/n lie between f(t′′) and g(t′′), a violation of the choice of t1. So
t′ ≥ t′′. Then (i + 1)/n = f(t′) < g(t1) < g(t′) ≤ g(t′′) = (i + 2)/n. Hence

(∗∗) |wn(f(t′))− wn(g(t1))| < |wn(f(t′))− wn(g(t′))|.

But the left hand side of (∗∗) is greater than 1/2 since |wn(f(t1))−wn(g(t1))|
< 1/2 and |wn(f(t′)) − wn(f(t1))| = 1. So the right hand side of (∗∗) is
greater than 1/2, in contradiction to the hypothesis |wnf −wng| < 1/2. So
Subcase 1 cannot occur.

Subcase 2: g(t) decreases to 0. Let t′′ = sup{t ∈ [0, t1] : g(t) = 0 or
f(t) = 1}. By the continuity of f and g, f(t′′) = 1 or g(t′′) = 0.

Suppose f(t′′) = 1. Then (i+2)/n = 1 (otherwise (i+2)/n and (i+3)/n
lie between g(t′′) and f(t′′), violating the choice of t1). Also, g(t′′) > (i+1)/n
for the same reason. Note that g(t′) ∈ [g(t′′), f(t′′)] ⊂ [i/n, (i+1)/n] and so

|wn(g(t′))− wn(f(t′′))| < |wn(g(t′′))− wn(f(t′′))| < 1/2.

Now |wn(f(t′))−wn(g(t′))| < 1/2 and so, by the triangle inequality, we
have |wn(f(t′′))−wn(f(t′))| < 1, which is false since f(t′′) = (i + 2)/n and
f(t′) = (i + 1)/n. Thus f(t′′) 6= 1.

Hence f(t′′) < 1 and it must be that g(t′′) = 0. Now since f(t′′) ≥ i/n,
we have i/n = 0 (otherwise (i − 1)/n and i/n lie between g(t′′) and f(t′′),
violating the choice of t1). Also, f(t′′) < (i+1)/n for the same reason. Now
let t′′′ = max{t ∈ [0, t1] : g(t) = (i + 1)/n}. Note that t′′′ ∈ [t′′, t1] and so
|wn(f(t′′′)) − wn(g(t′′))| < 1/2. Now |wn(f(t′′′)) − wn(g(t′′′))| < 1/2 and
so, by the triangle inequality, we have |wn(g(t′′))−wn(g(t′′′))| < 1, which is
false since g(t′′) = i/n and g(t′′′) = (i+1)/n. Hence g(t′′) > 0. So Subcase 2
cannot occur either.

So Case (i) cannot occur.

Case (ii): g(t1) = (i + 1)/n. This case is similar to Case (i). First show
that (i− 1)/n ≤ f(t1) < i/n and g(t) increases as t decreases from t1. Then
there are two subcases:

Subcase 1: f(t) increases to 1. This subcase is eliminated in a manner
similar to the manner Subcase 2 of Case (i) is eliminated.
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Subcase 2: f(t) decreases to 0. This subcase is eliminated in a manner
similar to the manner Subcase 1 of Case (i) is eliminated.

In this way it is shown that Case (ii) cannot occur either.

4.4. Lemma. If n > 1 is a positive integer , f, g ∈ O with f(0) = g(0),
and |wnf − wng| < 1/2, then |f − g| < |wnf − wng|.

P r o o f. Choose a t1 so that |f − g| = |f(t1) − g(t1)|. Without loss of
generality, assume that f(t1) < g(t1). Now 0 < t1 and t1 < 1. For the
moment assume that 0 < f(t1) < 1 and 0 < g(t1) < 1. Then since f, g are
open and |f(t1) − g(t1)| is maximum, as t increases (or decreases) from t1,
f(t) and g(t) must both increase or both decrease. For if f(t) increases and
g(t) decreases as t increases, say, then allowing t to decrease from t1 will
cause f(t) to decrease and g(t) to increase. In one direction or the other,
|f(t)−g(t)| must increase, a contradiction, since |f(t1)−g(t1)| is maximum.

By Lemma 4.3, there is at most one i/n between f(t1) and g(t1). If
there is no i/n strictly between f(t1), g(t1) then |wnf(t1) − wng(t1)| =
n|f(t)− g(t)|. If there is one, say i/n, we consider three cases.

