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Ergodic averages and free Z? actions
by

Zoltdn Buczolich (Budapest)

Abstract. If the ergodic transformations S, T' generate a free 72 action on a finite non-
atomic measure space (X, S, pt) then for any c1, c2 € R there exists a measurable function f
on X for which (N + 1)1 Z;VZO f(872) — ¢1 and (N+1)"1 Z;V:O f(T7z) — co p-almost
everywhere as N — oo. In the special case when S, T' are rationally independent rotations
of the circle this result answers a question of M. Laczkovich.

Introduction. The problem discussed in this paper was originally moti-
vated by non-absolute integration, that is, by generalizations of the Lebesgue
integral which integrate functions f for which |f| is not necessarily Lebesgue
integrable (for details of such methods we refer to [P]). We were interested
in how Birkhoff’s Ergodic Theorem is related to generalized integration pro-
cedures. It follows from the main result of this paper that one encounters
serious problems even in the classical situation of rotations of the unit circle
equipped with the Lebesgue measure. In fact, it follows from our result that
given any two irrationals a and (3 for which «//f is also irrational there exists
a Lebesgue measurable function f defined on the circle for which

N N
NiLljz:;)f(:c+ja) — 1 and Ni_ljz:;f(az—kjﬂ) — 0 for a.e. z.
Of course, by the ergodic theorem f is not Lebesgue integrable. This also
shows that if a generalized integral of f is defined, then either the o ergodic
average or the (8 average does not converge to the value of this integral.
Answering a less specific question of this author, P. Major [M] has con-
structed a function f : X — R and ergodic transformations 5,7 : X — X
on a Lebesgue space (X, S, i) such that limy_, oo (N+1)71 Z;'V:o f(Six) =0

a.e. and limpy_, oo (N + 1)1 Z;‘V:o f(Tz) =1 a.e. In Major’s example T is
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a shift on a suitable Lebesgue space and S is conjugate to T'. The definition
of S is quite involved.

M. Laczkovich raised the question whether X in the above example can
be the unit circle with S and T being irrational rotations. In this paper
an affirmative answer to this question is given in a somewhat more general
setting. Since the transformations in Major’s example were conjugate, and
two conjugate, orientation preserving homeomorphisms of the circle have
the same rotation number, Major’s example differs substantially from the
rotation case.

Working on M. Laczkovich’s problem, in [Bu] we obtained the following
result: Suppose that f is a measurable function defined on the circle and

N
1
Iy = {a ‘N1 ]Zof(x + ja) converges a.e.}.

We verified that I'; is of positive Lebesgue measure if and only if f is
Lebesgue integrable, and in that case, by the ergodic theorem, all the limits
equal almost everywhere the integral of f. Furthermore, given a sequence
{a;}52, of rationally independent irrationals, there exists a non-Lebesgue
1ntegrable f such that each «o; € I'y. This result implies that I'y can be
dense for non-integrable functions. In [S] R. Svetic improves this result by
showing that there exists a non-integrable f for which I'y N1 is of cardinality
continuum for any non-empty open subinterval I of the circle. It is still an
open question whether there exists a non-Lebesgue integrable measurable
function f such that the Hausdorff dimension of I'y is positive.

If « and (8 are independent over the rationals then Tx = z + « and
Sz = x + (3 generate a free Z? action on the circle. The main result of
this paper shows that if .S, T are ergodic transformations of a non-atomic
Lebesgue measure space (X, S, 1) and they generate a free Z? action then
for any c1,co € R there exists a measurable function f : X — R such that

lim —— Zf (S9z) = ¢,
lim Zf Tix) =cy for p-ae. x.

Preliminaries. In this paper, whenever we use the symbol »_
and I is empty then by definition Zve ray=0.

yel’ Ay

Free Z? actions on Lebesgue spaces are natural generalizations of in-
dependent rotations of the circle. Assume that a Z2 action is generated
by S and T on a finite non-atomic Lebesgue measure space (X, S, u), and
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TSk for all (j,k) € Z?% is a measure preserving transformation on X. We
say that the group action generated by T and S is free if T7S*z # x for
(j, k) # (0,0) and p-a.e. x. Given a number N denote by Ry the rectangle
{(4,k) : 1 < j <N, 1<k <2N}. Observe that translated copies of Ry
form a partition of Z?2, that is, Ry is a tiling set in the sense of [OW]. By
Theorem 2 of [OW] Rokhlin’s lemma is valid for the above free Z? actions
and Ry . This means the following:
For any € > 0 there is a set B € § such that

(1) {17S*B : (4, k) € Ry} are disjoint sets, and
(i) (U pyery T7SB) > 1 —¢.

