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Open maps between Knaster continua
by

Carl Eberhart, J. B. Fugate
and Shannon Schumann (Lexington, KY)

Abstract. We investigate the set of open maps from one Knaster continuum to
another. A structure theorem for the semigroup of open induced maps on a Knaster
continuum is obtained. Homeomorphisms which are not induced are constructed, and
it is shown that the induced open maps are dense in the space of open maps between
two Knaster continua. Results about the structure of the semigroup of open maps on a
Knaster continuum are obtained and two questions about the structure are posed.

1. Introduction. Following the notation of J. W. Rogers [10], for each
positive integer n let w,, : I = [0,1] — I denote the mapping which is 0 at
i/n for ¢ even, 1 at i/n for i odd, and linear in between, that is,

wy(z) =

nx — i ifiiseven and 0 <i/n <z < (i+1)/n <1,
i+1—nx ifiisoddand 0<i/n<z<(i+1)/n<1.

The map w, is called the standard map of degree n, and the set of all
the maps w,, is denoted by W. As noted in [6], the composition w,w,, of
two standard maps is the standard map w,,,, and so W is a semigroup of
mappings on I which is naturally isomorphic to the multiplicative semigroup
of positive integers under the function w, — deg(w,) = n.

If 7 is any sequence of positive integers and K, denotes the inverse limit
liin{fk,wiH}, where I, = I and 7r,]:+1 = Wnr(k), then K is an indecompos-
able continuum (compact connected metric space) except in the case when
m(i) = 1 for all but finitely many i (cf. [9]).

If the sequence 7 is a constant sequence m(k) = n, then we denote K,
by K,. The continuum K5 is the well-known “bucket handle” described in
the 1920’s by B. Knaster as an intersection of disks in the plane. We refer
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to K, as a Knaster continuum and denote the set of all homeomorphism
classes of Knaster continua by K.

Knaster continua have been studied by many authors, including Ro-
gers [10] and W. Debski [6].

In [10], Rogers shows that each indecomposable metric continuum can
be mapped continuously onto any Knaster continuum, and that any inverse
limit lim{Z;, £} is (homeomorphic to) a Knaster continuum if each map
fi+1 is a limit of open maps in the sup metric.

In [6], Debski provides a complete classification of Knaster continua and
shows that there are uncountably many topologically different Knaster con-
tinua.

In the present paper, we investigate the structure of the open mappings
between Knaster continua. If m and ¢ are sequences of primes, then OF
denotes the set, possibly empty, of all open mappings f : K; — K,. In
case m = o, OF will be written O,. This last set forms a semigroup under
composition of functions, since the composition of open maps is open.

Let P be the set of primes and w = {0,1,...,00} the set of countable
cardinals.

Every sequence 7 of primes has associated with it an occurrence function

occr : P—w

whose value at a prime p is the number of occurrences of p in the sequence 7.

Since 7 is an infinite sequence of primes, either occ,(p) must be oo for
at least one prime p or occ,(p) must be nonzero for infinitely many primes
p. Conversely, given a function 7 : P — w such that 7(p) = oo for some
prime p or 7(p) > 0 for infinitely many primes p, we can arrange a sequence
7 of primes such that occ, = .

The semigroup of open mappings on the interval is described in Section 2.
The structure we find in this semigroup is a key to unlocking the structure
of the open induced maps between Knaster continua, which we describe in
Section 3.

A map f: K — K, is said to be an induced map provided that there
is an increasing sequence of subscripts i, and maps fi : I;, — I so that
orf = frmi, for each kK =1,2,... The sequence is called a defining sequence
of coordinate maps for f. The set of open induced maps from K, to K, is
denoted by OZ7. In the case m = p, write OZ; = OZ.

We show that the composition of open induced maps is an open induced
map whenever the composition is defined. So the set OZ, is a subsemigroup
of the semigroup O,.

We show that an open induced map is determined by any one of its
coordinate maps. We obtain a structure theorem for the semigroup OZ;
which expresses it as a semidirect product of some of its subsemigroups.
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In Section 4, we show how to construct homeomorphisms of Knaster
continua which are not induced, and prove that each open mapping between
Knaster continua is the uniform limit of open induced mappings.

Before the open maps between K and K, can be analyzed, we need to
look carefully at the open self-maps on 1.

2. The semigroup of open maps on I. Let O denote the semigroup
of open maps from I to I under composition. We call an element f of O
order preserving provided that f(0) = 0 and denote the set of all these by
OT. Then O is clearly a subsemigroup of the semigroup O.

The following theorem is proved in [10].

2.1. THEOREM. For each f € O, f : I — I is a surjection. Further,

there is a uniquely determined strictly increasing sequence a;, ¢ = 0,...,n,
with ag =0, a, = 1, such that the restriction of f to |a;,a;+1] is a homeo-
morphism into I, for each 1 =10,...,n — 1.

The degree deg(f) of an open mapping f is defined to be the n that
satisfies the above theorem.

Let H (resp. H™) denote the group of homeomorphisms (resp. order
preserving homeomorphisms) of I. Then H is the group of units of O and
HT = HNOT is the group of units of OT.

Denote by a the homeomorphism z +— 1 — 2 on I. Then «
identity map on I.

2 = wy, the

2.2. LEMMA. Let 1 denote the constant function x — 1 on I. Then for
any positive integer n,

(i) 1 — w, = aw, # w,a = w, when n is even, and
(i) 1 — w, = aw, = w,a # w, when n is odd.

The next lemma is found in [10].

2.3. LEMMA. If f: I — I is a continuous function and a;,©=20,...,n, is
an increasing sequence in I on which the values of f alternate between 0 and
1, then there is a continuous function g such that w,qg = f. Furthermore, if
ag =0 = f(ag), an, = 1, and the restriction of f to each interval [a;, a;11]
1s 1-1, then g is an order preserving homeomorphism of I.

If h € HT and w, € W, then f = hw, € OF and deg(f) = n, so the
graph of the map ¢ defined in Rogers’ Lemma 2.3 to satisfy hw, = w,g is
seen to be the union of n scaled copies of the graph of h (see Figure 1).

So it is reasonable to call g a multiple of h by n and to denote g by nh.
Also, we will denote h by % g. Note that while nh always exists, %h only
does when there is a homeomorphism k such that nk = h. This notation is
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1.00 1.00 4
801 801
601 601
4014 4014
201 201
0 0
0 20 .40 .60 .80 1.00 0 20 .40 .60 .80 1.00
Fig. 1

useful for stating the rule for multiplication in O, in the Structure Theorem
below.

2.4. STRUCTURE THEOREM FOR O. Fach f € O can be written uniquely
as a product f = o'wy,h, where i = f(0) € Zs, deg(f) = n, and h is in HT.
Furthermore, the rule for multiplication in O is given by

(@'wph) (& wmg) = &' w,,m(a hal)g.

Proof. CASE 1: f is order-preserving. Since f(0) = 0, f is open,
and deg(f) = n, we know by Theorem 2.1 that there are numbers a; with
apg=0<aj; <...<a,=1such that f(a;) =0ifiis even, f(a;) =1if i is
odd, and f is a homeomorphism on each subinterval [a;, a;11]. In particular,
if ¢ € {ap,a1,...,a,}, then f(z) € (0,1). By Lemma 2.3, at least one map
h exists.

To show that h is unique, suppose h’ # h is also such a map. Then,
since f(a;) = wp(h(a;)) = wy(h'(a;)) and f(a;) € {0,1} for each i, we
conclude that h and b’ map {ay, ..., a,} into w;1({0,1}) = {0,1/n,...,1}.
Furthermore, since h and h’ are one-to-one and order preserving, we know
that h(a;) = i/n = h/(a;) for each i. Since h # h', there exist i and x such
that a; < < a;41 and h(z) # h'(z). Then, since w, (h(z)) = w,(h'(z)),
it follows that there is a turning point p of w, between h(z) and h'(x).
Without loss of generality, we may assume that h(z) < p < h/(x). But h
and h' are order preserving, so i/n = h(a;) < h(z) <p < h'(z) < h'(a;41) =
(1 +1)/n. Hence p cannot be a turning point of w,, since i/n and (i +1)/n
are consecutive turning points of w,,.
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CASE 2: f is order reversing. Since f(0) = 1, note that «(f(0)) =0, so
Case 1 applies to af to factor af = w,h uniquely. This yields f = aaf =
o O, h.

n

To prove that the factorization is unique, suppose that f . ol w,, g, with
g € HT. Then i = f(0) = o/ (w(9(0))) = &/ (w,,(0)) = a?(0) = j. Hence
Wmg = wyh, so m = deg(w,,g) = deg(w, h) = n. Finally, by Case 1, h = g.

