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Analytic determinacy and 0%
A forcing-free proof of Harrington’s theorem

by

Ramez L. Sami (Paris)

Abstract. We prove the following theorem: Given a C w and 1 < a < wch, if for
some n < N1 and all u € WO of length 1, a is Eg(u)7 then a is 22. We use this result
to give a new, forcing-free, proof of Leo Harrington’s theorem: E%—Tum’ng—determinacy
implies the existence of 0.

A major step in delineating the precise connections between large cardi-
nals and game-determinacy hypotheses is the well-known theorem: For any
real a, ¥1(a) games are determined if and only if a* exists. The “if” part
is due to D. A. Martin [Mr2], and the “only if” part is Leo Harrington’s
[He] (!). Harrington’s proof of this result is quite complex, relying on a fine
analysis due to John Steel [S]] of the ordinal-collapse forcing relation (a
variant of this proof is given in Mansfield and Weitkamp’s [MW].)

We propose here a new, forcing-free and quite elementary proof, The-
orem 3.9. Our proof is built upon a new ordinal-definability theorem, for
reals, which is interesting in its own right, namely Theorem 2.4:

For a < wP | if a real is ¥ in (all codes of ) some countable ordinal, it
is 30
A further simplification is brought about by the use of an easily defined

game (Definition 3.2) avoiding metamathematical notions. In §4, using the
same techniques, we sketch a proof of a related result of Harrington.

I wish to thank Alain Louveau for inspiring conversations during early
stages of this work.
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(1) For an excellent mathematical and chronological account of the context of this last
result, describing inter alia the important contributions of H. Friedman and D. A. Martin,
see Kanamori’s [Kn], §31.
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1. Preliminaries and background

1.1. We refer to Moschovakis’ [Ms] for (effective) descriptive set theory
and for the theory of infinite games. C = P(w) is the Cantor space or the set
of reals, R = P(w X w) is the space of relations on w and S, is the space of
permutations of w, each equipped with its usual recursively presented Polish
topology. Basic hyperarithmetic theory and the connection with admissible
sets and ordinals are assumed (see Sacks’ [Sc2] or [MW]). We will make use
of the effective Borel hierarchy %0, o < w{¥, and its relativizations. The
reader who is averse to the effective hierarchy can easily recast all statements
and proofs below in terms of Al sets. This leads to slightly shorter proofs of
somewhat less transparent statements. (We have stated, in Remarks 2.5(c)

and 3.7, “Al versions” of the key steps towards the main result.)

1.2. Let R C X x Y where ) is a topological space. Recall that the
category quantifier “I*y(R(x,y))” stands for: the set {y € YV | R(z,y)}
is non-meager in Y. We will make use of the category computations from
Kechris’ [Kc|: For R C X x Y, where X and Y are recursively presented
Polish spaces and R is X0 with a < w¢¥ [resp. R is Al], the relation

Ty(R(—y)) is T [resp. AL,

1.3. Linear orderings will be taken to be reflexive, that is, non-strict.
LO = {r C w x w | r is a linear ordering of its field}. For r € LO, <,
is just r and <, has the usual meaning. Next, WO = {r € LO | <, is
well founded}. For r € WO, |r| will denote its length and for @ < Ny,
WO, = {r € WO | |r| = a}. Given r,u € LO, with the same order-type,
it is not necessarily the case that (w,r) & (w,u); we will implicitly use the
easy fact that there is v/ <t u such that (w,r) = (w,u’). For k € w, define
the restriction rlk = {(m,n) | m <, k & n <, k & m <, k}. Note that if
k & Field(r), [k = 0. The function (r, k) — 7|k is recursive.

1.4. The following result, due to J. Silver, is instrumental to the proof.
Martin was the first to use it to derive the existence of 0% from determinacy
hypotheses. A proof can be found in [MW, 7.22] or in [Hg, §1].

THEOREM. If there is a real ¢ such that every c-admissible ordinal is an
L-cardinal then 0% exists.

