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Abstract. We investigate some problems of the following type: For which sets H is
it true that if f is in a given class F of periodic functions and the difference functions
∆hf(x) = f(x + h) − f(x) are in a given smaller class G for every h ∈ H then f itself
must be in G? Denoting the class of counter-example sets by H(F ,G), that is, H(F ,G) =
{H ⊂ R/Z : (∃f ∈ F \ G) (∀h ∈ H) ∆hf ∈ G}, we try to characterize H(F ,G) for
some interesting classes of functions F ⊃ G. We study classes of measurable functions
on the circle group T = R/Z that are invariant for changes on null-sets (e.g. measurable
functions, Lp, L∞, essentially continuous functions, functions with absolute convergent
Fourier series (ACF∗), essentially Lipschitz functions) and classes of continuous functions
on T (e.g. continuous functions, continuous functions with absolute convergent Fourier
series, Lipschitz functions). The classes H(F ,G) are often related to some classes of thin
sets in harmonic analysis (e.g. H(L1,ACF∗) is the class of N-sets). Some results concerning
the difference property and the weak difference property of these classes of functions are
also obtained.

1. Introduction. In this paper we investigate problems of the following
type:

Let f be a “nice” function. For which sets H is it true that

(∗) if the difference functions ∆hf(x) = f(x+h)− f(x) are “even nicer”
for every h ∈ H then f itself must be“even nicer”?

1.1. Notation. We introduce the following notation. Let G be either the
additive group R of reals or the circle group T = R/Z. Let F and G be
classes of functions on G with F ⊃ G. We denote by H0(F ,G) the class of
those subsets H of G for which there exists f ∈ F \ G such that ∆hf ∈ G if
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and only if h ∈ H. That is,

H0(F ,G) = {{h ∈ G : ∆hf ∈ G} : f ∈ F \ G}.
We denote by H(F ,G) the class of sets that can be covered by a set in

H0(F ,G). Then

H(F ,G) = {H ⊂ G : (∃f ∈ F \ G) (∀h ∈ H) ∆hf ∈ G}.
Thus the family of sets satisfying (∗) is precisely the complement of H(F ,G).
Our goal is to characterize H(F ,G) for certain natural families of functions.

(Families of sets are always denoted by Gothic letters, and classes of
functions are denoted by calligraphic letters or by capitals.)

We focus on the following families of (periodic) functions on T: measur-
able functions (L0), Lp functions, essentially bounded measurable functions
(L∞), continuous functions (C), continuous functions with absolute conver-
gent Fourier series (ACF) and Lipschitz functions (with exponent 1) (Lip1).
(Note that L0, Lp, L∞, C,ACF and Lip1 denote classes of functions on the
circle group T.)

The classes H(F ,G) are often related to some classes of thin sets in
harmonic analysis. Now we define those classes that will arise in our results.
Detailed explanations can be found in the monographs [2], [17], in the recent
research papers [6] and [7] or in the recent topical survey [5].

A set H ⊂ T is called a pseudo-Dirichlet set if there exists an increasing
sequence (qn) of integers and a sequence (εn) converging to zero such that
for any x ∈ H there exists an n0(x) such that |sin qnπx| < εn if n ≥ n0(x).

A set H ⊂ T is called an N-set if there exists a trigonometric series that
is absolutely convergent on H but is not absolutely convergent everywhere;
that is, if there exist sequences (an) and (bn) such that

∑∞
n=1(|an| + |bn|)

=∞ but for any x ∈ H,
∞∑
n=1

(|an cos(2πnx)|+ |bn sin(2πnx)|) <∞.

The families of pseudo-Dirichlet sets and N-sets are denoted by pD
and N, respectively.

We denote by Fσ the family of those subsets of T that can be covered
by a proper Fσ subgroup of T.

It is known that
pD ( N ( Fσ.

(The inclusions are easy. For the (not too difficult) example for pD 6= N see
e.g. [7]. It is much more difficult to construct a set from Fσ \N. Such a set
was recently constructed by M. Laczkovich and I. Ruzsa [15].)

1.2. Known results. The difference property. In 1951 N. G. de Bruijn [3]
introduced the following notion: a class F of real functions is said to have
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the difference property if any real function f such that, for each h, ∆hf ∈ F ,
is of the form f = g+G, where g ∈ F and G is additive, that is, G(x+y) =
G(x)+G(y) for all x and y. He proved that the class of continuous functions
and the class of periodic continuous functions have the difference property.
He also proved in [3] and [4] the difference property for the classes of differ-
entiable, analytic, absolutely continuous and Riemann-integrable functions.
M. Laczkovich [13] proved that the class of pointwise discontinuous functions
and some related classes also have the difference property.

Since a measurable additive function is necessarily linear we have G 6∈
H(F ,G) if F is a class of measurable functions on G = R or T and G ⊂ F is
a class of functions on G having the difference property and invariant under
addition of linear functions (e.g. G is any of the above mentioned classes).

As the next lemma shows, for periodic continuous functions the converse
implication is also true, which means that the notion of H(F ,G) is a kind of
generalization of the difference property.

Lemma 1.1. If G ⊂ C and G is invariant under addition of constants
then the following statements are equivalent :

(i) T 6∈ H(C,G),
(ii) G has the difference property.

