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A polarized partition relation and failure of GCH at
singular strong limit

by

Saharon Shelah (Jerusalem and New Brunswick, N.J.)

Abstract. The main result is that for A strong limit singular failing the continuum
hypothesis (i.e. 2* > A1), a polarized partition theorem holds.

1. Introduction. In the present paper we show a polarized partition
theorem for strong limit singular cardinals A failing the continuum hypoth-
esis. Let us recall the following definition.

DEFINITION 1.1. For ordinal numbers «;, as, 81, 82 and a cardinal 6,
the polarized partition symbol

1,1
(65) 9
—
()~ (),
means that if d is a function from «; x ; into 6 then for some A C ay of
order type ag and B C (3 of order type 2, the function d[ A x B is constant.

We address the following problem of Erd6s and Hajnal:

(%) if p is strong limit singular of uncountable cofinality with 6 < cf(u),

does
+ 1,1
()-(), -
K K/ g

The particular case of this question for y = N, and § = 2 was posed by
Erdés, Hajnal and Rado (under the assumption of GCH) in [EHR, Prob-
lem 11, p. 183]). Hajnal said that the assumption of GCH in [EHR] was not
crucial, and he added that the intention was to ask the question “in some,
preferably nice, Set Theory”.
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Baumgartner and Hajnal have proved that if p is weakly compact then
the answer to (x) is “yes” (see [BH]), also if u is strong limit of cofinality
Rg. But for a weakly compact p we do not know if for every o < p™:

-0

— .

K K/ g

The first time I heard the problem (around 1990) I noted that (x) holds
when p is a singular limit of measurable cardinals. This result is presented
in Theorem 2.2. It seemed likely that we could combine this with suitable
collapses, to get “small” such p (like X, ) but there was no success in this
direction.

In September 1994, Hajnal reasked me the question putting great stress
on it. Here we answer the problem (x) using methods of [Sh:g]. But instead
of the assumption of GCH (postulated in [EHR]) we assume 2# > pt. The
proof seems quite flexible but we did not find out what else it is good for.
This is a good example of the major theme of [Sh:g]:

THESIS 1.2. Whereas CH and GCH are good (helpful, strategic) assump-
tions having many consequences, and, say, - CH is not, the negation of GCH
at singular cardinals (i.e. for u strong limit singular 2# > u*, or the really
strong hypothesis: cf(u) < p = pp(p) > p™) is a good (helpful, strategic)
assumption.

Foreman pointed out that the result presented in Theorem 1.2 below is
preserved by pt-closed forcing notions. Therefore, if

(-0

+ 1,1
Levy(At,2%) A A
vt (5) =0

Consequently, the result is consistent with 2* = At & X is small. (Note that
although our final model may satisfy the Singular Cardinals Hypothesis, the
intermediate model still violates SCH at A, hence needs large cardinals, see
[J].) For A not small we can use Theorem 2.2.

then

Before we move to the main theorem, let us recall an open problem
important for our methods:

PrROBLEM 1.3. (1) Let K = cf(u) > No, p > 2% and A = cf(\) €
(u,ppt (). Can we find @ < p and a € [u N Reg)? such that A € pef(a),
a = U, %, a; bounded in p and o € a; = A la|? < o? For this it is
enough to show:

a<lo
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(2) If p = cf(u) > 2<% but \/a<u|a|<0 > p then we can find a €
[nNReg]<? such that X € pcf(a). (In fact, it suffices to prove it for the case
§=x,.)

As shown in [Sh:g] we have

THEOREM 1.4. If p is strong limit singular of cofinality k > N and
2 > X = cf(\) > p then for some strictly increasing sequence (X\; : i < K)
of requlars with limit p, [],_.Xi/JPY has true cofinality . If k = Vo, this
still holds for A = p™ .

[More fully, by [Sh:g, II, §5], we know pp(p) =1 2* and by [Sh:g, VIII,
1.6(2)], we know pp* (1) = ppTha (1). Note that for x = Rg we should replace

JPd by a possibly larger ideal, using [Sh 430, 1.1, 6.5] but there is no need
here.]

1<K

REMARK 1.5. Note that the problem is a pp = cov problem (see more
in [Sh 430, §1]); so if Kk = Vg and A < p™** the conclusion of 1.4 holds; we
allow JP9 to be increased, even “there are < put fixed points < A*” suffices.