2. Reals simply defined from ordinals

2.1. Recall that » € LO is called a pseudo-well-ordering if any non-empty
Al(r) subset of Field(r) has an r-least element. pWO will denote the set of
such orderings. Obviously, pWO D WO and, by a standard computation,
pWO is Xi. Harrison in [Hn] has shown that, for any u € pWO — WO,
OrderType(u) = wi - (14 m) + 04, where 1 is the order-type of the rationals,
and g, < wi'.
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2.2. LEMMA. Any r € pWO for which W} = WY has an isomorphic
TECuTsive copy.

Proof. If r is a well-ordering, then |r| < w{¥. Thus the conclusion, by
definition of w{¥.

If, instead, 7 € pWO — WO, then OrderType(r) = w$¥ - (1 +n) + o,
where o, < wK. An easy boundedness argument shows that {u € WO |
u is recursive} is not X1, whereas {u € pWO | u is recursive} is ¥1. Pick a
recursive u € pWO — WO. By trimming some excess, if needed, we may
assume OrderType(u) = wPX-(14n). Informally, then, by stringing together
u and a recursive well-ordering of length o,., one constructs a recursive copy
of r. m

2.3. Given f € Sy and r C w X w we denote by f -r the isomorphic
copy of r by f. Note that (f,r) — f-r is a recursive map Sooc X R — R.
Suppose 7, u C w X w are isomorphic, say via ¢ : (w,r) — (w,u). For any
ZCR,{f|f-reZ}={f]|[f u€ Z}og. Right multiplication by g being
a homeomorphism of S, the topological properties of {f | f-r € Z} and
{f | f-u€ Z} are identical.

2.4. THEOREM. Given a € C and 1 < a < wP®, if for some n < Ry and
all uw € WO, a is £2(u), then a is, in fact, X9,

Proof. Let U C w x R X w be w-universal for the X9 subsets of R x w.
Fix r € WO,,. From the hypothesis, for all f € S there is e € w such that
a="Ule, f-r,—). The Baire Category Theorem yields an ey € w such that
{fla="U(eo, f-r,—)} is non-meager in S. Set Uy = U(ep, —, —). Assume
now—towards a contradiction—that a is not X?. Consider the set

A={(z,v) |z €Cisnot X2 & v € pWO & F*f € Seo(x = Up(f - v, —))}.

We first check that A is X1. Indeed, “z is X2 is a Al property of z,
pWO is ©1. Finally, “x = Ug(f v, —)” is a A} property of (z, f,v), thus, by
the category computations of 1.2, the third conjunct in the definition of A is
Al. Further since (a,7) € A, A is not empty. By the Gandy Basis Theorem
[Gn], let (zo,v0) € A be such that wYCO’UO) = WP It follows, a fortiori, that
w(® = WK, Let now, by 2.2 above, wy be a recursive copy of vy. By 2.3,
we have 3" f € S (zo = Uo(f - wo, —)), since {f | zo = Uo(f - wo, —)} is a
translate in S of {f | zo = Up(f - vo,—)}. Let V C S be a non-empty
basic open set such that {f | xo = Uy(f - wg,—)} is comeager in V. A
straightforward category argument now yields

ke€xye 3*f S V(Uo(f +Wo, k))
Note that, since wy is recursive, “Uy(f - wo, k)”, as a relation in (f, k), is

30, The category computations of 1.2 now yield that the R.H.S. is X%; yet,
by the definition of A, x¢ is not ¥2. This contradiction finishes the proof. =
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2.5. REMARKS. (a) The case o = 1 of this result was proved, by a
different method, in the author’s [Sm, 2.5]. It was used there to establish a
weak precursor of Harrington’s theorem.

(b) Our proof shows: If for some u € pWO, {f | a is X0(f - u)} is
non-meager in Sso, then a is, in fact, ¥°. This less quotable version of the
theorem could be easier to apply.