P r o o f. (i)⇒(ii). Suppose that ∆hf ∈ G for any h. Then, since G ⊂ C
and C has the difference property, f can be written in the form g+G, where
g ∈ C and G is additive. Thus, for any h, ∆hf = ∆hg + C, where C is
a constant. Hence ∆hg = ∆hf − C ∈ G for any h, which implies—using
T 6∈ H(C,G)—that g ∈ G.

(ii)⇒(i). This is obvious by the previous observation.

All of the results above concerned the case of H = G. As far as I know,
the first result answering a more general problem is the following:

Theorem 1.2 (Balcerzak, Buczolich and Laczkovich [1], 1997). For any
subset H ⊂ T, the following statements are equivalent :

(i) If f : T → R is continuous and ∆hf ∈ Lip1 for every h ∈ H then
f ∈ Lip1.

(ii) There is no proper Fσ subgroup of T containing H.

That is, with our notation, H(C,Lip1) = Fσ.

Another result of this type is

Theorem 1.3 ([8], 1997). For any pseudo-Dirichlet set H there exists a
periodic function f ∈ L2 \ L∞ for which ∆hf is continuous for any h ∈ H.
Thus, for any class C ⊂ G ⊂ L∞, we have H(L2,G) ⊃ pD.

We will generalize these results in Sections 3 and 5.
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1.3. Preliminary results. The following easy facts will be used frequently.

Lemma 1.4. If F ⊃ G and G is a translation invariant group of functions
on T (with pointwise addition), then each element of H0(F ,G) is a subgroup
of T. (We say that G is translation invariant if for any g(x) ∈ G and a ∈ T,
we have g(x+ a) ∈ G.)

P r o o f. By definition

∆−hf(x) = f(x− h)− f(x) = −∆hf(x− h),

thus if ∆hf ∈ G then also ∆−hf ∈ G. In addition,

∆h1+h2f(x) = ∆h2f(x+ h1) +∆h1f(x),

therefore if ∆h1f,∆h2f ∈ G then also ∆h1+h2f ∈ G.

Lemma 1.5 (Monotonicity Lemma). If F1 ⊃ F2 ⊃ G then

H0(F1,G) ⊃ H0(F2,G) and H(F1,G) ⊃ H(F2,G).

Lemma 1.6 (Triangle inequality). If F1 ⊃ F2 ⊃ F3 then

H(F1,F3) ⊂ H(F1,F2) ∪ H(F2,F3).

P r o o f. Suppose that H ∈ H(F1,F3) but H 6∈ H(F1,F2) and H 6∈
H(F2,F3). Then there exists f ∈ F1 \ F3 such that ∆hf ∈ F3 for any
h ∈ H. Since H 6∈ H(F1,F2) and F3 ⊂ F2, f cannot be in f ∈ F1 \ F2,
therefore f ∈ F2 \ F3, which contradicts H 6∈ H(F2,F3).

Lemma 1.7. If F1 ⊃ F2 ⊃ F3 and H(F1,F2) ⊂ H(F2,F3) then

H(F1,F3) = H(F2,F3).

P r o o f. This is trivial from Lemmas 1.5 and 1.6.

2. Changes on null-sets. Essentially continuous functions

Notation 2.1. If F is a class of functions we denote by F∗ the class of
those functions that are equal to a function in F almost everywhere.

If the elements of F are P functions, where P is an arbitrary property
(e.g. P = continuous) then we will call the functions in F∗ essentially P
functions.

In this section we investigate what happens if we replace a class F by F∗.
We will see that in the most important cases the corresponding class H either
remains the same or becomes much more interesting.

The following lemma is obvious.

Lemma 2.2. If G ⊂ C then G∗ ∩ C = G.

Proposition 2.3. If C ⊃ F ⊃ G then

H(F ,G) = H(F ,G∗) = H(F∗,G∗).
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P r o o f. H(F ,G) ⊂ H(F ,G∗): If H ∈ H(F ,G) then there exists f ∈ F \G
such that ∆hf ∈ G for any h ∈ H. Applying Lemma 2.2, we see that
f 6∈ G∗. Therefore f ∈ F \ G∗ and ∆hf ∈ G∗ for any h ∈ H, which shows
that H ∈ H(F ,G∗).

H(F ,G) ⊃ H(F ,G∗): If H ∈ H(F ,G∗) then there exists f ∈ F\G∗ ⊂ F\G
such that ∆hf ∈ G∗ for any h ∈ H. Since f ∈ F ⊂ C we get ∆hf ∈ C.
Applying Lemma 2.2, we see that ∆hf ∈ G. Therefore f ∈ F \ G and
∆hf ∈ G for any h ∈ H, which shows that H ∈ H(F ,G).

H(F ,G∗) ⊂ H(F∗,G∗): This follows from the monotonicity lemma.
H(F ,G∗) ⊃ H(F∗,G∗): If H ∈ H(F∗,G∗) then there exists f ∈ F∗ \ G∗

such that ∆hf ∈ G∗ for any h ∈ H. Since f ∈ F∗ there exists f̃ ∈ F such
that f = f̃ a.e. Since f 6∈ G∗ we get f̃ 6∈ G∗, hence f̃ ∈ F \ G∗. On the other
hand, ∆hf ∈ G∗ implies that ∆hf̃ ∈ G∗. Therefore H ∈ H(F ,G∗).