To verify the rule for multiplication, note that

(@’w,h) (& wy,g) = a'wy, (o? &? ) ha? wg = (a'w,a?)(od hal wyy,)g.
Now in the second factor o/ ha’ w,, of the last expression, o/ ha? is in HT,
so by Case 1,

(@'wpa?) (& had wy,)g = (aiwy,ad yw, (m(a?hal))g.

Each of the last two factors above, m(a?ha?) and g, is in H* so their
composition is in H*. Further, using Lemma 2.2, and taking the cases
j =0,1 and n even or odd, we can write a‘w,a’ = o' w,,. Hence
(i+nj)

(' wpa Yw,, (m(a?ha?))g = a Wnmm(a? hat)g.

This establishes the rule for multiplication. m
The following corollary is immediate.

2.5. COROLLARY. The function deg : O — Z* is a homomorphism of
the semigroup of open self-maps of I to the semigroup of positive integers
under multiplication.

The next result establishes cancellation properties for O.
2.6. LEMMA. Suppose that f, g, and ¢’ are in O. Then:

(1) If deg(f) is odd and fg= fg', then g =g'.

(2) If deg(f) is even, fg= fg’, and both g and ¢' are order preserving
or both are order reversing, then g =g¢'.

B)If gf=g'f, theng=yg'.

Proof. Whether the assumption is fg = fg’ or gf = ¢'f, it follows by
Corollary 2.5 that deg(g) = deg(g’). By the Structure Theorem 2.4, there
are nonnegative integers m, n, 1, j, | and homeomorphisms h, k, and k¥’ in H™
so that f = wy,ath, g = w,ak, and ¢ = w,a'k’.

Invoking the multiplication rule from Theorem 2.4, we have

(*x) T an(@dhad )k = fg = fg = o™ w,n(alhal K.

Thus, by the uniqueness, (i + mj) mod 2= (i + ml) mod 2, hence mj mod 2
= ml mod 2.
(1) If m is odd, then j = and (x%) becomes

(%) T an(ed hal ke = fg = fg = T wn(ad ha? )k
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Now we conclude from uniqueness that n(a’ha’)k = n(a?ha)k’. Since
n(a?ha’) is a homeomorphism, k = k. So g = ddw,k = oFw, k' = ¢'.

(2) If m is even, and g and ¢’ are both order preserving or both order
reversing, then j =1 =0 or j =1 = 1. In either case j =/ and so we see
from (x*) that wy,,n(a?ha?)k = wypn(a?ha?)k'. As before, we get g = ¢'.

(3) The argument proceeds similarly to the above, except that no cases
are needed. m

A semigroup S is left cancellative provided that for all z,y,z € S, zy =
xz implies y = z. Right cancellative semigroups are defined similarly. S is
cancellative if it is both left and right cancellative.

2.7. COROLLARY. The semigroup O7 is cancellative. The semigroup O
is right cancellative, but not left cancellative.

Proof. Lemma 2.6 shows that O is cancellative, and O is right can-
cellative. To see that O is not cancellative, note that wea = wo, but « is
not the identity. m

Generally speaking, a cancellative semigroup need not be embeddable
into a group [4]. However, we show in Corollary 3.12 that there is a Knaster
continuum whose group of homeomorphisms contains a naturally embedded
copy of OF.

The semigroup O is also noncommutative, although the subsemigroup of
standard maps W is commutative. In fact, we have the following theorem.

2.8. THEOREM. An open mapping f : I — I is a standard open mapping
if and only if it commutes with ws.

Proof. Suppose fwy = waf. Then f(0) = f(w2(0)) = wa(f(0)) = 0,
since f(0) € {0,1}. Thus by Theorem 2.4, f = wy,h, where deg(f) = m
and h € HT. Using the rule for multiplication in Theorem 2.4, we see that
womh = wof = fwy = way(2h). So by the uniqueness, we have h = 2h.
But then h = lim,,_,oc 2"h = w;. =

2.9. COROLLARY. The semigroup W is a mazximal commutative subsemsi-
group of O.

Proof. Any f € O which commutes with each standard map must be
a standard map by the above theorem. m

3. Open induced maps between Knaster continua. Recall that
amap [ : K; — K, is induced by the sequence of indices ¢, and maps
fr + Liy, — Iy if o f = frm for all positive integers k. This means that in
Figure 2, the trapezoid with sides fr and f commutes and the trapezoid with
sides f; and f commutes. It follows from this definition that for each k, [ with
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k < I, the trapezoid with sides fr and f; commutes, that is, gﬁcfl = fmrfi
To see this, note first that

femiimi, = fumi, = onf = ohorf = ok fimi,-

But 7;, is a surjection and so can be cancelled on the right to establish the
claim.

Ir fi lf
o) o
L, <—>15° I <+k[il ...... K,
8 J
Ok

Fig. 2. f is induced by the sequences ij, and f},

3.1. LEMMA. A map [ : K — K,, induced by sequences iy, and fy, is
open if and only if all of the maps fir are open.

Proof. Suppose f is open. Since all of the bonding maps gé are open,
the projections gy are open. So g f is open for each k. But o f = frmi,
and since 7;, is open, it follows that f; is open for all £.

Now suppose all of the maps f; are open. Let U be a basic open set
in K. Then there is a natural number i; and an open set V' C [;; such
that U = m; 1(V). We claim that f(U) = oj ' fym;;(U) = oj ' f;(V), which
is clearly open in K,.

Indeed suppose that y € f(U), i.e. there is a point z € U such that
f(xz) =y. Then g;f(xz) = fjm,(x), by the definition of f, so y = f(z) €
gj_lfjmj(U). Now suppose that y € gj_lfjmj(U). We construct a point
x € U such that f(z) = y. For each k, let y, = ox(y). Now for each k > j,
we claim the following two statements are true:

(1) wgclfk_l(yk) is closed in K.

(2) If k£ > n, then Wijclfk_l(yk) C Wi:blfn_l(yn).

The first one is easy to see, since the set in question is the continuous
preimage of a singleton, which is closed in [}.

To see the second one, suppose that p € W;Ifk_l(yk). Then frm;, (p) =
yr- Next, fumimi, (p) = o}, frmi, (p). But this yields f,,m;, (p) = 0} (yx) = Yn,
sop et (yn):

Since (1) and (2) hold, we know that the set [ ; Wilfk_l(yk) is non-
empty and contains some point x. For each k > j, oxf(x) = fimr(x).
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Since x € 7ri_k1fk_1(yk), we know that frm;, (z) = yk. Also, for each k < 7,
orf(x) = frmi, (x) = o fymi, () = of(y;) = yr, so f(z) =y. m

K is said to be an even Knaster continuum if occ,(2) = oo, otherwise
it is an odd Knaster continuum.

In order to simplify matters we will require that, when choosing a repre-
sentative K, of an odd Knaster continuum, the sequence p contains no 2’s
at all, i.e., occ(2) = 0.

3.2. LEMMA. If a sequence iy, of indices and maps fy : I;, — Ii induces
an open map f: K, — K,, then fi € OF for all k or fi, € O™ for all k.

Proof. If K, is an even Knaster continuum, it follows from part (i)
of Lemma 2.2 that all the maps fi are order preserving. For if f; is order
reversing for some k, then choosing | > k so large that gﬁg has even degree, we
obtain g} f; = fmrfi But o} f1(0) = ¢k (1) = 0 while fkﬂ;:;(O) =fr(0)=1,a
contradiction.

If K, is an odd Knaster continuum (with no 2’s in p), then it follows
from part (ii) of Lemma 2.2 that fx(0) = f1(0) for all &, so all the maps fx
are order preserving or all maps are order reversing. m

3.3. LEMMA. If a sequence iy, of indices and maps fi : I;, — Ii induces
an open map f : Ky — K,, then the map f is completely determined by
any map in the defining sequence.