(c) The “A} version” of 2.4 should read: Given a € C, if there isu € WO
and a A} relation D C R X w such that Vf € Soo(a = D(f - u,—)), then a
is Af.

3. Harrington’s theorem

3.1. As usual, <t and < denote respectively Turing and hyperarith-
metic reducibility. A set of reals is said to be Turing-closed if it is closed
under Turing equivalence =r. Harrington’s theorem proceeds from the, a
priori weaker, hypothesis of determinacy of ¥1 games with Turing-closed
payoff sets (henceforth: ¥} -Turing-determinacy). For ¢ € C, define the Tur-
ing cone Cone(c) = {x € C | ¢ <7 x}. Recall Martin’s Lemma [Mrl]: For a
Turing-closed set A, the infinite game over A is determined if and only if A
or its complement includes a cone.

3.2. DEFINITION. For a,b € C, set
aCbe Ve <y, alr <t b) & wi =wb
and let S={zeC|y(yC 2)}.
It is clear, by a direct computation, that the relation C is ¥}. The set

S is the payoff set of the game we are going to use to derive the existence
of 07,

3.3. PROPOSITION. & is X1, Turing-closed and cofinal in the Turing
degrees.

Proof. That S is Turing-closed and ¥} is immediate from its definition
and the complexity of the relation C. To prove that & is cofinal, let a € C
and set A = {z € C | Vo <y a(x <r 2)}. Then A is ¥{(a) and non-empty.
By Gandy’s Basis Theorem, let b € A be such that w? < w{. Note that
a <t b; thus one gets w¢ = w? and hence a C b. Consequently, b€ S. m

We shall need the following well-known complexity computations; a proof
is sketched for the reader’s convenience. (The bound here is quite loose, for
optimal results see Stern’s [Sr].)

3.4. LEMMA. For a < Ny,

(a) WO, is =9 5.
(b) Given r € WOy, the relation “u € WO, in (u, k) is B9 o(r).
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Proof. (a) is proved by induction on «. First, WOy is II{. Now, if « is
a limit ordinal, then

ue WO, & N\ \/ (ulk e WO) & A \/ (ulk € WOx)
(<ak<w k<wé<a
(this holds even if Field(u) # w). Using the inductive hypothesis, WO,, is
computed to be in IIS_; C X ,. Finally, if « = § + 1, then

u€ WO, & ueLO & 3k(kis <,-maximum & ulk € WOg)

and the R.H.S. is readily checked to be in 2%+2 cx0.,
(b) is just the effective version of (a). m

3.5. Given a < Ry, 7 € WO, and X C q, let ¢, : (Field(r),r) — (o, <)
be the canonical isomorphism, and set Code(X,7) = ¢, }[X]. Observe that
if M is an admissible set and r € M, then ¢, € M and thus X € M <
Code(X,r) € M.

We can now state the key technical property of the elements of S.

3.6. LEMMA. Leta € S, a < w{ andr € WO, For all X € P(a)NLye,
Code(X,r) is 22 5(a,r).

Proof. Let a’ C a. Since w® = w?, we have a < w¢’; let then ' € WO,
be recursive in o’ and such that (w,r’) & (w,r). Set z = Code(X,r) and
2’ = Code(X, 7). Since X, 7" € L . [a], it follows by 3.5 that 2’ € L u [a'].
Consequently, ' <;, o’ and, since o' C a, 2’ <t a. Now, for k € w, one can
easily verify that

kexe KK €' & (w7 k) = (w,r,k)).
We claim that the R.H.S. is X2 ,(a,r). Indeed, since 2’ <t a, “k' € z”
is a X9(a) property of k’. Set now I.(r',k',k) & (w,7 k') = (w,rk).
Since (w,r’) = (w,r), I.(r', k' k) is equivalent to [k € Field(r) & k' €
Field(r')] & r'|k" € WO),.1,. By 3.4(b), I is X2 ,(r), and since 1’ <t a,
L.(r',—,—) is 2, 5(a,r). Thus the claim follows. m

3.7. REMARK. The, somewhat less intuitive, “Aj version” of this last
result should read: Given r € WO, and setting o = |r|, there is a A}(r)
set D, C C X w X w such that, for any a € S, if w§ > « then for all
X € P(a) N Lyg, there is e € w such that Code(X,r) = D,(a, e, —).