Main result

THEOREM. Assume that (X,S,p) is a finite non-atomic Lebesgue mea-
sure space and S, T : X — X are two p-ergodic transformations which
generate a free Z2 action on X. Then for any ci,co € R there exists a
u-measurable function f: X — R such that

N
1 .
Mz%f(fﬂ) TN+1 Zf(ij) — C1,
§=0
1 o,
ML f(z) = N1 Zf(T]x) — cg  for u-almost every x as N — oo.
§=0

Proof. If ¢; = ¢y then any function with Sde,u = ¢p is suitable.
Without limiting generality we can assume that pu(X) = 1, ¢ = 0, and
co = 1. Given a p-measurable function ¢ : X — R and an ¢ > 0 we
say that it is (S,e)-good if there exists a measurable set X. g such that
(X \ Xes) < 2¢ and |Myg(z)| < e for all x € X. 5 and N = 0,1,...
Denote by E the support of g.

CrLAIM 1. Given an integer Ny assume that M(Ugio S7kE) < 2¢ and

N

(1) ‘Zg(Skx)’<Noa forallz € X and N =0,1,...
k=0

Then g is (S,¢€)-good.

Proof. Let X. 5 = X \Up%, S™*E. If z € X. g then g(S*z) = 0 for
k=0,...,No; hence Myg(z) =0 for N =0,..., Ng. Furthermore by using
(1) for N > Ny we have

] X
- gk
N+1 kzog (5%2)
This shows that Claim 1 is true.

N

< ‘]\1]0 > g(S*z)

k=0

[Myg(x) = <e
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Assume that g > 1 > ... >0, Z;io gj < 0o, and 1/e; is an integer for
all j. We also suppose that the bounded measurable functions f; : X — R
have the following properties:

(i) if B9 denotes the support of f; then p(E7) < 2¢;,

(11) SX fj dp =1,

(iii) faj4+1 — fo; is (S,€25)-good and

(IV) f2j+2 - f2j+1 is (T, €2j+1)—g00d for _] = 0, 17 .o

Later we show that such functions exist. Now we verify that the exis-
tence of such functions implies the theorem. Set f = Z;‘;O(—l)j f;. From
(i) and 3 ;€j < 0o it follows that the sum defining f converges p-almost
everywhere.

We first show that ML f(x) — 1 p-almost everywhere. Given & > 0
choose Ny such that Z;.;2N0+1 gj < g/4. Since faj1o — fojq1 18 (T, €2j41)-
good for each j there exists X, ,, 7 such that u(X \ Xe,,,, 1) < 22541
and |MF (foj2 — foj1)(@)| < €2j41 for all N =0,1,... and z € X,
Observe that letting

2j+1,1"

2N, No—1
gve = Y (=1 fi=fo+ D fajra — fajn
=0 =0

we have S « 9N, dp = 1 and by the ergodic theorem we can choose a mea-
surable set Xy, and a number N; > Ny such that u(X \ Xn,) < £/2 and
IMEgn, (z) — 1] < /2 for x € Xn, and N > Nj.

Set X = X, NNy, Xeayss,r- Then p(X \ X) < € and for z € X and
N > N; we have

|MRf(x) = 1] < [M§gn, (2) = 11+ D [IME(faju2 = fo41) ()]
Jj=No

< €/2+ Z €2j+1 < €.
Jj=No
Since this estimate is valid for all € > 0 this implies M% f(z) — 1 p-almost
everywhere. The argument showing My f(x) — 0 is similar and is based on
the fact that if we set gn, = Z;.V:Oal f2j+1 — foj then { gn, du = 0.
To complete the proof of the Theorem we need to show that functions
f; with properties (i)—(iv) exist. This is based on the following lemma.