Proof. Fix a map f, : I;, — I, in the defining sequence for f and
suppose that g : K; — K, is an induced open map with a defining sequence
Jr of indices and maps g : I;, — I; in which j, = 4, and g, = f,.
It is required to show that ¢ = f. Let # = (z1,29,...) € K,;. Then
f(x) = (y1,92,...) € K, and g(x) = (21, 22,...) € K, where we know that
Yn = fn(Ti,) = gn(zi,) = 2. Hence yp, = 2z for k =1,...,n. Let k > n,
and assume without loss of generality that j, > i;. Then we have

fnﬂg: = gnﬂg: = Qﬁgk
since f, = g, and g is an induced map. But also we have

since f is an induced map. Hence g% g, = oF fkﬂ'g . Now by Lemma 3.2, all
the maps in the defining sequence for f are order preserving or all the maps
are order reversing. The same is true for g, and since g, = f,, we can apply
parts (1) and (2) of Lemma 2.6 to cancel of} on the left and get g, = frm)*.
Hence

Yk = fk(djlk) = fkﬂg;:(djjk) = gk(djjk) = Zk-



Open maps between Knaster continua 127

This shows that f(x) = g(x) for all x € K, and completes the proof that
f=g9 =

Given an f € OF and an integer k, let (f)} be the map f considered

as a map from Ij, to I;. Now (f)¥ may or may not be the first term in a

defining sequence of maps for some induced open map from K, to K,. If it

is, we use the symbol (f)§(m, ¢) to stand for the induced map. If it is clear
from the context, we will drop the reference to m and ¢. Also, f is used as
an abbreviation of (f)i(m, 7).

NOTE. It will shorten some statements if we agree that 71 = w;, the
identity map on I.

3.4. LEMMA. Let K, and K, be Knaster continua.

(1) If frx : Li;, — Iy is a defining sequence for an open induced map
[ € OI7, then for each n > 1, f = (g?fn)zl" (m,0).

(2) For each f € O and each integer n > 1, (70 f)1 = (70 f)7(w, )
exists. In particular, W 1s the identity map on K. In addition, if
g € OF, then (x7g)7 (7 )} = (7gf)}. Further, if f is a homeomorphism
then (7} )} is a homeomorphism.

(3) If 7 is an odd sequence with occ.(2) = 0, then @ exists. If m is even,
then @ does not exist.

Proof. (1) This identity is established by applying both maps to an
arbitrary point x = (21, 22,...) € K;:

f@) = (fi(za), fa(wiy), ) = (& ful®i,), - ) = (0D fu)1" ().

(2) Let p; = f and apply 2.4 repeatedly to construct a sequence of open
maps pg ¢ Intk—1 — Inir—1 so that wZi,’j_lpkH = psz_t,lj_l for k£ > 1.
Define

fr = w2+k_1pk clpag—1 — I for each k.

This sequence induces a map F : K; — K, which is open because all its
coordinate maps are open (3.1). Further, by part (1), F = (77 f)} and so

w1 f)7 exists. To see that (#w7)} is the identity map on K, apply the map
1)1 1)1
to a point (x1,x3,...) € Ky:

(M) (x1, @, ...) = (77 (Tn),...) = (T1,...).
n+k—1

If g € O, then after constructing the defining sequences gj, = m}, qk
and (gf)x = 7r2+k_1sk (with g and s defined analogously to py) for the

maps (77'g)7 and (7] ¢f)7, note that
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(mg)y (7T )Y (@1, Ton1s--2)

= (M9 (1 f (@), - 72" D201 (220-1), )

2n— 1(

(77197T2n 1p2n—1(1‘2n—1)7-- ) (7719f7T x2n—1)a---)

= (mgf(zn),...) = (7P gf) (21, ..)
Finally, if f is a homeomorphism of I, then by what has just been shown,
(@ )T (r L f =7 = (@7 f~DT (=P )T = (7)Y,
and (77")} is the identity map on K.
(3) In case 7 has no 2’s, the sequence fr = « induces an open map @

on K, by Lemma 2.2. If 7 is an even sequence, then no order reversing map
can induce an open map on K, again by Lemma 2.2. =m

Let n be a positive integer. An induced map g € OZ, is said to be

vertically induced with order at most n provided g = (7} f)7 for some f € O.
The order of a vertically induced map is the smallest n for which it is
vertically induced with order at most n. The next theorem shows that there
are lots of isomorphisms of O into O,.

3.5. THEOREM. For each positive integer n, define F, : OF — O, by
F.(f) = (z2f)¢. Then F, is an isomorphism from O% onto the set of ver-
tically induced open maps with order at most n. The set of images F,,(O7) is
an increasing tower; that is, F,(O7) C F,1+1(0O7). Finally, if occ(2) =0,
then F,, extends to all of O.

Proof. That F, is a well-defined homomorphism follows from parts
(1) and (2) of Lemma 3.4. To see that F), is 1-1, suppose F,,(f) = F,.(9).
Then the first terms of the defining sequences for these maps are equal,
ie., mff = 7wlg. But OF is (left) cancellative, so f = g. To see that
F,(O%) C F,4+1(O1), note that

Fo(f) = (7 ) = (nf frn ™)™

= (mPmn )t = (77T p2) i = Faga(p2).

Finally, assume 7 is a sequence of odd primes. Then by Lemma 2.2, «
commutes with all the bonding maps of K, and hence induces an open map
o : K; — K;. By the structure theorem for O, Theorem 2.4, each open
map f € O which is not order preserving looks like ag where g = af € O,
and hence maps to ag. =

Let OV, be the union of the tower of subsemigroups F,(O%) (F,(O)
if 7 is odd with no 2’s). Then it follows from Theorem 3.5 that OV, is a
subsemigroup of OZ,, to which we refer as the semigroup of open vertically
induced maps of K. Similarly, let HV,. be the union of the increasing tower
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of groups F,,(H™). By part (2) of 3.4, the maps in HV,; are homeomorphisms
of K. Using 3.5, we can see that HV is a subgroup of the group of units
of Or. We refer to it as the group of vertically induced homeomorphisms
of K.

Note that for any m,n, Fy,(w,,) = Fi(w,) = W,,, so the image of the
standard maps WV remains the same under the isomorphisms F;,. We denote
this common image by W, and refer to it as the semigroup of standard
nduced maps on K.

The next lemma gives a factorization of an arbitrary open induced map
from K, to K,.

3.6. LEMMA. Let g € OI;. Then g can be factored into a'‘qu where

i€40,1}, ¢ = (W)} (7, 0), and v € HV ;.

Proof. Let iy and gx : I;, — Ir be a sequence of indices and maps
inducing g. First, by Theorem 2.4, factor gi = a’*wy,, hx, where hy is an
order preserving homeomorphism. By Lemma 3.2, we know that j = 0
for all £ or j = 1 for all k. Denote this common value by j. Let v =
(7 hy) (m,m) = F;, (h1). This vertically induced homeomorphism exists
by Lemma 3.4. Next, note that for each k,

i1 k41
9T, = O 9k+1-
Substituting in the factorizations, we have
j i+l k+1 4
& W, ) = o) & w, bt

If j = 0, we can erase the o’ on both sides of the equation. If j = 1, then
QZH is odd and o = o/ commutes with it by 2.2, so we can multiply both
sides of the equation by « and erase it. In either case, we have

Tt1

k41
wmkhkﬂ-ik = 0} wmk+lhk+1.

i i
M= "y, and so

Now hk”z‘k i

wmkﬂz:+lhk+1 = Q£+1wmk+1hk+1-
Now multiply on the right by (hxy1)~! to obtain
wmkw;Z“ = Ql;:+1wmk+1'
We have shown that ¢ = (w,y,, ) (7, 0) exists. If j = 1, let @/ = @(p, o),
which we know exists because ¢ is odd with no 2’s. If j = 0, let @’ be
w1 (0, 0). In either case, we can calculate that

@’ (wy ) (. 0)(x1" )Y (m,7) = g. m
One consequence of 3.6 is that there is an open induced map from K to

K, (if and) only if there is one of the form (w,,)¥(r, ) for some m and k.
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For each positive integer n and Knaster continua K, and K,, define a
function d, (m, ¢) : P — w which we will call the n deficit of ® over o, by

dn (7, 0)(p) = max{0,0cc,(p) — 0cC(m;)=, ()}-

We will say that d,(m, g) is trivial if it never takes oo as a value and all but
finitely many of its values are 0.

The next lemma tells when (w,, )} (7, o) exists and gives a factorization
of it which will prove useful.

3.7. LEMMA. The map (w,,)}(m, 0) exists if and only if d,(w, o) is trivial
and m = dt for some integer t, where d = Hpeppd"(”’g)(p). In this case,

(wm)7 (7, 0) = (wa) (m, 0) (we)i (7, 7).