Proposition 2.4 If G ⊂ F ⊂ L0, G ⊂ C and G contains the constant 0
function, then

H0(F∗,G) ⊃ {additive subgroups of measure zero}.
P r o o f. Let A be an additive subgroup with measure zero. Let f be its

characteristic function.
Since f = 0 a.e. and 0 ∈ G ⊂ F we get f ∈ F∗. If a ∈ A then ∆af =

0 ∈ G. If a 6∈ A then ∆af is a non-constant function with finite range, so
it cannot be continuous, hence it is not in G. Therefore f witnesses that
A ∈ H0(F∗,G).

Remark 2.5. It is also proved in the author’s PhD thesis [9] that if
G is a closed, translation invariant subspace of C then equality holds in
Proposition 2.4.

In the sequel we will work with classes of functions of the following two
types:

(i) classes of measurable functions that are invariant under changes on
null-sets (that is, F = F∗);

(ii) classes of continuous functions that contain the constant 0 function.

Instead of H(F ,G) we will usually investigate H(F∗,G∗). If F and G are
both of type (i), then these classes of sets are trivially the same; if F and G
are both of type (ii) then the same is shown by Proposition 2.3.

If F is of type (i) and G is of type (ii) then these classes are usually not
equal (we will show that H(F ,G) contains H(F∗,G∗)), but, as Proposition 2.4
shows, H(F ,G) is “too big” and it is much more interesting to investigate
H(F ,G∗), which is the same as H(F∗,G∗).

The following lemma was proved in [8] (Lemma 2). (In fact, the last
assertion is not stated in [8], but it easily follows from the proof.)
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Lemma 2.6. Let A be an additive subgroup of R and let S be a dense
union of translated copies of A. Suppose that we have a function h : R→ R
and continuous functions la : R→ R for all a ∈ A such that ∆ah|S = la|S
for any a ∈ A. Then there exists a function h̃ : R→ R such that h̃|S = h|S
and ∆ah̃ = la for every a ∈ A. Moreover , if h is bounded , then we can
choose h̃ to be also bounded.

Main Lemma 2.7. Suppose that H ⊂ R, f : R → R is a measurable
function and ∆hf is essentially continuous for any h ∈ H. Then there exists
a function f̃ such that f̃ = f a.e. and ∆hf is continuous for any h ∈ H.
Moreover , if f is bounded , then we can choose f̃ to be also bounded.

P r o o f. Let A be the additive subgroup of R generated by H. Then
clearly ∆af is essentially continuous also for any a ∈ A. Thus for each
a ∈ A there exists a continuous function la such that ∆af = la a.e. Then

(1) f(x+ a) = f(x) + la(x) a.e. (for any fixed a ∈ A).

Let

S = {x : f has a finite approximative limit at x}.
Since f is a measurable function the set S has full measure.

For any x ∈ S, the right-hand side of (1) has a finite approximative limit
at x, hence so does the left-hand side. That is, if x ∈ S and a ∈ A then
x+a ∈ S. Therefore S is a dense (being of full measure) union of translated
copies of A.

Let

f1(x) =
{

limapprxf if x ∈ S,
f(x) if x 6∈ S.

If f is bounded then so is f1. Since f is measurable it is almost every-
where approximately continuous, so f1 = f a.e. This implies that their
approximative limits are equal everywhere. Thus for any x ∈ S we get
f1(x) = limapprxf = limapprxf1, which implies that f1 (and thus also
∆af1) is approximately continuous at the points of S. On the other hand,
∆af1 = ∆af a.e. and ∆af = la a.e, so ∆af1 = la a.e.

Hence for any x ∈ S and a ∈ A we get

∆af1(x) = limapprx∆af1(x) = limapprxla = la(x).

Now applying the previous lemma, changing f1 on the complement of S,
we can get a function f̃ such that ∆af̃ = la for any a ∈ A. Thus f̃ = f
a.e. (since f̃ = f1 on S, S has full measure and f1 = f a.e.) and ∆hf̃ is
continuous for any h ∈ H ⊂ A. Moreover, f̃ is bounded if f is.

Corollary 2.8. If G⊂F⊂L0 and G⊂C, then H(F∗,G∗)⊂H(F∗,G).
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Theorem 2.9. If f : R → R is measurable and ∆hf is essentially
continuous for any h ∈ R then f is also essentially continuous.

P r o o f. According to the Main Lemma, there exists a function f̃ such
that f̃ = f a.e. and ∆hf̃ is continuous for any h ∈ R. Then using the
difference property of the continuous functions (see Subsection 1.2) we see
that f̃ is a sum of a continuous function and an additive one. But since f̃ is
measurable, this implies that f̃ is continuous, so f is essentially continuous.

Remark 2.10. For periodic functions this theorem is the first step for
a stronger result. We will prove (Theorem 4.7) that if f is a measurable
function on T and∆hf is essentially continuous for any h ∈ H, andH cannot
be covered by a proper Fσ subgroup of T, then f is essentially continuous.

At this point one can hope that the class of essentially continuous func-
tions has the difference property; that is, for any f : R → R, if ∆hf ∈ C∗
for any h ∈ R then f is a sum of an essentially continuous function and an
additive one. However, this is not the case. More precisely, the following is
true:

Theorem 2.11. Under the continuum hypothesis, the class of essentially
continuous functions does not have the difference property.