2. Main result

THEOREM 2.1. Suppose p is strong limit singular satisfying 2# > pt.
Then:

(1) (’”) - (“ + 1>1’1 for any 6 < cf(1).

© )
(2) If d is a function from u™ x p to 0 and 0 < p then for some sets
A C pt and B C p we have otp(A) = p+ 1, otp(B) = p and the restriction
dlA x B does not depend on the first coordinate.

Proof. (1) This follows from part (2) (since if d(«a, 5) = d'(5) for a € A,
B € B, where d : B — 0, and |B| = u, 0 < cf(u) then there is B C B
with |B’| = p such that d'[B is constant and hence d[A x B’ is constant as
required).

(2) Let d : u™ x pu — 0. Let k = cf(u) and @ = (u; : @ < k) be a
continuous strictly increasing sequence such that p =", s, po > K+ 6.
We can find a sequence C' = (C,, : a < u™) such that:

(A) C, Cais closed, otp(Cy) < u,
(B) B €nacc(Cy) = Cg=CyNp,
(C) if Cy has no last element then o = sup(Cy,) (so « is a limit ordinal)
and any member of nacc(C,) is a successor ordinal,
(D) if o =cf(0) < p then the set
S, :={5 < pt :cf(0) = 0 & 6 = sup(Cs) & otp(Cs) = o}

is stationary
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(possible by [Sh 420, §1]); we could have added

(E) for every 0 € RegNut and a club E of u*, for stationary many
6 € S,, E separates any two successive members of Cs.

Let ¢ be a symmetric two-place function from u™ to x such that for each
i< rkand < put the set

W = {a < B el ) < i}
has cardinality < p; and a < f < v = ¢(a,7v) < max{c(a, ), c(5,7v)} and
acCg&pu; > |Csl = cla, B) <i

(as in [Sh 108], easily constructed by induction on ().

Let A = ()\; : i < k) be a strictly increasing sequence of regular cardinals
with limit g such that [],_, A;/J2? has true cofinality p™+ (exists by 1.4
with A = p++ < 2#). As we can replace A by any subsequence of length
k, without loss of generality (Vi < k)(\; > 2“¢+). Lastly, let x = Jg(p)™
and <} be a well ordering of H(x)(:= {z : the transitive closure of x is of
cardinality < x}).

Now we choose by induction on o < ™ sequences My, = (M,,; @i < K)
such that:

(1) Ma,i = (H(X)a €, <;k<)7

(ii) || Mal| = 2 and # (Mo ;) C My and 2 +1 C My,

(iii) d, c, C,\Q,a € My, (Mg : B <a,j<k)€E Mgy, Uﬁea‘?‘ Mg, C
Maﬂ' and <Ma,j j < 7/> S Ma,i, Uj<i Ma,j Q Maﬂ',

(iv) (Mga,; : B € a) belongs to M,,;.

There is no problem to carry out the construction. Note that actually
clause (iv) follows from (i)—(iii), as a$' is defined from ¢, «, 7. Our demands
imply that

[ﬂ S af‘ = Mg’i < Ma,i] and [j <i1= Ma,j < Maﬂ']
and af € Mg, hence a C |, . Ma,i-
For a < p* let fo € [];.,. Ai be defined by fo (i) = sup(A\; N M, ;). Note

that fa(i) < A as A; = of(\) > 2% = || Mal|. Also, if 8 < « then for
every i € [c(f3, @), k) we have 3 € M, ; and hence Mg € M, ;. Therefore, as
also A € M, ;, we have fg € M, ; and fz(i) € M,,; N A;. Consequently,

(Vi € [e(B, ), k))(fp(i) < fali)) and thus  fg <jva fa.

Since {fo : @ < ™} C [, A has cardinality g™ and [,_, Ai/J2¢ is
ptt-directed, there is f* € [],_, A; such that

()1 (Ya<p®)(fa <goa [5).
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Let, for a« < put, go € "6 be defined by g, (i) = d(a, f*(7)). Since |*0| < pu <
ut =cf(u™), there is a function g* € %6 such that

(¥)2  theset A* ={a < put:g,=g*} is unbounded in pu*.
Now choose, by induction on ¢ < p*, models N¢ such that:

(a) NC = (H(X>7 €7<;)7

(b) the sequence (N¢ : ¢ < ™) is increasing continuous,

(c) |IN¢|l = p and "~ (N¢) € N¢ if ¢ is not a limit ordinal,

(d) (Ne:€ <) € Neya,

(e) p+1 C Ng, Ua<g,i<,€Maz C Neand (Mg, : o < p*, i < K),
(fa < pt), g*, A* and d belong to the first model Nj.