Proof. First suppose that (w,,)} (7, o) exists. Let fr = wy,, : In, — Ik

be a defining sequence for (w,, )7 (m, 9). Suppose d does not divide m. Then
there is a prime p such that the highest power p’ that divides d does not
divide m. Choose k so large that if Q?H = w, then ¢ < k and if 7r§+1 = wp
then i < n. Let p' and p® be the highest powers of p dividing deg(o¥) and
deg(m'*) respectively. Then by the definition of d, p does not divide f, and
so p/p* = pl. But mdeg(n*) = deg(o¥)fx. It follows that p/ must divide
m, a contradiction.

Now suppose that the condition holds. We will show that (wg)} exists.
Let fi = wq : I,, — I, and suppose fi : I,, — I has been defined so
that fr_1mp* = oF 1 fr. Let p be the prime such that Qi“ = wp. Let
p?, p* and p' be the highest powers of p dividing m, deg(77*) and deg(o})
respectively. If 7TZ:+1 # wp for all ¢ > ny, then | < j 4 s. Hence p divides
deg(fr) and so we can choose nyi4+1 = ng + 1 and define fr11 = w, where
r = deg(fy) deg(mni™)/p. Otherwise, choose i > ny, so that 7' ™! = w,, and

define ny41 =i+ 1 and f,,,, = w,, where r = deg(fi) deg(n*)/p. Thus

(wa)7 (7, 0) exists. Now (wgr)} (7, 0) = (wa)}(m, 0)(we)i(m, ) exists. m

If # = o, the result of Lemma 3.7 can be sharpened. As we shall see,
the map (wq)7 (7, 7) can be factored nicely. First we need some invertibility
lemmas.

3.8. LEMMA. Suppose that p and q are distinct prime numbers and p is
odd. Then w, permutes each of w1 (0) and w;*(1).

Proof. First, when n = 2, w, fixes each of w,*(0) and w,,*(1), so the
result is trivially true.
Now suppose that n is odd. Note that for each x € w,!(0), we have
x = 2k/n for some 0 < k < (n —1)/n, and that either
p-2k  —ni+ 2pk
no n

wp(zr) = —i+ for some i € 2N
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or
2k + 1) — 2pk
wy(zx)=i+1—-p- — = ni+1) = 2pk for some 7 + 1 € 2N.
n n
In either case, there is an integer r such that w,(x) = 2(r — pk)/n €

TUw; *(0). Similarly, if z € w, (1) it can be shown that for some integer r,
we have wy(z) = (2(r — pk) + 1)/n € I Uw,*(1). So wy(w;,*(0)) C w,1(0)
and wy(w; 1(1)) C w,1(1).

We now show that w, is one-to-one on w; *(0) Uw, *(1). Suppose that
for some 0 < a,b < n, there are points a/n and b/n such that w,(a/n) =
wp(b/n). By the definition of w,,, there are three cases to consider:

1. w, has positive slope at both a/n and b/n. Then there are natural
numbers i and k so that —i + pa/n = —b + pb/n. This means that pa/n —
pb/n=p(a—b)/n is an integer. Since n and p are relatively prime, we know
that n divides a — b. Now, since 0< a,b< n, we know that either a= b or
that a€ {0,n} and b=n —a. If a= 0 and b= n, then wy(a/n)= w,(0) =
0 # wp(1) = wp(b/n). This means that it must be the case that a = b.

2. w) has negative slope at both a/n and b/n. This case is essentially
the same as case 1.

3. w, has positive slope at one of {a/n,b/n} and negative slope at the
other. We will assume the notation is chosen so that w, has positive slope
at b/n. Then there are natural numbers ¢ and j so that ¢ + 1 — pa/n =
—k+pb/n. In this case, pa/n+pb/n = p(a+b)/n is an integer. Since p and
n are distinct primes, we know that n divides a+b. Now, since 0 < a,b < n,
we have one of the following cases to consider:

(a) a+b=0. Thena=>b=0,s0a/n=0=b/n.

(b) a+b=2n. Thena=b=mn,soa/n=1=0b/n.

(c)a+b=mn. Then 0 < a < n and b = n — a. This means that
b/n =1—a/n. Since p is odd, and therefore the graph of w, is symmetric
about the point (1/2,1/2), it follows that w, has the same slope at a/n as
it does at 1 — a/n = b/n. So this case is impossible.

Now, since w, takes each of w; (1) and w,, 1(0) into itself, and since w,
is one-to-one on w;,,(0) Uw,, (1), we know that w, permutes each of these
sets.

Note, in particular, that if p and n are distinct primes and p is odd, then
w,, permutes w, 1(0). m

3.9. LEMMA. If n is an odd prime, then wy maps each of w, 1(0) and
w, t(1) one-to-one onto w, 1 (0). In particular, wy permutes w;, *(0).

Proof. Note that 1/2 ¢ w,1(0) Uw, (1), because n is odd. We first
show that wq(w,,1(0)) C w,'(0). Observe that z € w,!(0) if and only
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if for some 0 < k < (n —1)/2 we have z = 2k/n. If x < 1/2, then
we(z) = 2(2k)/n € w,; *(0), and if z > 1/2, then
2(2k 2(n — 2k
wa(e) =2 - 2CR) 2020 )

n n

We next show that ws is one-to-one on w; 1(0). To see this, first note
that ws is one-to-one on each of w,; 1(0)U[0,1/2] and w, *(0)U[1/2,1]. Now
if z € w,; 1(0) U[0,1/2], then x = 2k/n for some k and wy(x) = 4k/n. Since
n is odd, we know that the numerator of this expression is an even multiple
of 2. Now, if z € [1/2,1] Uw;,, 1(0), we have

2k 2n—4k  2(n —2k)

:2— —_— =
w2(~1‘) n n n

for some natural number k. Since n is odd, we see that the numerator of
this expression is an odd multiple of 2. Therefore, ws(w; *(0) U [0,1/2]) U
wa(w,; 1(0) U [1/2,1]) = ® and w,, permutes w,, 1 (0).

Finally, since for each x € I, we(x) = we(1 — x), and since the function
a(z) = 1 — x is a bijection from w, (1) onto w,1(0), wy maps w, (1)
one-to-one onto w;; *(0). =

A standard map w, on [ is not invertible in O. However, its image
w, € O, will be invertible when the prime factors of n occur infinitely often
in 7, i.e., occ(p) = oo for each prime divisor p of n.

3.10. INVERTIBILITY THEOREM. The standard induced map w,, is in-
vertible in O if and only if for each prime factor p of n, occr(p) = oco.
Furthermore, if p is a prime such that occ,(p) = oo, then E];l = (nh=hHk,
where k is chosen so that 7TI]§_1 = Wp.

Proof. First, suppose that the condition fails. Without loss of gener-
ality, we can assume that some prime factor p of n does not occur in 7 at
all. We show that @, is not 1-1. It is clear that w,((0,0,...)) = (0,0,...).
By Lemmas 3.8 and 3.9, for each 7T§+1 of K, wf“ permutes w;l(O). Thus,
there is at least one point x = (2/p, z2,z3,...) # (0,0,...) € K, for which
z; € w, 1 (0) for each i, and so wy(z) = (0,0,...). Hence w, is not 1-1 and
so is not invertible. But this implies that w,, is not invertible, since w, is a
factor of it. This completes the proof of the only if part.

Now suppose that w,, is invertible. It is enough to assume that n is a
prime; since if p and ¢ are primes with w, and w, invertible, then w,w, =
Wy, is invertible. When n is prime, we know that it occurs infinitely often
in 7, so there is an increasing sequence of integers 1 < k1 < ko < ... for
which 77’;;‘_1 = w,. For each i, define g; : Iy, — I; by g; = 7%~1 Note that

2
3
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for each i,
kit1 ki—1_kit1 ki—1_ kip1—1 ki—1 kiy1—1
giﬂ-ki =T, ﬂ-ki =, ﬂ-ki Wy, = y w"ﬂ-ki
__ki—1_k; kivi—1 ki1 —1 441 _kip1—1 41
=T Th—1Tk, = =T Ty T T il

so the sequence of maps ¢g; induces a map ¢ : K; — K. Finally, note that
for each i,

TigWn (T) = 9iT, Wn, (z) = GiWn T, ()

= b () = i, () = (),

1

and hence gw,, = w;, the identity map on K . So w, " exists and equals

g=(g)V =@ . =
1

In particular, note that when 7 is the constant sequence n, then w;, " is
the shift map, s : K, — K, defined by s(z1,z2,x3,...) = (z2,3,...).