P r o o f. Assuming CH, Sierpiński [16] constructed a non-measurable
function S : R→ {0, 1} such that for any fixed h ∈ R, ∆hS(x) = 0 with the
exception of an at most countable number of x-values.

Then clearly ∆hS ∈ C∗ for any h ∈ R. But if S were the sum of an essen-
tially continuous function and an additive one, then the additive function
would be essentially bounded on any interval, which would mean that it is
linear. Then S would be essentially continuous but S is not measurable.

However, the class C∗ has a weaker property. We say that a class F has
the weak difference property if every function f : G→ R for which ∆hf ∈ F
for every h ∈ G admits a decomposition f = g + H + S with g ∈ F , H
additive, and S such that for every h ∈ G, ∆hS(x) = 0 for a.e. x ∈ G.

Lemma 2.12. Suppose that (i) F ⊃ G are classes of measurable functions
on G (where G = T or R), (ii) G is a group that contains the constant func-
tions and the linear functions, and (iii) F∗ has the weak difference property.
Then G∗ has the weak difference property if and only if G 6∈ H(F∗,G∗).

P r o o f. Assume that G∗ has the weak difference property but G ∈
H(F∗,G∗). Then there exists f ∈ F∗ \G∗ such that ∆hf ∈ G∗ for any h ∈ G.
Since G∗ has the weak difference property, this implies that f = g +H + S
where g ∈ G∗, H is additive, and for every h ∈ G, ∆hS(x) = 0 for a.e.
x ∈ G.
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Let l = f − g = H + S. Then l is measurable and ∆hl is constant a.e.
for any h ∈ G. Thus, by the Main Lemma 2.7, there exists a function l̃ such
that l̃ = l a.e. and ∆h l̃ is constant everywhere. Then l̃− l̃(0) is a measurable
additive function, so l̃ is linear, thus l̃ ∈ G. Since f = g + l̃ a.e., g ∈ G∗ and
G is a group, this implies that f ∈ G∗, which is a contradiction.

Now we prove that if G 6∈ H(F∗,G∗) then G∗ has the weak difference
property. Suppose that for some f : G → R, ∆hf ∈ G∗ for every h ∈ G.
Then, since G∗ ⊂ F∗, f has a decomposition f = g + H + S with g ∈ F∗,
H additive, and S such that for every h ∈ G, ∆hS(x) = 0 for a.e. x ∈ G.
Then ∆hf = ∆hg + ∆hH + ∆hS. Since ∆hf ∈ G∗ and ∆hS = 0 a.e. and
∆hH is constant, this implies that also ∆hg ∈ G∗ for any h ∈ G. Therefore,
since G 6∈ H(F∗,G∗), g ∈ G∗.

Theorem 2.13. The class of essentially continuous functions has the
weak difference property.

P r o o f. In [12] M. Laczkovich proved that the class of measurable func-
tions has the weak difference property. Then, by Lemma 2.12, Theorem 2.9
implies that C∗ also has the weak difference property.

Notation 2.14. For f : G → R, where G = R or T, we denote by Hf

the set of h’s for which ∆hf is continuous.

Proposition 2.15. If g : R→ R has a point of continuity and Hg is a
dense set , then g must be continuous everywhere.

P r o o f. Let ω(x) be the oscillation of g at x. Since ω(x) is upper semi-
continuous, the sets of the form {x : ω(x) ≥ c} are closed for any c ∈ R.
On the other hand, ω(x) is periodic modulo h for any h ∈ Hg, since
g(x+ h) = ∆hg(x) + g(x), and ∆hg is continuous everywhere.

Therefore for any c ∈ R the set {x : ω(x) ≥ c} is closed and is periodic
modulo a dense set, so these sets must be either empty or the whole real
line, which implies that ω(x) is constant. Since g has a point of continuity,
this constant must be 0, which means that g is continuous.

Proposition 2.16. If f : R → R is measurable but not essentially
continuous and Hf is dense, then

lim sup
x

f = +∞ and lim inf
x

f = −∞ (∀x ∈ R).

P r o o f. We prove that lim sup f = +∞; the proof of the other statement
is the same.

We use the notation f(x) = max{f(x), lim supx f}. Since f(x + h) =
∆hf(x) + f(x) and ∆hf is continuous for h ∈ Hf it follows that f − f
is h-periodic for each h ∈ Hf . Thus if f(x0) = +∞ for any x0 ∈ R then
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lim supx f = +∞ on a dense set, which implies that lim supx f = +∞
everywhere. Therefore we can assume that f is finite everywhere.

For a fixed h ∈ Hf , the function f−f is h-periodic, so f(x+h)−f(x+h) =
f(x) − f(x), which implies that ∆hf = ∆hf . Therefore for any h ∈ Hf ,
∆hf is also continuous. Thus Hf̄ is also dense. On the other hand, f is
upper semicontinuous, so it is Baire-1, so it has a point of continuity. Then
according to Proposition 2.15, f is continuous.

Since f−f is measurable and its periods form a dense set, f−f is constant
a.e. Thus, since f is continuous, f is essentially continuous, contradicting
our assumption.

Theorem 2.17. If f : R→ R is measurable and essentially bounded and
∆hf is essentially continuous for a dense set of h’s, then f is essentially
continuous.

