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A polarized partition relation and failure of GCH at
singular strong limit

by

Saharon S h e l a h (Jerusalem and New Brunswick, N.J.)

Abstract. The main result is that for λ strong limit singular failing the continuum
hypothesis (i.e. 2λ > λ+), a polarized partition theorem holds.

1. Introduction. In the present paper we show a polarized partition
theorem for strong limit singular cardinals λ failing the continuum hypoth-
esis. Let us recall the following definition.

Definition 1.1. For ordinal numbers α1, α2, β1, β2 and a cardinal θ,
the polarized partition symbol

(
α1

β1

)
→
(
α2

β2

)1,1

θ

means that if d is a function from α1 × β1 into θ then for some A ⊆ α1 of
order type α2 and B ⊆ β1 of order type β2, the function d¹A×B is constant.

We address the following problem of Erdős and Hajnal:

(∗) if µ is strong limit singular of uncountable cofinality with θ < cf(µ),
does (

µ+

µ

)
→
(
µ

µ

)1,1

θ

?

The particular case of this question for µ = ℵω1 and θ = 2 was posed by
Erdős, Hajnal and Rado (under the assumption of GCH) in [EHR, Prob-
lem 11, p. 183]). Hajnal said that the assumption of GCH in [EHR] was not
crucial, and he added that the intention was to ask the question “in some,
preferably nice, Set Theory”.
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Baumgartner and Hajnal have proved that if µ is weakly compact then
the answer to (∗) is “yes” (see [BH]), also if µ is strong limit of cofinality
ℵ0. But for a weakly compact µ we do not know if for every α < µ+:

(
µ+

µ

)
→
(
α

µ

)1,1

θ

.

The first time I heard the problem (around 1990) I noted that (∗) holds
when µ is a singular limit of measurable cardinals. This result is presented
in Theorem 2.2. It seemed likely that we could combine this with suitable
collapses, to get “small” such µ (like ℵω1) but there was no success in this
direction.

In September 1994, Hajnal reasked me the question putting great stress
on it. Here we answer the problem (∗) using methods of [Sh:g]. But instead
of the assumption of GCH (postulated in [EHR]) we assume 2µ > µ+. The
proof seems quite flexible but we did not find out what else it is good for.
This is a good example of the major theme of [Sh:g]:

Thesis 1.2. Whereas CH and GCH are good (helpful , strategic) assump-
tions having many consequences, and , say , ¬CH is not , the negation of GCH
at singular cardinals (i.e. for µ strong limit singular 2µ > µ+, or the really
strong hypothesis: cf(µ) < µ ⇒ pp(µ) > µ+) is a good (helpful , strategic)
assumption.

Foreman pointed out that the result presented in Theorem 1.2 below is
preserved by µ+-closed forcing notions. Therefore, if

V |=
(
λ+

λ

)
→
(
λ

λ

)1,1

θ

then

V Levy(λ+,2λ) |=
(
λ+

λ

)
→
(
λ

λ

)1,1

θ

.

Consequently, the result is consistent with 2λ = λ+ & λ is small. (Note that
although our final model may satisfy the Singular Cardinals Hypothesis, the
intermediate model still violates SCH at λ, hence needs large cardinals, see
[J].) For λ not small we can use Theorem 2.2.

Before we move to the main theorem, let us recall an open problem
important for our methods:

Problem 1.3. (1) Let κ = cf(µ) > ℵ0, µ > 2κ and λ = cf(λ) ∈
(µ, pp+(µ)). Can we find θ < µ and a ∈ [µ ∩ Reg]θ such that λ ∈ pcf(a),
a =

⋃
i<κ ai, ai bounded in µ and σ ∈ ai ⇒

∧
α<σ |α|θ < σ? For this it is

enough to show :
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(2) If µ = cf(µ) > 2<θ but
∨
α<µ |α|<θ ≥ µ then we can find a ∈

[µ∩Reg]<θ such that λ ∈ pcf(a). (In fact , it suffices to prove it for the case
θ = ℵ1.)

As shown in [Sh:g] we have

Theorem 1.4. If µ is strong limit singular of cofinality κ > ℵ0 and
2µ > λ = cf(λ) > µ then for some strictly increasing sequence 〈λi : i < κ〉
of regulars with limit µ,

∏
i<κ λi/J

bd
κ has true cofinality λ. If κ = ℵ0, this

still holds for λ = µ++.