Case 1: wnf(t1) and wn g(t1) are between 0 and 1/2. Suppose i/n is
between f(t1) and g(t1). Then wn(i/n) = 0. For suppose wn(i/n) = 1.
Then by either increasing t from t1 or decreasing t from t1, wng(t) stays
below 1/2 until wnf(t) decreases to 0, at which point Lemma 1 is violated.
Without loss of generality assume that i/n − f(t1) ≤ g(t1)− i/n. Then we
note from the geometry that g(t1) − f(t1) ≤ wng(t1). Now as t increases
or decreases from t1, wnf(t) decreases to 0 before wng(t) increases to 1/2;
hence at that point g(t1)− f(t1) ≤ wng(t) − wnf(t) and the lemma holds.

Case 2: wnf(t1) and wng(t1) are between 1/2 and 1. This case is nearly
identical to Case 1.

Case 3: wnf(t1) is between 0 and 1/2 and wng(t1) is between 1/2 and 1.
This case cannot occur. For by increasing or decreasing t from t1, we can
decrease wnf(t) to 0 before wng(t) increases to 1, at which point the distance
from wng to wnf exceeds 1/2, a contradiction.

In [6], Ḑebski defines an approximating sequence as follows: Let f :
Kπ → I be an open map. A sequence of open maps fi : Ii → I is called
an approximating sequence for f provided that the sequence fiπi : Kπ → I
converges to f in the uniform metric. He then proves an approximation
theorem [6, p. 206]:

4.5. Ḑebski’s Approximation Theorem. Every open map f : Kπ → I
has an approximating sequence fi. Furthermore, for sufficiently large i, the

sequence deg(fi)/deg(πi
1) is constant.

Let 0 denote the point in Kπ all of whose coordinates are 0.



Open maps between Knaster continua 143

4.6. Corollary. Let f ∈ Oπ
̺ . If ̺ is even then f(0) = 0, and if ̺ is

odd (with no twos) then f(0) = 0 or α(f(0)) = 0.

P r o o f. For each positive integer k, let fi : Ii → Ik be an approxi-
mating sequence for the kth coordinate map of f , ̺kf : Kπ → I. Since
the maps fi are open, we see that fi(πi(0)) = fi(0) is 0 or 1. Since the
sequence fiπi converges uniformly to ̺kf , we know fi(πi(0)) converges to
̺k(f(0)), so ̺k(f(0)) is 0 or 1. Now if ̺ is even, then for each k there is
an l > k such that ̺l

k = w2m for some m. Hence ̺k(f(0)) = ̺l
k(̺l(f(0))) =

w2m(j) = 0, where j is 0 or 1. This shows that f(0) = 0 if ̺ is even. If
̺ is odd, let j = ̺1(f(0)). Now if for some k, ̺k(f(0)) = t 6= j, then
j = ̺1(f(0)) = ̺k

1(̺k(f(0))) = ̺k
l (t) = t 6= j. This shows that f(0) = 0 or

αf(0) = 0.

Ḑebski defines the degree of an open map f : Kπ → I to be the constant
guaranteed by 4.5. The degree of an open map f : Kπ → K̺ is defined as
the degree of ̺1f . Note that this definition extends the notion of the degree
of an induced open map from Kπ to K̺.

4.7. Theorem. If f : Kπ → K̺ is an open map and ε > 0, then

there is an open induced map g : Kπ → K̺ such that |f − g| < ε and

deg(f) = deg(g).

P r o o f. Without loss of generality, we can assume that f(0) = 0. Hence
for each j, ̺j(f(0)) = 0 and so the terms of any approximating sequence for
̺jf can be assumed to take 0 to 0. We make this assumption below. Also,
we assume that ε < 1/2. For each j ∈ N, there is a δj < ε/4 such that

(1) if |x− y| < δj , then |̺j
1(x)− ̺j

1(y)| < ε/4.

For each j ∈ N, let {f j
k : Ik → Ij} be an approximating sequence for ̺jf .

Choose N1 so that the following two conditions are met:

(2) |f1
N1

πN1
− ̺1f | < ε/4,

(3) for N > N1,

deg(f1
N )

deg(πN
1 )

=
deg(f1

N1
)

deg(πN1

1 )
.

(Note: this number is actually deg(f), see [6].)

For k > 1, choose Nk > Nk−1 such that the following conditions hold:

(4) |fk
Nk

πNk
− ̺kf | < δk,

(5) for N > Nk,

deg(fk
N )

deg(πN
1 )

=
deg(fk

Nk
)

deg(πNk

1 )
.
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Claim 1. For each k, |f1
N1

πNk

N1
− ̺k

1fk
Nk
| < ε/2.