P r o o f. Let

H = {h : ∆hf is essentially continuous}.
Since f is essentially bounded there exists an f1 such that f1 = f a.e. and
f1 is bounded. Then for any h ∈ H, ∆hf1 is also essentially continuous.
Applying the Main Lemma, we can take a bounded function f̃ such that
f̃ = f1 a.e. and ∆hf̃ is continuous for any h ∈ H. Since H is dense, the last
proposition shows that this can happen only if f̃ is essentially continuous.
But then so is f , being almost everywhere equal to f̃ .

Corollary 2.18.
H0(L∞, C∗) = {finite subgroups of T},
H(L∞, C∗) = {finite subsets of T ∩Q},

where Q denotes the set of rational numbers.

P r o o f. Since the subsets of T that can be covered by a finite subgroup
of T are the finite subsets of T ∩Q it is enough to prove the first equality.
⊂: This is an immediate consequence of the previous theorem, Lemma 1.4

and the fact that an infinite subgroup of T is dense.
⊃: Let G be a finite subgroup of T. Then it is easy to see that G is of

the form G = {0, 1/n, 2/n, . . . , (n−1)/n}. Let f(x) = sgn(sin(2πnx)). Then
clearly f ∈ L∞ \ C∗ and {h : ∆hf ∈ C∗} = G.

3. Not essentially bounded periodic measurable functions with
many continuous difference functions (H(Lp,ACF∗) = N). In this sec-
tion we generalize the main results of [8] and we prove that for any p ≥ 1,
H(Lp,ACF∗) = N.

Lemma 3.1. If d1 ≥ d2 ≥ . . . ≥ 0 and
∑
dn =∞, then

∑
min(dn, 1/n)

=∞.
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P r o o f. We can assume that dn > 1/n for infinitely many n, since other-
wise min(dn, 1/n) = dn for n large enough. Choose a subsequence dnk such
that nk ≥ 2nk−1 and dnk > 1/nk for every k. Then

∑
min(dn, 1/n) =

∑

k

nk∑
m=nk−1+1

min(dm, 1/m) ≥
∑

k

nk∑
m=nk−1+1

1/nk

=
∑

k

nk − nk−1

nk
≥
∑

k

1
2

=∞.

Lemma 3.2. If
∑
an is a non-negative divergent series then, by decreasing

an for some indices n, we can get a non-negative divergent series
∑
bn for

which
∑
bqn <∞ for every q > 1.

P r o o f. If an → 0 then we can rearrange (an) such that aφ(1) ≥
aφ(2) ≥ . . . where φ is a permutation of N. In this case let bφ(n) =
min(aφ(n), 1/n). Then, applying the previous lemma for dn = aφ(n), we get∑
bn =

∑
bφ(n) = ∞. On the other hand,

∑
bqn =

∑
bqφ(n) < ∞ for every

q > 1, since bφ(n) ≤ 1/n. Furthermore, clearly 0 ≤ bn ≤ an (n = 1, 2, . . .).
If an 6→ 0 then there exists an ε > 0 and a subsequence anm such that

anm > ε. Let bnm = ε/m and let the other terms of the sequence (bn) be 0.
Then in this case clearly also 0 ≤ bn ≤ an (n = 1, 2, . . .),

∑
bn = ∞ and∑

bqn <∞ for every q > 1.

Theorem 3.3. For every N-set H ⊂ R there exists a 1-periodic function
f : R → R such that f ∈ Lp for every finite p but f 6∈ L∞, and ∆hf is
continuous and has an absolutely convergent Fourier series for every h ∈ H.

P r o o f. It is known (see e.g. [17], Vol. I, p. 236) that if H is an N-set,
then it is also an Ns-set; that is, there exists a non-negative divergent series∑
bn such that

(2)
∑

bn|sinπnh| <∞ (∀h ∈ H).

By Lemma 3.2, we can also assume that
∑
bqn <∞ for every q > 1.

Let A denote the set of all h’s for which (2) holds. It is easy to see
that A is an additive subgroup of R and H ⊂ A. Let f̃ be a 1-periodic
complex-valued function with Fourier series

f̃(x) ∼
∞∑
n=1

bne
2πinx.

By the Riesz–Fischer theorem,
∑
bqn <∞ for every q > 1 implies that such

a function exists in L2. Moreover, this condition implies that this function is
in Lp for every p > 0 (see e.g. [17], proof of the Hausdorff–Young theorem,
Vol. II, pp. 101–103). Let f = Re f̃ . Then clearly also f ∈ ⋂p>0 Lp.
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It is known and easy to prove using Fejér means (see e.g. [2], IV, §2, The-
orem 1, p. 277) that if a bounded real even function has Fourier series with
non-negative coefficients cn then

∑
cn<∞. Since f(x)∼∑∞n=1 bn cos(2πnx)

and
∑
bn =∞, we conclude that f 6∈ L∞.

For a fixed h ∈ A the Fourier series of f̃(x+ h) is

f̃(x+ h) ∼
∞∑
n=1

(bne2πinh)e2πinx,

so

(3) ∆hf̃(x) ∼
∞∑
n=1

bn(e2πinh − 1)e2πinx.