[More fully, by [Sh:g, II, §5], we know pp(µ) =+ 2µ and by [Sh:g, VIII,
1.6(2)], we know pp+(µ) = pp+

Jbd
κ

(µ). Note that for κ = ℵ0 we should replace

Jbd
κ by a possibly larger ideal, using [Sh 430, 1.1, 6.5] but there is no need

here.]

Remark 1.5. Note that the problem is a pp = cov problem (see more
in [Sh 430, §1]); so if κ = ℵ0 and λ < µ+ω1 the conclusion of 1.4 holds; we
allow Jbd

κ to be increased, even “there are < µ+ fixed points < λ+” suffices.

2. Main result

Theorem 2.1. Suppose µ is strong limit singular satisfying 2µ > µ+.
Then:

(1)
(
µ+

µ

)
→
(
µ+ 1
µ

)1,1

θ

for any θ < cf(µ).

(2) If d is a function from µ+ × µ to θ and θ < µ then for some sets
A ⊆ µ+ and B ⊆ µ we have otp(A) = µ+ 1, otp(B) = µ and the restriction
d¹A×B does not depend on the first coordinate.

P r o o f. (1) This follows from part (2) (since if d(α, β) = d′(β) for α ∈ A,
β ∈ B, where d′ : B → θ, and |B| = µ, θ < cf(µ) then there is B′ ⊆ B
with |B′| = µ such that d′¹B is constant and hence d¹A×B′ is constant as
required).

(2) Let d : µ+ × µ → θ. Let κ = cf(µ) and µ = 〈µi : i < κ〉 be a
continuous strictly increasing sequence such that µ =

∑
i<κ µi, µ0 > κ+ θ.

We can find a sequence C = 〈Cα : α < µ+〉 such that:

(A) Cα ⊆ α is closed, otp(Cα) < µ,
(B) β ∈ nacc(Cα)⇒ Cβ = Cα ∩ β,
(C) if Cα has no last element then α = sup(Cα) (so α is a limit ordinal)

and any member of nacc(Cα) is a successor ordinal,
(D) if σ = cf(σ) < µ then the set

Sσ := {δ < µ+ : cf(δ) = σ & δ = sup(Cδ) & otp(Cδ) = σ}
is stationary
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(possible by [Sh 420, §1]); we could have added

(E) for every σ ∈ Reg∩µ+ and a club E of µ+, for stationary many
δ ∈ Sσ, E separates any two successive members of Cδ.

Let c be a symmetric two-place function from µ+ to κ such that for each
i < κ and β < µ+ the set

aβi := {α < β : c(α, β) ≤ i}
has cardinality ≤ µi and α < β < γ ⇒ c(α, γ) ≤ max{c(α, β), c(β, γ)} and

α ∈ Cβ & µi ≥ |Cβ | ⇒ c(α, β) ≤ i
(as in [Sh 108], easily constructed by induction on β).

Let λ = 〈λi : i < κ〉 be a strictly increasing sequence of regular cardinals
with limit µ such that

∏
i<κ λi/J

bd
κ has true cofinality µ++ (exists by 1.4

with λ = µ++ ≤ 2µ). As we can replace λ by any subsequence of length
κ, without loss of generality (∀i < κ)(λi > 2µ

+
i ). Lastly, let χ = i8(µ)+

and <∗χ be a well ordering of H(χ)(:= {x : the transitive closure of x is of
cardinality < χ}).

Now we choose by induction on α < µ+ sequences Mα = 〈Mα,i : i < κ〉
such that:

(i) Mα,i ≺ (H(χ),∈, <∗χ),

(ii) ‖Mα,i‖ = 2µ
+
i and µ+

i (Mα,i) ⊆Mα,i and 2µ
+
i + 1 ⊆Mα,i,

(iii) d, c, C, λ, µ, α ∈ Mα,i, 〈Mβ,j : β < α, j < κ〉 ∈ Mα,i,
⋃
β∈aα

i
Mβ,i ⊆

Mα,i and 〈Mα,j : j < i〉 ∈Mα,i,
⋃
j<iMα,j ⊆Mα,i,

(iv) 〈Mβ,i : β ∈ aαi 〉 belongs to Mα,i.