To see this note that

|f1
N1

πNk

N1
πNk
− ̺k

1fk
Nk

πNk
| = |f1

N1
πN1
− ̺k

1fk
Nk

πNk
|

≤ |f1
N1

πN1
− ̺1f |+ |̺1f − ̺k

1fk
Nk

πNk
|

= |f1
N1

πN1
− ̺1f |+ |̺

k
1̺kf − ̺k

1fk
Nk

πNk
|.

From (2), the first term of this sum is less than ε/4, and since
|̺kf − fk

Nk
πNk
| < δk, we know from (1) that the second term is less than or

equal to ε/4. So we have |f1
N1

πNk

1 πNk
− ̺k

1fk
Nk

πNk
| < ε/2. Since πNk

is a
surjection, it can be cancelled from the right to yield Claim 1.

Since we have assumed that ε < 1/2, Claim 1 shows that |f1
N1

πNk

N1
−

̺k
1fk

Nk
| < 1/2 for each positive integer k. So by Lemma 4.2, there is an

order preserving homeomorphism hk such that f1
N1

πNk

N1
= ̺k

1fk
Nk

hk. Let

g1 = f1
N1

, and for each k > 1, let gk = fk
Nk

hk. Note that gk ∈ O
+ for all k.

Now we have

(∗) g1π
Nj

N1
= ̺j

1gj for each j.

Claim 2. For each k, gkπ
Nk+1

Nk
= ̺k+1

k gk+1.

Letting j = k + 1 in (∗) yields

̺k
1̺k+1

k gk+1 = ̺k+1
1 gk+1 = g1π

Nk+1

N1
= g1π

Nk

N1
π

Nk+1

Nk
.

Letting j = k in (∗) and multiplying both sides of the resulting equation on

the right by π
Nk+1

Nk
gives

g1π
Nk

N1
π

Nk+1

Nk
= ̺k

1gkπ
Nk+1

Nk
,

and so

̺k
1̺k+1

k gk+1 = ̺k
1gkπ

Nk+1

Nk
.

Since ̺k
1 is a standard open map, Lemma 2.6 guarantees that ̺k

1 can be

cancelled on the left of this equation to yield ̺k+1
k gk+1 = gkπ

Nk+1

Nk
. This

proves Claim 2.
Now by Claim 2 and Lemma 3.1, the sequence of maps gk induces an

open map g : Kπ → K̺. Since g1 = f1
N1

, we have

deg(g) =
deg(g1)

deg(πN1

1 )
=

deg(f1
N1

)

deg(πN1

1 )
= deg(f).

In order to show that |f − g| < ε, we need to establish

Claim 3. For each k, |gkπNk
− ̺kf | < ε.

For k = 1, this follows from the definition of g1 and condition (2) above.
When k > 1, the triangle inequality gives |gkπNk

−̺kf | ≤ |gkπNk
−fk

Nk
πNk
|+
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|fk
Nk

πNK
− ̺kf |. From (4) and δk < ε/4, the second term in this sum is less

than ε/4. To bound the first term, note that

|̺k
1gk − ̺k

1fNk
| = |̺k

1fk
NK

hk − ̺k
1fk

Nk
| = |f1

N1
πNk

N1
− ̺k

1fk
Nk
| < ε/2 < 1/2

(the first equality uses the definition of gk, the second that of hk; the first
inequality is Claim 1, the second is by the choice of ε). As these are interval
maps and ̺k

1 is a standard map, Lemma 4.4 yields |gk−fk
Nk
| < |̺k

1gk−̺k
1fk

Nk
|

< ε/2. Because πNk
is a surjection, |gkπNk

− fk
Nk

πNk
| = |gk − fk

Nk
| < ε/2.

This bounds the first term, and establishes Claim 3.
To complete the argument, choose x∈Kπ so that |f−g|= |f(x)−g(x)|.

Then |f − g| =
∑∞

k=1 |gkπNk
(x) − ̺kf(x)| · 2−k <

∑∞
k=1 ε · 2−k = ε ·

∑∞
k=1 2−k = ε.

4.8. Theorem. If f and g are open maps from Kπ to K̺ with |f − g|
< 1/4, then deg(f) = deg(g).

P r o o f. In the case where f and g are both induced, there are sequences
fi and gi of inducing functions for f and g; furthermore, these sequences
can be found so that for each i, dom(fi) = dom(gi) = Iki

.
Now, for any xk1

∈ Ik1
, let x ∈ π−1

k1
(xk1

) and xk = πk(x). Then

1

2
|f1(xk1

)− g1(xk1
)| ≤

1

2
|f1(xk1

)− g1(xk1
)|+

∞
∑

n=2

2−n|fn(xkn
)− gn(xkn

)|

= |f(x)− g(x)| ≤ |f − g| <
1

4
.