LEMMA. Suppose that the transformations S, T satisfy the assumptions
of the Theorem. Assume that K and N are arbitrary positive integers and
go is a bounded measurable function with support E°. Set ¢ = 1/K. Then
there exists another bounded measurable function g1 such that

(a) {x g1dp =\ godp,
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(b) if E denotes the support of g1 then u(UfL_N S—kEY) < 2¢,
() supyex |91(2)] < €' sup,ex [g0(2)];

(@) | Mo (91 — go)(TFa)| < 26 sup,e lgo(2)| for M = 0,1,... and
all v € X, and

(e) if E1 denotes the support of g1 — go we have Ey o C Uf:o TrFEC,

We prove the Lemma later. Next we use it repeatedly to find the func-
tions f;. Let K; = 1/¢;. Since the even and odd steps are slightly different,
we now state what properties we want to satisfy at these steps.

The even case:

(a2j) \y fojdp =y foj—1du =1,
(b2y) (Up2"y,, STEE?) < 225,
(caj) SUPLex |f2j( )| < 52}1 SUPgex |f25-1(2)],
(dog) | ato(foi — fajm1)(T*@)| < 265, sup,ex | foj1(z)] for M =
0,1,...,and all z € X,
eg;) 1f Foioi_1 denotes the support of fo; 2i_1 We have
i) if Eojoj—1 d h f fa; — fo; h
sz
Egjygj_l C U TFE?-1,
k=0
The odd case:

(a2j+1) §x fojrdu =\ fojdp =1,

Najy1 —k 2j+1
baj1) p(Up2 NQJHT EHY) < 269541,

(
<C2J+1) SUPgzex ‘f2]+1( )| < 52_Jl+1 SUPgzex ’fQJ( s
(

d2]+1) ’Zk 0(f2g+1 - fQJ)(Sk )| < 252]+lsupw€X ’f2j( )| for M =
0,1,...and all z € X,

(62j+1) if E2j+172j denotes the Support of f2j+1 — fgj we have
Kojiq
E2j+1,2]‘ C U SkE2,
k=0
Set f_1(z) =1 for all z € X. Let

2 1 2 1
Apply the Lemma with K = Ky = 1/¢g, N = Ny, and gy = f_1 to obtain a
bounded measurable function f such that properties (ag)—(dg) are satisfied.
The general odd step: Assume that fo; is defined for a j = 0,1, ... Set
2 1

Noji1= 55—~ sup | fa;]-
52j+2 €2j4+1 z€X

— sup |f-1].
€0 zeX
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Apply the Lemma by reversing the role of S and T with K = Ky, =
1/62]‘+1, N = N2j+1 and go = fgj. This yields a function f2j+1 with prop-
erties (agj1)—(€2;41)-

The general even step: Assume that fo;11 is defined for a j = 0,1,...
Set 2

Nojio= 55—~ sup | foj41]-
€9j43 €2j+2 zeX
Apply the Lemma for S and T with K = Kyj10 = 1/e9j42, N = Naj;2 and
go = f2j+1' This yields a function f2j+2 satisfying (a2j+2)*(82j+2).

It is clear that the functions f; defined above have properties (i)—(ii).
Next we verify (iii). From { foj—1 dp = 1 it follows that sup,cy [f2j-1(2)|
> 1; hence 1/52j+1 = K2j+1 < Ngj. Thus using (82j+1) we infer E2j+172j
C UkKi{fl SkE2 Ugi]o Sk E27. Therefore

Ngj N2j
U SikEQj_i_l’Qj C U SikEQJ.
k=0 k=—Na;
Now, (bg;) implies
sz NQJ‘
M( U S_kEzjﬂaj) < M( U S_kEQJ) < 2e9;.

From (dg;4+1) and (cg;) we obtain

2 1
sup | f2;(z)| < - — sup | faj—1(2)]
€2j+1 zeX €2j+1 €25 xeX

‘ ﬁ/[:(f%—l—l — f2j)(5kx)’ <

= Najegjt1 < Najea;
for all M = 0,1,... and z € X. Claim 1 implies that g = faj41 — fo; is
(S, e95)-good. A similar argument shows (iv). This completes the proof of
the Theorem.

Proof of the Lemma. Let Ng = (2/e)N and g9 = ¢/(2(2N + 1)). Using
Rokhlin’s Lemma with g and Ry, choose a measurable set B such that

(i) the sets {TVS*B : (j,k) € Ry, } are disjoint, and

(ii) letting E} = U(j,k)ERNU T7S*B we have u(E}) > 1 — g.

Observe that from (i)—(ii) it follows that 1 —eq < 2NZu(B) < 1.