On the other hand,

|bn(e2πinh − 1)e2πinx| = 2bn|sinπnh|.
Thus (2) implies that the right-hand side of (3) (say l̃h(x)) is uniformly
convergent, so it is continuous on R.

Let S be the set of points x where the averages of the partial sums of
the Fourier series (the Fejér means) of f̃ converge to f̃(x). By Lebesgue’s
theorem, S contains the Lebesgue points of f̃ , so its complement is a null-set.
Changing f̃ on this null-set we can make f̃(x) equal to the limit of the Fejér
means at each point where it exists, so we can assume that S is also the set
of points where the Fejér means converge.

Since the Fejér means of l̃h converge to l̃h(x) everywhere, the Fejér means
of f̃(x) and f̃(x + h) converge simultaneously, thus x ∈ S if and only if
x+ h ∈ S. Therefore S is a dense union of translated copies of A. If x ∈ S
then, according to (3), ∆hf̃(x) and l̃h(x) are the limits of the averages of
the partial sums of the same Fourier series, thus ∆hf̃(x) = l̃h(x) if x ∈ S.
Therefore denoting the real part of l̃h by lh we get

∆hf(x) = lh(x) (x ∈ S, h ∈ A).

Now by Lemma 2.6, there exists a function f(x) on R such that f |S = f |S
and

∆hf(x) = lh(x) (x ∈ R, h ∈ A).

In particular, ∆1f(x) = l1(x) = 0, which implies that f is 1-periodic; as
∆hf = lh for every h ∈ H ⊂ A, ∆hf is continuous for every h ∈ H. Since
f = f a.e. and f ∈ (

⋂
p>0 Lp) \ L∞ we get f ∈ (

⋂
p>0 Lp) \ L∞.

The previous theorem is a generalization of a result of [8] (Theorem 1).
Just as Theorem 2 of [8] follows from Theorem 1 of that paper, we get the
following generalization of Theorem 2 of [8]:
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Corollary 3.4. For any N-set H ⊂ R there exists a 1-periodic func-
tion h ∈ (

⋂
p>0 Lp(R)) \ L∞(R) and there are α-periodic functions gα ∈⋂

p>0 Lp(R) for all α ∈ H such that gα + h is continuous for all α ∈ H.

(Here by Lp(R) we mean the class of those measurable functions
f : R→ R for which |f |p has a finite integral on any finite interval; L∞(R)
denotes the class of essentially bounded measurable R→ R functions.)

Notation 3.5. We recall that we denote by ACF the class of continuous
functions with absolute convergent Fourier series on T.

We use the notation N for the class of N-subsets of T.

Corollary 3.6. If ACF ⊂ F⊂L∞ and 0<p<∞ then H(Lp,F∗) ⊃ N.

P r o o f. This is an immediate consequence of Theorem 3.4.

Theorem 3.7. H(L1,ACF∗) ⊂ N.

P r o o f. Let H ∈ H(L1,ACF∗). Then there exists f ∈ L1 \ ACF∗ such
that ∆hf ∈ ACF∗ for every h ∈ H. Let the Fourier series of f be

f ∼
∞∑

k=−∞
cke

2πikx (c−k = ck).

Since this series is not absolutely convergent we get
∑∞
k=1 |ck| = ∞. It is

easy to see that the Fourier series of ∆hf is

∆hf ∼
∞∑

k=−∞
ck(e2πikh − 1)e2πikx.

Let

E =
{
h ∈ T :

∞∑

k=1

|ck| · |e2πikh − 1| <∞
}
.

Then, since ∆hf has an absolutely convergent Fourier series for every h ∈ H,
we get H ⊂ E.

In [6] B. Host, J.-F. Méla and F. Parreau call a set of type

(4)
{
h ∈ T :

∞∑

j=0

aj |e2πinjh − 1| <∞
}

an H1 group if nj is a sequence of positive integers and aj ≥ 0 (p. 44, 2.3.1).
They proved that if

∑∞
j=0 aj = ∞, then the H1 group defined by (4) is a

proper subgroup of T. They also proved that, for a Borel subset of T, being
an N-set and being contained in an H1 proper subgroup are equivalent.

It follows that E is an H1 proper subgroup of T, thus (since E is clearly
an Fσ set so it is also Borel) E is an N-set. Since H ⊂ E we conclude that
H is also an N-set.
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Corollary 3.8. For every p ≥ 1, H(Lp,ACF∗) = N.

P r o o f. This is trivial from Corollary 3.6, Theorem 3.7 and the mono-
tonicity lemma.

Corollary 3.9. ACF has the difference property.

P r o o f. By Proposition 2.3, the monotonicity lemma and Theorem 3.7,

H(C,ACF) = H(C∗,ACF∗) ⊂ H(L1,ACF∗) ⊂ N.

Hence T 6∈ H(C,ACF), so according to Lemma 1.1, ACF has the difference
property.

4. H(F ,G) ⊂ Fσ for the classes L0, Lp, L∞, C∗, ACF∗ and (Lipα)∗.
Consider the following classes of functions:

L0 ⊃ Lp ⊃ L∞ ⊃ C∗ ⊃ ACF∗ and (Lipα)∗.

(If α > 1/2 then, by a theorem of S. Bernstein (see e.g. [17], Vol. I, p. 240),
we also have ACF ⊃ Lipα.) In this section we prove that for any pair of
these classes we have

H(F ,G) ⊂ Fσ (F ⊃ G).