Let £ :={¢ < put : Nenpt = ¢}. Clearly, E is a club of u*, and thus
we can find an increasing sequence (J; : i < k) such that

. + i
(x)3 d; € Suj Nacc(E) (C u™) (see clause (D) at the beginning of the
proof).

For each ¢ < k choose a successor ordinal o € nacc(Cs,) \U{d; +1:j <i}.
Take any o* € A*\ U, di
We choose by mductlon on i < Kk an ordinal j; and sets A;, B; such that:

(o) ji < Kk and pj, > i (so j; > i) and j; strictly increasing in ¢,

(B) f&‘ f[ is K ) < faz+1 H]ﬂ H) < fax [.iﬂ‘ﬁ) < [T f[ .i¢’{)>

(7) for each ip < iy we have c(6;,, af,) < ji,, c(aj,, a5,) < jiy, c(aj,, ")
< Ji, and ¢(d;,, a*) < jiy,

(0) A; C A* N (a i),

(6) Otp( ) /'Lz Y
(C) A € Méz .]7,7
( ) B C )\]17
(6) otp(B:) = Ay,

() Be € My j, for e < i,

(k) for every v € [J.; Ac U{a"} and ¢ < i and 8 € B U {f*(jc)} we
have d(o, 8) = g*(j¢)-

If we succeed then A = (J,__, A-:U{a"} and B = J,_, B are as required.
During the induction at stage ¢ concerning (¢), if € + 1 = i then for some
J < K, BeN Mg+ ; has cardinality A;_, hence we can replace Be by a subset of
the same cardlnahty which belongs to the model M, ; if j is large enough
such that p; > A;; if e +1 < ¢ then by the demand for ¢ + 1, we have
V< B: € Maz ;. So assume that the sequence ((je, Ac, B:) : € < i) has
already been defined.

We can find j;(0) < & satisfying requirements (&), (3), (7) and (¢) and
such that A

Aj. < tj,(0)- Then for each ¢ < ¢ we have §. € ac,“f( and

e<t 7 (0)
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hence Ms, ;. < My j,0) (for e < i). But A. € M, ;. (by clause (¢))
and B. € My j,0) (for € < 1), so {A.,B. : € < i} C M,» j,(0)- Since
"2 (Max j,0)) © Mar j,(0) (see (ii)), the sequence ((Ae, Be) : € < i) belongs
to M+ j,(0)- We know that for 74 < 72 in nacc(Cjs,) we have c¢(y1,72) < i
(remember clause (B) and the choice of ¢). As j;(0) > i and so pj,0) > pf,
the sequence
M* := (M, j,(0) : @ € nacc(Cs,))
is <-increasing and M*[a € M, j,0) for a € nacc(Cs,) and Ma> j.(0) ap-
pears in it. Also, as §; € acc(E), there is an increasing sequence (¢ : € < ;)
of members of nacc(Cys,) such that vo = o and (Ve,7e41) N E # 0, say
Be € (Ve,7e+1) N E. Each element of nacc(Cs) is a successor ordinal, so
every ¢ is a successor ordinal. Each model M., j (o) is closed under se-
quences of length < pf, and hence (v, : ( < £) € M, j. 0y (by choos-
ing the right C' and §;’s we could have managed to have o} = min(Cs,),
{7 : € < p } = nace(Cj), without using this amount of closure).
For each ¢ < ,uj, we know that

(H(x), €, <) | “Br € A"z > ¢ & (Ve <i)(Vy € B:)(d(z,y) = g (4:)]”
because z = " satisfies it. As all the parameters, i.e. A*, 7¢, d, ¢g* and
(B: : € < i), belong to Ng, (remember clauses (e) and (c); note that B, €