We will call the system {T7S*B : (j,k) € Ry,} a Rokhlin tower corre-
sponding to €9 and Ry, . The set C; = Ui:ﬁ T7S* B is called the jth column
of the tower.

If j € {1,...,Noe} and = € Cjk then set gi(z) = ZkK:_Ol go(T~%x); at
other points of E} set g1(x) = 0. If ¢ E} set g1(z) = go(z). From this
definition it follows that |g1(7)| < Ksup,cx |go(y)| for all x € X. This
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proves property (c). Since T~* is measure preserving it is not difficult to see
that SE(% g1du = SES, go du. On the other hand, for z ¢ E}, g1(z) = go(x).
This implies (a).

Set E}, = UNOEC 'k and El = X \ E}. The definition of g; implies
that its support, E1 is covered by E}, U Ef. We also have u(E}) < 9, and
u(Ely) = 2:N3u(B).

If z € E}, and g1(x) # 0 then there exists 0 < k < K such that
go(T~*z) # 0; hence x € TKEC for this k. Since g; — go is 0 on E}, its
support, E1 o, is a subset of Ui{:o T*EY. This shows (e).

On the other hand

N Nope 2Ny Nge 2No+N -
U SEEL, = U Uystrcs's=J |J 19¢s'B
—N j=11[=1 j=1Il=—N+1
hence
N € 3
u( U SkEolo) < Noe(2Ny + 2N)u(B) = £2N? <1 + 2>M(B) < e
k=—N

Clearly ,u(UfCV:fN SEEL) = (2N + 1)gp < /2. Since E' C E}y U E} the
above inequalities imply that (b) also holds.

Assume that T% z € Cik—(x—1) foraje{1,...,Noe}. Then TF+E-14
€ Cjk and hence

E+K-1
2 Y (g1-g90)(TFz) = g1 (TH g Z go(T~H(TF K1) = 0.

k=K'
Given z € X choose ky > 0 such that z,... ,Tko_la: ¢ E} but TFox € E}.
If there is no such kg then (g1 — go)(T*x) = 0 for all k and this implies
property (d). If there is such a kg then choose ko < k1 < ko + K such that
Tha € Cjp (k1) for a ji € {1,...,Noe}, or TFx ¢ E} and TF'z € E}
for ko < k' < k1.

Next we choose a sequence ki < ko < ... such that for each n either
Tk & EL, or if TF»z € E} then there exists j, € {1,..., Noe} such that
Tkrg € CjnK—(K—l)- If j,, < Npe then set k11 = k,+ K and jp411 = jn+1.
In this case TFrt+1g € Cjrir K—(K—1)

If j, = Npe then again set k,41 = k, + K. Observe that Thkrt1—1g ¢
CknNye = Cn,, which is the “last column” of the tower. Since C; = T_leH
when j < Ny, if TF»+12 € E} then TFr+1x € C) = Ckx—(x-1) and we can
set jp41 = 1.

Now assume that for some n, T*»x ¢ E}. Then (g1 — go)(T"*"z) = 0. Set
kni1 = kn+1. If TF+12 ¢ E} then repeat the above process. If TFn+1z € E}
then it is again easy to see that T~ !(T*»+1g) = Th~x ¢ E} implies that
Tknt1g € C) = Cr—(x-1)- Set again j, 11 = 1.



254 Z. Buczolich

If n > 1 and T*z € E} then (2) used with &’ = k,, implies

kn+1—1

(3) > (91— g0)(T"z) = 0.

k=kn,

If TF»z ¢ B} then k11 — 1 =k, and from (g; — go)(T*"z) = 0 it follows
that (3) holds in this case as well. Therefore we have (3) forn =1,2,...
It is also clear that k,411 — k, < K and if k, < M < k,,+1 then

M M
|3 (- 00| = | 3 ol < K sup o o).
k=k k=kn €

One can easily see that

k1—1 k1—1 k1—1
Y -0 =] D () = Y go(Th)| < K sup |go(a).
k=ko k=k1—K k=ko zeX

Finally for 0 < k < ko we have (g1 — go)(T*z) = 0. As K = 1/¢ we obtain,
for any M,

>0~ 00)(T¥2)| < 2 suplgo(a)].
E—0 reX

This proves (d) and concludes the proof of the Lemma.
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