(We recall that Fσ is the class of subsets of T that can be covered by a proper
Fσ subgroup of T.) By the monotonicity lemma, it is enough to prove this
for F = L0. If G ⊂ F ⊂ C then, by Proposition 2.3, everything remains the
same without ∗; that is, we have the same results for C,ACF and Lipα.

We will need the following well-known lemma:

Lemma 4.1. If f : T→ R is a measurable function and (an) is a sequence
of reals converging to 0, then we can choose a subsequence (ank) such that

lim
k→∞

f(x+ ank) = f(x) for a.e. x ∈ T.

Proposition 4.2. The sets in H0(L0, Lp), for any 0 < p ≤ ∞, are Fσ
subgroups of T.

P r o o f. Since the classes of functions in this proposition are translation
invariant groups, the group property follows from Lemma 1.4.

Thus it is enough to prove that for any f ∈ L0 the set

H = {h : ‖∆hf‖p ≤ K}
is closed for any 0 < p ≤ ∞.

Suppose that hn ∈ H and hn → h. By Lemma 4.1, we can choose a
subsequence (hnk) such that f(x + hnk) → f(x + h) for a.e. x ∈ T . Then
clearly also ∆hnk

f → ∆hf a.e.
If p = ∞ then hnk ∈ H means that |∆hnk

f | ≤ K a.e., thus also
|∆hf | ≤ K a.e., which means that h ∈ H. If p < ∞ then hnk ∈ H means
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that
T |∆hnk

f |p ≤ Kp, so by the Fatou lemma also
T |∆hf |p ≤ Kp, which

means that h ∈ H.

Proposition 4.3. If f : T → R is measurable and ∆hf is essen-
tially bounded for each h ∈ T then f is also essentially bounded. (That is,
T 6∈ H(L0, L∞).)

P r o o f. Let

Hn = {h : |∆hf | ≤ n a.e.}.
Since f is measurable, so is Hn; hence

⋃
Hn = T implies that there exists

an n such that Hn has positive measure. Then, by a theorem of Steinhaus,
the set Hn+Hn contains a neighborhood of 0. Thus kHn contains the whole
T if k is large enough. Hence, for any h ∈ T, |∆hf | ≤ kn a.e.

Therefore, denoting kn by K, we see that

{(x, h) : x, h ∈ T, |f(x+ h)− f(x)| > K}
is a measurable subset of T × T and each of its horizontal sections is a
null-set. Thus, by Fubini’s theorem, so is almost each of its vertical sections,
which means that for almost any x ∈ T , |f(x + h) − f(x)| ≤ K for almost
every h. Therefore, for a suitable x0, |f(x)| ≤ |f(x0)|+K for almost every
x, which means that f is essentially bounded.

Corollary 4.4. The class L∞(T) has the weak difference property.

P r o o f. This is trivial from Lemma 2.12 and Proposition 4.3.

Proposition 4.5. If 0 < p <∞, f : T→ R is measurable, and ∆hf ∈
Lp for each h ∈ T then also f ∈ Lp. (That is, T 6∈ H(L0, Lp) for 0 < p <∞.)

P r o o f. M. Laczkovich [12] proved that Lp has the weak difference prop-
erty for any 0 < p <∞, which means that if ∆hf ∈ Lp for each h ∈ T then
f = g+H +S where g ∈ Lp, H is additive and ∆hS = 0 a.e. for all h. Thus
∆h(f − g) is constant almost everywhere for all h, so it is essentially con-
tinuous for all h. Since f − g is measurable, it is also essentially continuous
by Theorem 2.9, which implies that f = g + (f − g) ∈ Lp.

From the last three propositions we get the following:

Theorem 4.6. For any 0 < p ≤ ∞,

H0(L0, Lp) ⊂ {the proper Fσ subgroups of T},
H(L0, Lp) ⊂ Fσ.

Now, applying the triangle-inequality lemma (Lemma 1.6), we can easily
prove the following two theorems combining Theorem 4.6 with the results
of the previous sections.

Theorem 4.7. H(L0, C∗) ⊂ Fσ.
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P r o o f. By the triangle-inequality lemma,

H(L0, C∗) ⊂ H(L0, L∞) ∪ H(L∞, C∗).
By Theorem 4.6 we have H(L0, L∞) ⊂ Fσ, by Corollary 2.17 we have
H(L∞, C∗) = {finite subsets of T ∩Q} ⊂ Fσ, which completes the proof.

Theorem 4.8. H(L0,ACF∗) ⊂ Fσ.

P r o o f. By the triangle-inequality lemma we have H(L0,ACF∗) ⊂
H(L0, L1)∪H(L1,ACF∗). By Theorem 4.6, H(L0, L1) ⊂ Fσ; by Theorem 3.7,
H(L1,ACF∗) ⊂ N ⊂ Fσ, which completes the proof.

Theorem 4.9. If 0 < α ≤ 1 then H(L0, (Lipα)∗) ⊂ Fσ.