The next proposition is the heart of the proof we are aiming at. Its proof
makes essential use of Theorem 2.4.

3.8. PROPOSITION. If a Turing cone Cone(c) is included in S then every
c-admissible ordinal is an L-cardinal.

Proof. By a standard downward Lowenheim—Skolem argument, it suf-
fices to verify that every countable c-admissible ordinal is an L-cardinal. Fur-
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ther, we know that by Sacks’ Theorem [Scl] every countable c-admissible or-
dinal > w has the form w¢, for some d € Cone(c). For such a d, Cone(d) C S.
It suffices, thus, to show that Cone(c) C S implies that w{ is an L-cardinal.

Assume the contrary. Thus there is o < wf and W C px o, a constructible
well-ordering of g, of length w{. Fix r € WO, recursive in c. Via some simple
constructible bijection ¢ — o X o, code W as a subset A C p. Say A € L,
where o < R;. Pick any s € WO,; since 0 < wj < w{®* A€ waGBs. Now
c® s € Cone(c) C S, thus, applying Lemma 3.6 to ¢ & s, Code(A,r) is
%0, o(c® s, 7). Consequently, since 7 <t ¢, Code(A,r) is X9 5(c @ s). This
being true for every s € WQO,, Theorem 2.4 relativized to ¢ yields that
Code(A,r) is X9, 5(c). Thus Code(A,r) € Lye[c] and, since r < ¢, this
entails that A € Loe[c] and thus W € Lye[c]. This in turn contradicts the
admissibility of Loc[c]. m

Our concluding statement is now but a direct consequence of what pre-
cedes.

3.9. THEOREM (Harrington [Hg]). ©1-Turing-determinacy implies the
existence of 07 .

Proof. Since S is X1 and cofinal in the degrees, ¥1-Turing-determinacy
implies, via Martin’s Lemma, that there is a cone Cone(c) C S. By 3.8,
every c-admissible ordinal is an L-cardinal. Thus, by Silver’s Theorem 1.4,
07 exists. m

4. Borel reducibility of analytic sets

4.1. For A,B C C let A <z B stand for: A is many-one reducible to B
via a Borel function. In [Hg] Harrington proves the following:

4.2. THEOREM. If for all ¥} sets A, B, A <g B whenever B is not
Borel, then 0% exists.

The technique used in the previous section can be easily adapted to prove
this result as well. We just sketch the main steps.

Let U be the closure under isomorphism of pWO — WO. Then U is 31
and it is easily checked that neither U nor § is Borel. From the hypothesis,
let F: R — R be a Borel reduction of U to S.

Observe first that for all £ < N; there is uw € U such that 3*f(§ <

wf(f'u)). Indeed, otherwise, one argues that for some & < Ny,

uelU eV f(F(fue{reS|wi <&}
and the R.H.S. is Borel.

F being in A}, say F is Af(c). We claim that every c-admissible ordinal
is an L-cardinal. For that it suffices to show that w{ is such.
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Argue asin 3.8. Let o < wf, and A C p be constructible. Say A € L,, with

o countable. To show A € L.¢[c] let u € U be such that 3* f(o < wf(f'“))_
For any r € WO, using 3.6 one gets

5* f(Code(A, r) is 20, (F(f - u),r)).

Now we can assume g to be large enough relative to the Borel rank of F' and
r <t ¢ It follows that 3* f(Code(A, r) is X9, ,(f - u,¢)). Using Theorem 2.4
(as generalized in 2.5(b)) one concludes that Code(A,r) is XY, ,(c). Thus
A € Lye[c], as desired.

[Gn]
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