Thus, |f1 − g1| ≤ 1/2, and so f1 and g1 have the same degree. Finally,

deg(f) =
deg(f1)

deg(πk1

1 )
=

deg(g1)

deg(πk1

1 )
= deg(g).

When one of f or g is not induced, use Theorem 4.7 with

ε = 1/4− |f − g|/2

to find induced maps f∗ and g∗ with the same degrees as f and g and so
that |f − f∗| < ε and |g − g∗| < ε.

We have an immediate corollary.

4.9. Corollary. The decomposition of Oπ
̺ into degree classes is an open

decomposition and each class contains a dense set of induced open mappings.

Further , the degree homomorphism deg : Oπ → Qπ is a continuous open

mapping if Oπ is given the sup metric and Qπ is given the discrete topology.

For each rational r/s ∈ Qπ, let Oπ(r/s) = deg−1(r/s), the open maps
of degree r/s. Each element f of this degree class is a uniform limit of
open induced maps from the class. For example, a degree one open map is
the uniform limit of degree one induced open maps, the vertically induced
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homeomorphisms. It is natural to ask whether degree one open maps must
themselves be homeomorphisms. More generally, we can ask the following
question:

4.10. Question. Suppose r/s is invertible in Qπ. Are the members of

Oπ(r/s) all homeomorphisms?

We have produced an algebraic structure theorem for the semigroup
IOπ, Theorem 3.16. In view of this and Corollary 4.9, it is natural to seek a
structure theorem for the semigroup Oπ. In particular, we ask the following
question:

4.11. Question. Can each f ∈ Oπ be factored into wr/su, where u is a

degree one open map of Kπ?

We can give partial answers to this question, and note that an affirmative
answer to the first question implies an affirmative answer to the second
question.

4.12. Lemma. If r/s is invertible in Qπ, then Oπ(r/s) = wr/sOπ(1).

P r o o f. f ∈ Oπ(r/s) if and only if f = wr/s(ws/rf) ∈ wr/sOπ(r).

4.13. Corollary. Let γ denote the sequence 2, 3, 2, 3, 5, . . . of primes,
in which each prime occurs infinitely often. Then each open map f ∈ Oγ

can be written uniquely as wr/su, where r/s is the degree of f and u is a

degree one open map.

P r o o f. By Lemma 4.12, f can be written as claimed. To show unique-
ness, suppose f = wr/su = wr/sv. Then multiply on the left by ws/r and
conclude that u = v.

4.14. Lemma. If u, v ∈ HVπ and |wru−wrv| < 1/2, then |wru−wrv| ≥
|u− v|.

P r o o f. Let ε > 0. Take n so large that
∑∞

i=n+1 1/2i < ε and we can

choose homeomorphisms h, g of I so that u = (πn
1 h)n

1 and v = (πn
1 g)n

1 . Then

wru = (πn
1 wrh)n

1 and wrv = (πn
1 wrg)n

1 .

From the definition of distance in Kπ and the given inequality, we have
|πn

1 wrh− πn
1 wrg| < 1/2, and so by Lemma 4.4 we have

|πn
k wrh− πn

k wrg| ≥ |π
n
k h− πn

k g|

for all k from 1 to n. Now let x ∈ Kπ so that |u − v| = |u(x) − v(x)|. It
follows that
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|wru− wrv|

≥ |wru(x)− wrv(x)| =
∞
∑

i=1

|πiwru(x)− πiwrv(x)|

2i

≥
n

∑

i=1

|πiwru(x)− πiwrv(x)|

2i
=

n
∑

i=1

|πn
i wrh(xn)− πn

k wrg(xn)|

2i

≥
n

∑

i=1

|πn
i h(xn)− πn

k g(xn)|

2i
=

n
∑

i=1

|πiu(x)− πiv(x)| ≥ |u− v| − ε.

Since ε was arbitrary, the lemma follows.

The next theorem is the closest we have come to a factorization theorem
for Oπ.

4.15. Theorem. If deg(f) = r/s, then f = wr/su for some continuous

surjection u of Kπ.

P r o o f. By Theorem 4.7, f = limn→∞ wrun, where un ∈ HVπ for each
n. By Lemma 4.14, |un−um| < |wrun−wrum| for sufficiently large n,m and
so un is a Cauchy sequence. Since the space of continuous maps from Kπ to
Kπ is complete, the sequence un converges uniformly to a continuous surjec-
tion u : Kπ → Kπ. But also composition of functions is a continuous opera-
tion on the space of continuous maps of Kπ, so the sequence wrun converges
to wru. Hence f = wru.
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