We can now state an existence and factorization theorem for maps
k
(wn)f (7, 7).

3.11. THEOREM. Write nf = wswy, where for each prime factor p
of s, occr(p) < oo and for each prime factor p of f, occy(p) = oo.

Then (wy,)¥(m, ) exists if and only if n = st for some t. In that case,

(wp)¥ (7, ) = m@;l.

Proof. The first statement follows from Lemma 3.7 upon noting that
the d in that lemma is the s of this theorem. The second statement fol-
lows from the factorization given in Lemma 3.7 and the Invertibility Theo-
rem 3.10. m

Theorem 3.10 also enables us to answer affirmatively the question raised
in the previous section about the embeddability of O into a group. Let ~y
denote the sequence 2,3,2,3,5,2,3,5,7,... of primes in which each prime
occurs infinitely often.

3.12. COROLLARY. The induced open maps of K. form a group. Hence
OT is embeddable into the group of units of K.

Proof. Each prime occurs infinitely often in v, and so for each positive
integer n, 3.10 says that w, is invertible in O, hence the isomorphism F
takes O into the group of units of O.. m

In [6], D/ebski defines the degree of an arbitrary open map between
Knaster continua. For the moment, we now define the degree of an induced
map in a simpler fashion. Later, in the next section, we show that the two
definitions agree on the induced open maps.
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Suppose K, and K are Knaster continua with K, < K. For any map
[ € OI7, define the degree of f by

deg(f
deg(f) = SBUL)
deg(m")
where f; : I;, — I is the first coordinate map of f and 7} is by decree w;.

3.13. THEOREM. (1) If f € OI] and g € OLy, then

deg(gf) = deg(g) deg(f)

(2) If m = 0 =6, then deg : OL, — Q7T is a homomorphism into the
group QT of positive rational numbers under multiplication.

(3) The open induced maps with degree 1 consist precisely of the verti-
cally induced homeomorphisms HV ., and the open induced maps of positive
integer degree consist precisely of the open vertically induced maps OV ..

(4) The image deg(OL,) is the subsemigroup Q. of QT consisting
of all positive rationals n/m such that for each prime divisor p of m,
occy(p) = oo.

Proof. (1) Let fi : I;, — I), and g; : I;, — I; be defining sequences for
f and g. Now

af = (g7 (F)T = (g7 (' F;)7" = (0 )7

Hence, the degree of gf is
_ deg(g1fj,) _ deg(gr) deg(et’) deg(f;,)

deg(my")  deg(of')  deg(my)
(2) This follows immediately from (1).
(3) Let f € HV,. Then f = (xi*h)}, where h € H. So
B deg(ﬂil h)
 deg(ni!)
Conversely, suppose f € OV, has degree 1. Let f; = a/w,,g : I;; — I be
the first coordinate map of f, where g is a homeomorphism of I. Then

- _deg(f1) _ m
1 =deg(f) = deg(m)  deg(mi')’

deg(gf) = deg(g) deg(f).

deg(f) = deg(h) = 1.

hence w,,, = Wil, and f € HV,.
(4) Let f € OV,; then by 3.7, f = a?qu where g = (w,,)} (7, 7), and v €
HV .. Hence by the results of the above paragraphs, deg(f) = deg(q). But

now, by 3.7 again, ¢ factors into (wq)7* (wy)i, where d = Hpeppd(m’”’”)(p)
and m = dt. Hence

deg(q) = deg((wa)7") deg((wr)]) = —o

- = 4
deg(m{")
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Let deg(n*) = M. Now, by 3.11, d = s divides M and we can write
" = wyr = wqwy, where for each prime factor p of k, occ,(p) = oo and for
each prime factor p of d, occ,(p) < co. Hence

d d
deg(q)

= t= 2yt
= dealtr) T ak Tk S 9
All that is left is to show that each t/k € @, is the degree of some
open induced map. This follows from the easily established facts that (1)
Q. is generated by the primes and the reciprocals of the primes p which
occur infinitely often in 7, and (2) if p is a prime, then deg(w,) = p and if
occr(p) = oo, then deg(w, ') =1/p. =

Let W denote the subsemigroup of OZ, generated by the induced stan-
dard maps w, together with w, 1 where occ,(p) = co. The proof of the
following theorem is immediate.

3.14. THEOREM. The function deg takes W isomorphically onto Q.
Hence:

(1) W* is commutative.

(2) Each element f of W% can factored uniquely as f = w,, W, ' where
m and n are relatively prime. Further, if f =W, w, " and g = wswt‘l are
in W2 then fg= (W, W, ) (Ws Wy ') = Wins Wy -

(3) If w, is invertible in Oy and f =W, w, ", then deg(f) = m/n.

We now introduce some notation. Given a rational number m/n € Q.
with ged(m, n) =1, let w,,/, denote w,, w,!. Further, if v = (i )i is a
vertically induced homeomorphism, then muv is defined to be the vertically
induced homeomorphism (7%* (mh))%*, where mh is the multiple of h defined
above 2.4. Now we introduce %v. First, we define %v, where occ (p) = oo, as

follows: Choose k > 1 so large that WE:+1 = wy. Then v = (7 hyyr) P

By the definition above 2.4, hy = %hk_}rjh and we let %v = (Wi’wlhk)ik“.
Now %v is defined by induction on the sum of the exponents of the prime
factors of n.

3.15. LEMMA. Let v € HV, and let m and p be integers, where p is a
prime with occ,(p) = co. Then

(1) vy, = Wy, (M),
(2) vw, ! =w,! (1—1)11).
Proof. By Theorem 3.10, we can choose k so large that w,, ' = (77~ )}

and v = (TPR)F = (7k=1(1h))5"

and so w, ' = G

. Also choose n > k so that 7)}_; = w,
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To prove (1), note that

vy, = (7PR)] (T wm )} = (7 hw)}

= (rfwm(mh))f = (7fwn)f (7F(mh))} = Wy (mv).

w w
I I <—=1I4 I, <—=1,
7rlf_1 1, 7r271 g
w w
I I <=——1I I, <—=1,
n—1
1 T
w
I, I <221,

To prove (2), refer to the diagram in Figure 3. Choose g : I,, — I,, so
that hT('Z_l = 71'2_19. Hence wphﬂ',?_l = wpﬂ'Z_lg. But wphﬂ',?_l = 7 and

Lp)w,m =t = (Lh)ap. Thus tv = (xf(1n))) =

wph = (%h)wp, SO g = (p 1

(m1'g)t. Now we compute

(1 P row T
! (];) T C Y T

-1 -1 ——1
— (b )y = (R (mp)E = v, m
Now we can prove a structure theorem for the semigroup OZ, of induced

open maps on K.

3.16. STRUCTURE THEOREM FOR OZ,.. If K, is even, then each
[ € O can be factored uniquely into the product w, yu, with deg(f) =

a/b € Qr, Wy € Wi and v € HV . The rule for multiplication in OL, is

c
Wq/pUWe/dV = Wac/(bd) <Eu>v
If K is odd, then & exists and each f € OZ; can be factored uniquely into

the product @'wqpu, with i € {0,1} = Zs, deg(f) = a/b € Qx, was € Wi
and uw € HV . The rule for multiplication is

aiwa/buajwc/dv = ai+njwac/(bd) <§(ajuaj)> v.

Proof. Let g € OZ,. Then by Lemma 3.6, g = @’qu, where i € {0, 1},

q = (w,)¥ for some positive integers n and k, and u € HV,. By Corol-

lary 3.11, n = st for some positive integer ¢, where 7% = w, ¢ is as defined
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in 3.11, and (w,)f = w,w;'. Let a = t/ged(t, f) and b = f/ged(t, f).
Then ¢ = Wy ged(r, f) Woged(t,f) L= 1w, wb‘l. By Theorem 3.13, deg(g) =
a/b e Q.

To prove the uniqueness of the factorization, suppose g = @/w, /b 18
also a factorization of g. We consider two cases.

CASE (i): 7 is an even sequence. Then @ does not exist by Lemma 3.4, and
so i= j= 0. Since deg(g)= a’/V' = a/b, we can assume that ged(a’,b') =1
and so w, = W, and Wy = @;1. Hence w,u = w,v. Now we can choose
k so large that uw= (7¥h;)¥ and v = (7¥hy)¥ for some hi,hy € HT. But
then Wou= (7Fwuh1)¥ and Wev= (7Fw,h2)¥. So by Lemma 3.3, mfw,hi =
7¥w,ho and so hy = hy by Lemma 2.6. Thus u= v, and Case (i) is proved.