Mo ji(0), af < f¢), there is an ordinal 5 € (v¢, B¢) C (¢, 7e+1) satisfying
the demands on z. Now, necessarily for some j;(1,£) € (j;(0),x) we have
B¢ € M., ., j.(1¢)- Hence for some j; < £ the set
A= {8 € < &5:(1,€) = i}
has cardinality u;r. Clearly A; C A* (as each ﬂg € A*). Now, the sequence
(Mo, j, + & < pf )" (Ms, ;) is <-increasing, and hence 4; C My, j,. Since
uj > pf = |A;| we have A; € Mg, j,. Note that at the moment we know
that the set A; satisfies the demands ()—((). By the choice of j;(0), as
Ji > ji(0), clearly Ms, j, < My~ j,, and hence A; € M~ j,. Similarly, (A, :
e <i) € My~ j,, o € My~ j, and
Sup(MOé*vji N )\ji) = far (jl) < f*(]z)
Consequently, |J..;, A- U{a*} C My~ ;, (by the induction hypothesis or the

i

above) and it belongs to M- j,. Since |J.; A- U{a*} C A%, clearly
(M) €, <) F “(vo e A uda™}) (Wl £7G) = 97
e<i
Note that
U AU {O‘*}vg*(ji)?d7 )\ji S Ma*Ji and f*(]z) € )‘jz‘ \Sup(Ma*,ji N )\]1)

e<i
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Hence the set
Bii={y <. (Yo e JA-U{a"}) (dle,y) = 9°Gi)}
e<i
has to be unbounded in A;,. It is easy to check that j;, A;, B; satisfy clauses
(a)~(k).
Thus we have carried out the induction step, finishing the proof of the
theorem. my

THEOREM 2.2. Suppose u is a singular limit of measurable cardinals.
Then

(1) <M/j> — (Z) if 0 =2 or at least 0 < cf(p).
9

+ *
(2) Moreover, if a* < u* and 6 < cf(u) then (,u ) — <a ) )
K K/
(3) If 0 < u, a* < u* and d is a function from p* x u to 0 then for
some A C ut, otp(A) = a*, and B = Ui<cf(u) B; C u, d[A x B; is constant
for each i < cf(p).

Proof. Clearly (3)=(2)=(1), so we shall prove part (3).

Let d: put x p— 6. Let k := cf(u). Choose sequences ()\; : i < k) and
(pi 1 < k) such that (u; : i < k) is increasing continuous, p = ., s,
o > k + 0, each )\; is measurable and p; < \; < pi1 (for i < k). Let D;
be a \;-complete uniform ultrafilter on \;. For a < p* define g, € "6 by
Gga(1) =y it {8 <\ :d(e,8) =~} € D (as 0 < \; it exists). The number
of such functions is 0% < p (as p is necessarily strong limit), so for some
g* € "9 theset A :={a <y’ : gy = g*}is unbounded in u*. For each i < K
we define an equivalence relation e; on p™:

ae; 8 iff (Vy < \j)[d(a,y) = d(3,7)].
So the number of e;-equivalence classes is < **@ < u. Hence we can find an
increasing continuous sequence (a¢ : ¢ < p*) of ordinals < ™ such that:

(x)  for each i < k and e;-equivalence class X, either X N A C «y, or for
every ¢ < ut, (a¢,acq1) N X N A has cardinality p.

Let o = J, ., @i, |as| = s, (a; : i < k) pairwise disjoint. Now, by induction
on i < k, we choose A;, B; such that:

(a) A; € U{(ac,acq1) : ¢ € a;} N A and each A; N (a¢,act1) is a
singleton,

(b) B, € D;,

(c)if a € A;, B € By, j <ithen d(o,B) = g*(j).
Now, at stage i, (A, Be) : € < 1) are already chosen. Let us choose A.. For
each ¢ € a; choose B¢ € (a¢,a¢cq1) N A such that if ¢ > 0 then for some
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B € Ao, Bee;f', and let A; = {B¢ : ¢ € a;}. Now clause (a) is immediate,
and the relevant part of clause (c), i.e. j <4, is O.K. Next, as Ujgi A CA,
the set
Bi:=() [ {7y <Ai:d(B,7)=g"(i)}
j<iBEA;

is the intersection of < u; < A; sets from D; and hence B; € D;. Clearly
clause (b) and the remaining part of clause (c) (i.e. j = 4) holds. So we can
carry out the induction and hence finish the proof. ms o
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