P r o o f. M. Balcerzak, Z. Buczolich and M. Laczkovich [1] proved that
H(C,Lipα) ⊂ Fσ (Theorem 1.4). (Actually, they stated it only for α = 1 but
their proof works without any modification for Lipα functions as well.) Then
H(C∗, (Lipα)∗) ⊂ Fσ by Proposition 2.3. Now the monotonicity lemma, the
triangle-inequality lemma and Theorem 4.7 yield

H(L0, (Lipα)∗) ⊂ H(L0, C∗) ∪ H(C∗, (Lipα)∗) ⊂ Fσ.

Now we can summarize our results:

Theorem 4.10. If L0 ⊃ F ⊃ G and G is any of the classes Lp
(0 < p ≤ ∞), C∗, ACF∗ or (Lipα)∗ (0 < α ≤ 1) then

H(F ,G) ⊂ Fσ.

This also holds if C ⊃ F ⊃ G and G is any of the classes ACF or
Lipα (0 < α ≤ 1).

P r o o f. This follows from Theorems 4.6–4.9 using the monotonicity
lemma and Proposition 2.3.

5. Functions with L∞ and with Lip1 differences. The construc-
tion of Balcerzak, Buczolich and Laczkovich. In this section we prove
that H(F ,G) = Fσ if G is either L∞, (Lip1)∗ or Lip1, and F is a reasonable
class of functions.

We proved the inclusion H(F ,G) ⊂ Fσ in Section 4. To prove the other
inclusion, we need to construct a suitable function for any set H ∈ Fσ. We
follow the construction of M. Balcerzak, Z. Buczolich and M. Laczkovich [1].

Theorem 5.1.

H
( ⋂

0<p<∞
Lp, L∞

)
⊃ Fσ, H

( ⋂
0<α<1

Lipα,Lip1
)
⊃ Fσ.
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P r o o f. For any A ∈ Fσ we need functions g1 and f such that

g1 ∈
( ⋂

0<p<∞
Lp

)
\ L∞ and ∆hg1 ∈ L∞ for any h ∈ A; and

f ∈
( ⋂

0<α<1

Lipα
)
\ Lip1 and ∆hf ∈ Lip1 for any h ∈ A.

It is proved in [1] (in the second part of the proof of Theorem 1.4) that
for any A ∈ Fσ there exists an infinite nowhere dense closed set B such that
kB is also nowhere dense for any k ∈ N, B = −B and the subgroup of T
generated by B covers A. (We use the following notation: A+B = {a+ b :
a ∈ A, b ∈ B}. The sets A−B and −A are defined similarly. If k ∈ N, the
k-fold sum A+ . . .+A is denoted by kA.)

Thus we can assume that A is an infinite nowhere dense closed set such
that kA is also nowhere dense for any k ∈ N and A = −A. For any such
A, Balcerzak, Buczolich and Laczkovich ([1], proof of Theorem 1.1(i)⇒(ii))
constructed functions g1 and f with the required properties.

(They only proved that g1 ∈ L1 \ L∞ and ∆hg1 ∈ L∞ for any h ∈ A;
and that f ∈ C \ Lip1 and ∆hf ∈ Lip1 for any h ∈ A. But, since by
construction the range of g1 is {0, 1, 2, . . .} and the measure of g−1

1 ({k}) is
at most 1/(k2k), it is also clear that g1 ∈ Lp for any 0 < p <∞. And, since
f(x) =

Tx
0(g1(t)− c) dt (where c =

T
T g1), this implies that f ∈ Lipα for any

0 < α < 1.)

Now we can determine the classes of sets of the form H(F , L∞) and
H(F ,Lip1) for any reasonable F .

Theorem 5.2. If
⋂

0<p<∞ Lp ⊂ F ⊂ L0 then H(F , L∞) = Fσ. In par-
ticular , for any 0 < p <∞, H(Lp, L∞) = Fσ.

P r o o f. This is trivial from Theorem 4.6 and Theorem 5.1 by the mono-
tonicity lemma.

Theorem 5.3. If
⋂

0<α<1 Lipα ⊂ F ⊂ L0 then H(F∗, (Lip1)∗) = Fσ.
If
⋂

0<α<1 Lipα ⊂ F ⊂ C then H(F ,Lip1) = Fσ. In particular , for any
0 < α < 1, H(Lipα,Lip1) = Fσ.

P r o o f. The first equality follows from Theorems 4.9 and 5.1 by the
monotonicity lemma. Then the second equality follows from the first one by
Proposition 2.3.

6. Summary. For the classes L0 ⊃ Lp ⊃ L∞ ⊃ C ⊃ ACF ⊃ Lip1 (where
1 ≤ p < ∞) as F and G, the following table shows our results concerning
H(F∗,G∗).

By the monotonicity lemma, each column is a sequence of families of sets
decreasing monotonically from the top.



Difference functions 31

H(F∗,G∗)
L0 Lp L∞ C ACF Lip1

L0 ∗ ⊂Fσ ⊂Fσ ⊂Fσ ⊂Fσ Fσ

Lp ∗ Fσ ⊃N N Fσ

finite
L∞ ∗ subsets Fσ

of T ∩Q
C ∗ Fσ

ACF ∗ Fσ

Lip1 ∗

Remark 6.1. It is also proved in the author’s PhD thesis [9] that
H(Lp, Lq) ⊃ pD for any 0 < p < q < ∞; H(Lipα,Lipβ) ⊃ pD for any
0 < α < β < 1 and all these H(Lipα,Lipβ) classes are the same. These
results are published elsewhere ([11], [10]).
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