CASE (ii): 7 is an odd sequence. Then by Lemma 3.4, @ does exist, and
all the coordinate maps of g are order preserving or all are order reversing.
In the first case ¢ = j = 0, and in the second case i = j = 1. If i = 0, use
the same argument as in Case (i). If i« = 1, multiply by @ and use the same
argument as in Case (i).

This completes the proof of the uniqueness of the factorization.
The rule for multiplication for the case of m even follows from Theo-
rem 3.14 and Lemma 3.15 (part (2) is used repeatedly). Thus,

1 — 1
Wy /pUWe)qU = Wo pUW WD~V = W W (CU)W, v

——1 1 C
= Wae /bW, E(cu) U= Wae/(ba) | U |-

Note that the assumption that 7 is even was not used in the calculations
above, so we know the rule for multiplication in the case 7 is odd holds
when ¢ = 57 = 0. The general rule for m odd is established using this and
using additionally these properties of @, which follow from Theorem 3.5:

(Ha’=a,

(2) if b is odd, then a’w;, = w, @’, and

(3) @'wW, ) = alite)med2g

We compute
— —j
a'wg pua? wequ
S - —i— ol —j—j
= Q"W Wy, " ut’ we/qv = @'W, Wy, @@l uad we qv

=a'w, (@ w,) ol ua w,y qv

1 J

= a'w,(Wya’ ) 'al ud! weqv = @'W, & W, @ ua! weqv

— (i4-aj) mod 2

_ —(i+taj)mod2-— ——1—j5, —j _ C_j _j
=g ita)) Wo Wy, @/ ud? we qv =@ wac/(bd)<ga3ua3>v. [
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3.17. COROLLARY. Fach open induced map f : Ky — K. is no more
than n-to-1, where n is the numerator of the degree of f reduced to lowest
terms.

Proof. By Theorem 3.16, f = a‘w,w,,'u. All of the factors are 1-1
maps, except Wy, so for any x € K, the cardinality of f~!(z) is the same
as the cardinality of A, the set of points y € K, such that w,(y) = z. If
card(A;)>n for some x € K, then in some coordinate k, card(my(Az)) >n.
But w, (7, (Az)) = xr and w, is at most n-to-1, a contradiction. m

4. Open maps on K. In this section, we show that there are open
maps on Knaster continua which are not induced, but that each open map is
a uniform limit of induced open maps. Specifically, we construct an example
of a homeomorphism on Ky that is not induced. We also show that each
open map f € Of is a uniform limit of induced open maps. In addition, we
show that D/ebski’s degree function deg : OF — Q7 is continuous.

Throughout the section, if f,g: X — I are maps on a compact space X,
then |f — g| denotes the distance from f to ¢ in the sup metric, that is,

|f — gl = sup{|f(x) —g(x)] : x € X}.
Also, if f,g: K — K,, then |f — g| denotes the distance from f to g in the
sup metric, that is,

f— gl = Sup{i Imif (@) —mig(@)| K,r}.

2
i=1

An example. Let B be the standard bucket handle continuum con-
structed as a union of semicircles (see [8], p. 205) situated in the (r,6)
plane so that the endpoint of B is the point (1,7) and the semicircle con-
taining the endpoint is the upper half of the unit circle, centered at the
origin. Define B* to be the visible composant of B. Note that B* is com-
prised of a sequence @Q; of quarter-circles joined end to end. Denote the
center of Q; by ¢;. We will define a continuous bijection p : [0,00) — B*.
First define p(0) to be the endpoint of B* and p(1/4) to be the midpoint of
the first quarter circle Q1. Next, p(1/2) = (1,7/2), the other endpoint Q1.
For i > 1, define p(i/4) to be the first endpoint of @; in the natural ordering
of B*. Now extend p to all of [0,00) as follows:

L t
the point ¢ € @)1 such that % = m for 0 <t <1/2,
p(t) = : ' L(p(i/4)cig)  t—i/4
the point ¢ € @); such that D =1

fori>1landi/4<t<(i+1)/4
Figure 4 shows the first portion of B*.
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P(1/2)
P(1/4)
P)* | L P(5/4) P(3) '+ P(3/4)
P(4) P()
P(1)
Fig. 4

Now for each k, let Jy, = p([0,2*]) C B*, and for | < k define the bonding
map fF:Jy, — J; by fF = ll"'l...f,f_l forl<k—1. Forl=k—1,

'p(t) if0§t§2k—1’

p(2t = (t—21) if 261 < ¢ < 2k —1/2,
Co) = (L2 (1)) ko1 <r < 2to1ya
k—1\P = p§+w — —5 1 _/__ _/7

p<2k_1(t—2k)> if 28 —1/4 <t <2k,

\

Denote the inverse limit of the arcs J; and maps flk by W5. Note that
each bonding map has degree 2, so W5 is homeomorphic to Ks.

These definitions of J; and flk were constructed to satisfy the conditions
of the Anderson—Choquet embedding theorem (see p. 23 of [9]), and so the
mapping h : Wy — B given by h((x;)72,) = lim;_,o x; is a homeomorphism.

Now define a homeomorphism F' : B — B as follows:

(r,r0) if0<6<m/2,1/3<r<1,
F(r,0) =« (r,rm/2+ 2—-7)(0 —7/2)) ifn/2<60<m 1/3<r<1,
(r,0) otherwise.

4.1. THEOREM. The homeomorphism G = h™'Fh : Wy — Wy is not
induced.

Proof. Consider the subset X = 7 (p(1/2)) of Wa. Note that X is
homeomorphic to the Cantor set, and hence is uncountable. The home-
omorphism h carries X to the set Y consisting of all (r,7/2) € B, and
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applying F' to Y yields the set Z of all (r,rm/2) € B. Now the map
mh™! takes each point (r,rm/2) € Z to the point (1,r7/2) and so we
conclude that 71 (G(X)) is uncountable. But if G is induced by a sequence
g1+ Jg, — Ji of open maps, then 71 (G(X)) = ¢1(m, (X)) is finite, since
T (X) = i (71 (p(1/2))) = (/1)1 (p(1/2) is finite. w

The manner in which the homeomorphism G is defined on W5 could be
duplicated on any Knaster continuum, because they can be embedded in
the plane in the same manner as Wy (see Watkins [11]).

The open induced approximation theorem. The next three lemmas lead to
a proof of Theorem 4.7: any open map from K to K, can be approximated
by an induced open map of the same degree.

42. LEMMA. If f,g€ O and |f —g| < 1/2, then
(1) deg(f) = deg(g),

(2) there is an order preserving homeomorphism h such that f = gh.

Proof. Since |f —g| < 1/2, we have f(0) = ¢g(0). By Theorem 2.1,
there are numbers 0 = a9 < a1 < ... < ap, = 1 for which flg, 4., is
a homeomorphism onto I. For each i, let a;11/2 = f [sz,ai+1](1/2)’ I, =
[0,1/2], and Iy = [1/2,1]. Note that for each i, f([a;11/2,ai43/2]) € IL or
J([ait1/2,ai43/2]) € Ty. Since |f —g| < 1/2 and g is open, it follows that

g\[_al a¢+1]({0’ 1}) is a singleton for each ¢, which makes deg(g) < deg(f).

Similiarly, deg(f) < deg(g). Next, using Theorem 2.4, write f = a‘w,h;
and g = a'w, hy for some order preserving homeomorphisms h; and ho. Let
h=hy'hy. Then f = gh. =

4.3. LEMMA. If f,g € OF with f(0) = ¢(0) and |w, f—w,g| < 1/2, then
for any i and any t € I, the interval between f(t) and g(t) cannot contain
both i/n and (i +1)/n.

Proof. Suppose the lemma is false. Let ¢; be the smallest ¢t which
violates the lemma and let 7 be the smallest such that i/n and (i+1)/n both
lie between f(¢1) and g(t1). We may assume that f(¢1) is less than g(t1).
Now t; > 0, for otherwise f(t1) = g(t1), since f(0) = g(0). Further, either
f(t1) =i/norg(t1) = (i+1)/n, for otherwise f(t1) < i/n < (i+1)/n < g(t1)
and by the continuity of f and g, there is a t < t; such that f(t) < i/n <
(1 4+1)/n < g(t), a violation of the choice of ;.

CASE (i): f(t1) =i/n. In this case, g(t1) > (i + 1)/n, otherwise g(t1) =
(14 1)/n and so |w,g(t1) —w, f(t1)] = 1, a violation of the assumption that
|wng —wy, f| < 1/2. Also, g(t1) < (i + 2)/n, otherwise by the continuity of
f and g there is a t < t; such that f(t) < (i+1)/n < (i +2)/n < g(t), a
violation of the choice of ¢;.
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Now as t decreases from tq, f(t) must increase by the minimality of ¢;.
Further, since f is open, f(t¢) must continue to increase until it reaches 1.
Let t' = max{t € [0,t1] : f(t) = (i + 1)/n}. Likewise, since g is open, as ¢
decreases from ¢1, g(t) must either increase from g(t1) to 1 or decrease from
g(ty) to 0.

SUBCASE 1: g(t) increases to 1. Let ¢ = max{t € [0,t1] : g(t) =
(¢ +2)/n}. First note that ¢ < ¢’ is false, for otherwise (i + 1)/n and
(1 + 2)/n lie between f(t") and g(t"), a violation of the choice of ¢;. So
t' >1t". Then (i+1)/n= f(t') < g(t1) < g(t') < g(t") = (i +2)/n. Hence

(%) |wn (f (') = wa(g(t))] < [wn(f(t)) = wn(g(t))]-

But the left hand side of (xx) is greater than 1/2 since |w,, (f(t1))—wn(g(t1))]
< 1/2 and |w,(f(t')) — w,(f(t1))] = 1. So the right hand side of (xx) is
greater than 1/2, in contradiction to the hypothesis |w,, f —w,g| < 1/2. So
Subcase 1 cannot occur.

SUBCASE 2: ¢(t) decreases to 0. Let ¢ = sup{t € [0,¢1] : g(t) = 0 or
f(t) = 1}. By the continuity of f and g, f(t”) =1 or g(t") = 0.

Suppose f(t") = 1. Then (i+2)/n = 1 (otherwise (i+2)/n and (i+3)/n
lie between ¢(t”) and f(t"), violating the choice of t1). Also, g(t") > (i+1)/n
for the same reason. Note that g(t') € [g(t"), f(¢")] C [i/n, (i+1)/n] and so

|wn(g(t") = wn (f(E"))] < lwn(g(t")) — wa(f(E"))] < 1/2.

Now |wy,(f(t')) —wn(g(t'))] < 1/2 and so, by the triangle inequality, we
have |wy, (f(t")) —w,(f(t'))] < 1, which is false since f(t") = (i + 2)/n and
f")=(i+1)/n. Thus f(t") # 1.

Hence f(t"”) < 1 and it must be that ¢g(t") = 0. Now since f(t") > i/n,
we have i/n = 0 (otherwise (i — 1)/n and i/n lie between g(t”) and f(t"),
violating the choice of ¢1). Also, f(t") < (i+1)/n for the same reason. Now
let ¢ = max{t € [0,¢1] : g(t) = (i + 1)/n}. Note that ¢ € [t",¢1] and so
[n(F(E)) — wa(g(t"))] < 1/2. Now fun(f(")) — wa(g(t"))] < 1/2 and
so, by the triangle inequality, we have |w,,(g(t")) —w,(g(t""))| < 1, which is
false since g(t") = i/n and g(t"") = (i+1)/n. Hence g(t”) > 0. So Subcase 2
cannot occur either.

So Case (i) cannot occur.

CASE (ii): g(t1) = (i +1)/n. This case is similar to Case (i). First show
that (i —1)/n < f(t1) < i/n and g(t) increases as t decreases from ¢;. Then
there are two subcases:

SUBCASE 1: f(t) increases to 1. This subcase is eliminated in a manner
similar to the manner Subcase 2 of Case (i) is eliminated.
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SUBCASE 2: f(t) decreases to 0. This subcase is eliminated in a manner
similar to the manner Subcase 1 of Case (i) is eliminated.

In this way it is shown that Case (ii) cannot occur either. m

4.4. LEMMA. If n > 1 is a positive integer, f,g € O with f(0) = g(0),
and |wy f —wng| < 1/2, then |f —g| < |wnf — wng|.

Proof. Choose a t; so that |f — g| = |[f(t1) — g(t1)|. Without loss of
generality, assume that f(¢1) < g(t1). Now 0 < ¢; and ¢; < 1. For the
moment assume that 0 < f(¢1) < 1 and 0 < g(¢1) < 1. Then since f, g are
open and |f(t1) — g(t1)| is maximum, as ¢ increases (or decreases) from ¢,
f(t) and g(t) must both increase or both decrease. For if f(t) increases and
g(t) decreases as t increases, say, then allowing t to decrease from t; will
cause f(t) to decrease and g(t) to increase. In one direction or the other,
|f(t)—g(t)| must increase, a contradiction, since |f(t1) — ¢g(t1)| is maximum.

By Lemma 4.3, there is at most one i/n between f(t1) and g(t1). If
there is no i/n strictly between f(t1),g(t1) then |w,f(t1) — w,g(t1)| =
n|f(t) — g(t)]. If there is one, say i/n, we consider three cases.

CASE 1: w, f(t1) and w, g(t1) are between 0 and 1/2. Suppose i/n is
between f(¢1) and ¢(¢1). Then w,(i/n) = 0. For suppose w,(i/n) = 1.
Then by either increasing ¢ from ¢; or decreasing ¢ from ¢y, w,g(t) stays
below 1/2 until w, f(t) decreases to 0, at which point Lemma 1 is violated.
Without loss of generality assume that i/n — f(t1) < g(t1) —i/n. Then we
note from the geometry that g(t1) — f(t1) < wypg(t1). Now as t increases
or decreases from t1, w, f(t) decreases to 0 before w,g(t) increases to 1/2;
hence at that point g(t1) — f(t1) < wpg(t) — w, f(t) and the lemma holds.

CASE 2: w, f(t1) and w, g(t1) are between 1/2 and 1. This case is nearly
identical to Case 1.

CASE 3: w, f(t1) is between 0 and 1/2 and w,g(t1) is between 1/2 and 1.
This case cannot occur. For by increasing or decreasing t from t;, we can
decrease w,, f (t) to 0 before w,g(t) increases to 1, at which point the distance
from w, g to w, f exceeds 1/2, a contradiction. m

In [6], Debski defines an approximating sequence as follows: Let f :
K, — I be an open map. A sequence of open maps f; : I; — I is called
an approrimating sequence for f provided that the sequence fim; : Ky — I
converges to f in the uniform metric. He then proves an approximation
theorem [6, p. 206]:

4.5. DEBSKI’S APPROXIMATION THEOREM. Fvery open map f: Ky — I
has an approximating sequence f;. Furthermore, for sufficiently large i, the
sequence deg(f;)/deg(m?) is constant.

Let 0 denote the point in K all of whose coordinates are 0.
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4.6. COROLLARY. Let f € OF. If g is even then f(0) =0, and if ¢ is
odd (with no twos) then f(0) =0 or @(f(0)) =0.

Proof. For each positive integer k, let f; : I; — I, be an approxi-
mating sequence for the kth coordinate map of f, orf : K, — I. Since
the maps f; are open, we see that f;(m;(0)) = f;(0) is 0 or 1. Since the
sequence f;m; converges uniformly to o f, we know f;(m;(0)) converges to
or(£(0)), so or(f(0)) is 0 or 1. Now if p is even, then for each k there is
an [ > k such that ¢!, = wa,, for some m. Hence ox(f(0)) = ok (0:/(f(0))) =
Wam(7) = 0, where j is 0 or 1. This shows that f(0) = 0 if g is even. If

0 is odd, let 5 = 01(f(0)). Now if for some k, ox(f(0)) = t # j, then

j = 01(f(0)) = ¢¥(er(f(0))) = of (t) =t # j. This shows that f(0) =0 or

af(0)=0. =

Debski defines the degree of an open map f : K; — I to be the constant
guaranteed by 4.5. The degree of an open map f : K — K, is defined as
the degree of g f. Note that this definition extends the notion of the degree
of an induced open map from K, to K,.

4.7. THEOREM. If f : Kx — K, is an open map and ¢ > 0, then
there is an open induced map g : K — K, such that |f —g| < ¢ and

deg(f) = deg(g)-

Proof. Without loss of generality, we can assume that f(0) = 0. Hence

for each j, 0;(f(0)) = 0 and so the terms of any approximating sequence for
0;f can be assumed to take 0 to 0. We make this assumption below. Also,
we assume that ¢ < 1/2. For each j € N, there is a §; < €/4 such that

(1) if |z — y| < 6;, then |o](z) — o] (y)| < /4.

For each j € N, let {f,g : I, — I} be an approximating sequence for g; f.

Choose Nj so that the following two conditions are met:

(2) |fa, v, — o1 f] < /4,
(3) for N > Ny,
deg(fL) _ dea(s},)
deg(m")  deg(ny")
(Note: this number is actually deg(f), see [6].)

For k > 1, choose Ny > Nj_; such that the following conditions hold:

4) |f5, 7N, — orf] < Ok,
(5) for N > Ny,

deg(7k) _ deg(fh,)
deg(r]) ~ deg(r}*)
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Cramm 1. For each k, \leﬂNl —oi fR. | <e/2.
To see this note that

‘fN1WN1 TNe — QlffllffkﬂNA = |f]1\[17TN1 - QlffﬁkﬂNA
< |f]1\717TN1 - Qlf‘ + |Qlf — Qlffjlifkﬂ']\[k‘

= |f]1\717TN1 —o1f|+ |Qlf9kf - Q’ffz]f/kWNkL

From (2), the first term of this sum is less than ¢/4, and since

lowf — [}, 7N, | < Ok, we know from (1) that the second term is less than or

equal to €/4. So we have \f}vlwiv’“ka — oV X ™, < e/2. Since my, is a
surjection, it can be cancelled from the right to yield Claim 1.

Since we have assumed that ¢ < 1/2, Claim 1 shows that | lew%f -

kf]’f,k\ < 1/2 for each positive integer k. So by Lemma 4.2, there is an

order preserving homeomorphism hj such that fN N’“ = 0f fN hi. Let

= fx,» and for each k > 1, let g, = f5 hy. Note that gr € O for all k.
Now we have

(%) glw]]\\g = g{gj for each j.
CrLAIM 2. For each k, gkﬂ']]\\,[:“ = Q£+lgk+1.

Letting j = k + 1 in (%) yields

k k+1 _ k+1 _ Npgy1 Ni_Nii1
010 9Gk+1 = 01 9Jk+1 = 917TN1 917TN1 TN,

Letting 7 = k in (%) and multiplying both sides of the resulting equation on

k+1

the right by my ™" gives

Ny Nk+1_ Ngy1
.917"'1\[17T]\f,c Q1gk7TNk s

and so

k k+ Nig1
Q1Qk QkJrl—ng/WTN,c .

Since o¥ is a standard open map, Lemma 2.6 guarantees that gl can be
cancelled on the left of this equation to yield Qk Y1 = gkwN’““. This
proves Claim 2.
Now by Claim 2 and Lemma 3.1, the sequence of maps g induces an
open map g : K — K,. Since g1 = f}vl, we have
1
deg(m™")  deg(m™)

In order to show that |f — g| < &, we need to establish

CLAIM 3. For each k, |grmn, — ok f] < e.

For k = 1, this follows from the definition of g; and condition (2) above.
When k > 1, the triangle inequality gives |grmn, —or f| < |gx7TN, —f]’f,kﬂNk |+
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\f]’f,kwNK — orf]- From (4) and d; < £/4, the second term in this sum is less
than /4. To bound the first term, note that

ok gr — of fni | = 05 R hie — ob fR | = | fa Tt — o fh | <e/2 < 1/2
(the first equality uses the definition of gj, the second that of hy; the first
inequality is Claim 1, the second is by the choice of €). As these are interval
maps and ¢f is a standard map, Lemma 4.4 yields |gr—fF | < |o¥gr—0f /¥, |
< /2. Because Ty, is a surjection, |grmn, — fN TN | = lgx — R | < &/2.
This bounds the first term, and establishes Claim 3.

To complete the argument, choose x € K, so that |f—g|=|f(x)—g(z)|.
Then |f — g = S0, lgemn, (2) — oef ()] - 2% < 0 e 2% =
S 2 =cm

4.8. THEOREM. If f and g are open maps from K, to K, with |f — g|
< 1/4, then deg(f) = deg(g).

Proof. In the case where f and g are both induced, there are sequences
fi and g; of inducing functions for f and g; furthermore, these sequences
can be found so that for each i, dom(f;) = dom(g;) = Iy, .

Now, for any zy, € Ij,, let x € 771;11 (xg,) and z, = 7 (z). Then

S1k) = 1)l < 51 () = g1 (o) + D227 fuCew,) — gnCo,)|

n=2

1
=f(@) —g@) = If —gl <.
Thus, |f1 — g1] < 1/2, and so f; and g; have the same degree. Finally,

dogl(f) = S _ B9 _ oy )
deg(my")  deg(m?)
When one of f or g is not induced, use Theorem 4.7 with
e=1/4—[f —gl/2
to find induced maps f* and g* with the same degrees as f and g and so
that |f — f*| <eand |[g—g*| <e. m

We have an immediate corollary.

4.9. COROLLARY. The decomposition of O into degree classes is an open
decomposition and each class contains a dense set of induced open mappings.
Further, the degree homomorphism deg : O — @Qr is a continuous open
mapping if O is given the sup metric and Q, is given the discrete topology.

For each rational /s € Qy, let O.(r/s) = deg™'(r/s), the open maps
of degree r/s. FEach element f of this degree class is a uniform limit of
open induced maps from the class. For example, a degree one open map is
the uniform limit of degree one induced open maps, the vertically induced
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homeomorphisms. It is natural to ask whether degree one open maps must
themselves be homeomorphisms. More generally, we can ask the following
question:

4.10. QUESTION. Suppose r/s is invertible in Q. Are the members of
Ox(r/s) all homeomorphisms?

We have produced an algebraic structure theorem for the semigroup
Z0O,, Theorem 3.16. In view of this and Corollary 4.9, it is natural to seek a
structure theorem for the semigroup O,. In particular, we ask the following
question:

4.11. QUESTION. Can each f € Oy be factored into w, u, where u is a
degree one open map of K ?

We can give partial answers to this question, and note that an affirmative
answer to the first question implies an affirmative answer to the second
question.

4.12. LEMMA. If r/s is invertible in Qr, then Ox(r/s) = wy;sOx(1).
Proof. f € Ox(r/s) if and only if f = w,/s(ws, f) € wy/sOx(r). m

4.13. COROLLARY. Let v denote the sequence 2,3,2,3,5,... of primes,
in which each prime occurs infinitely often. Then each open map f € O,
can be written uniquely as w,,u, where r/s is the degree of f and u is a
degree one open map.

Proof. By Lemma 4.12, f can be written as claimed. To show unique-
ness, suppose f = w,/,u = w,/,v. Then multiply on the left by w, /. and
conclude that u =v. =

4.14. LEMMA. If u,v € HV, and [W,u—w,v| < 1/2, then |w,u—w,v| >
lu — v|.

Proof. Let € > 0. Take n so large that 3> 1/2" < ¢ and we can

choose homeomorphisms h, g of I so that v = (7'h)} and v = (77'g)}. Then
wyu = (mPw,h)} and W0 = (71w,g)t.

From the definition of distance in K, and the given inequality, we have
| w,.h — mlw,g| < 1/2, and so by Lemma 4.4 we have

| weh — mgweg| > |mich — i g]

for all k£ from 1 to n. Now let x € K, so that |u —v| = |u(z) — v(z)|. It
follows that
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[W,u — W,

> |@,u(z) — (e = Z i@, u(x) — i, ()|

21

— |miw,u(e) — mwo(@)] s Irfweh(a,) — mRweg(en)]
=33 > =2 X
=1

i=1

n np, . n n
> Z; |7T@ (xn) 5 Wkg(xn)‘ = z_; ‘ﬂiu(x) — ﬂiv(gj)‘ > |u — ’U| — e,
Since € was arbitrary, the lemma follows. =

The next theorem is the closest we have come to a factorization theorem
for O,.

4.15. THEOREM. If deg(f) =r/s, then f = w, su for some continuous
surjection u of K.

Proof. By Theorem 4.7, f = lim,,_, o W,u,, where u,, € HV, for each
n. By Lemma 4.14, |u,, —tp,| < |[W,tup — W, Uy, | for sufficiently large n, m and
so uy, is a Cauchy sequence. Since the space of continuous maps from K to
K is complete, the sequence u,, converges uniformly to a continuous surjec-
tion uw : K, — K. But also composition of functions is a continuous opera-
tion on the space of continuous maps of K, so the sequence w,u,, converges
to w,ru. Hence f =w,u. m
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