There is no problem to carry out the construction. Note that actually
clause (iv) follows from (i)–(iii), as aαi is defined from c, α, i. Our demands
imply that

[β ∈ aαi ⇒Mβ,i ≺Mα,i] and [j < i⇒Mα,j ≺Mα,i]

and aαi ⊆Mα,i, hence α ⊆ ⋃i<κMα,i.
For α < µ+ let fα ∈

∏
i<κ λi be defined by fα(i) = sup(λi ∩Mα,i). Note

that fα(i) < λi as λi = cf(λi) > 2µ
+
i = ‖Mα,i‖. Also, if β < α then for

every i ∈ [c(β, α), κ) we have β ∈Mα,i and hence Mβ ∈Mα,i. Therefore, as
also λ ∈Mα,i, we have fβ ∈Mα,i and fβ(i) ∈Mα,i ∩ λi. Consequently,

(∀i ∈ [c(β, α), κ))(fβ(i) < fα(i)) and thus fβ <Jbd
κ
fα.

Since {fα : α < µ+} ⊆ ∏
i<κ λi has cardinality µ+ and

∏
i<κ λi/J

bd
κ is

µ++-directed, there is f∗ ∈∏i<κ λi such that

(∗)1 (∀α < µ+)(fα <Jbd
κ
f∗).
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Let, for α < µ+, gα ∈ κθ be defined by gα(i) = d(α, f∗(i)). Since |κθ| < µ <
µ+ = cf(µ+), there is a function g∗ ∈ κθ such that

(∗)2 the set A∗ = {α < µ+ : gα = g∗} is unbounded in µ+.

Now choose, by induction on ζ < µ+, models Nζ such that:

(a) Nζ ≺ (H(χ),∈, <∗χ),
(b) the sequence 〈Nζ : ζ < µ+〉 is increasing continuous,
(c) ‖Nζ‖ = µ and κ>(Nζ) ⊆ Nζ if ζ is not a limit ordinal,
(d) 〈Nξ : ξ ≤ ζ〉 ∈ Nζ+1,
(e) µ + 1 ⊆ Nζ ,

⋃
α<ζ, i<κMα,i ⊆ Nζ and 〈Mα,i : α < µ+, i < κ〉,

〈fα : α < µ+〉, g∗, A∗ and d belong to the first model N0.

Let E := {ζ < µ+ : Nζ ∩ µ+ = ζ}. Clearly, E is a club of µ+, and thus
we can find an increasing sequence 〈δi : i < κ〉 such that

(∗)3 δi ∈ Sµ+
i
∩ acc(E) (⊆ µ+) (see clause (D) at the beginning of the

proof).

For each i < κ choose a successor ordinal α∗i ∈ nacc(Cδi)\
⋃{δj + 1 : j < i}.

Take any α∗ ∈ A∗ \⋃i<κ δi.
We choose by induction on i < κ an ordinal ji and sets Ai, Bi such that:

(α) ji < κ and µji > λi (so ji > i) and ji strictly increasing in i,
(β) fδi¹[ji, κ) < fα∗

i+1
¹[ji, κ) < fα∗¹[ji, κ) < f∗¹[ji, κ),

(γ) for each i0 < i1 we have c(δi0 , α
∗
i1

) < ji1 , c(α∗i0 , α
∗
i1

) < ji1 , c(α∗i1 , α
∗)

< ji1 and c(δi1 , α
∗) < ji1 ,

(δ) Ai ⊆ A∗ ∩ (α∗i , δi),
(ε) otp(Ai) = µ+

i ,
(ζ) Ai ∈Mδi,ji ,
(η) Bi ⊆ λji ,
(θ) otp(Bi) = λji ,
(ι) Bε ∈Mα∗

i
,ji for ε < i,

(κ) for every α ∈ ⋃ε≤iAε ∪ {α∗} and ζ ≤ i and β ∈ Bζ ∪ {f∗(jζ)} we
have d(α, β) = g∗(jζ).

If we succeed then A =
⋃
ε<κAε∪{α∗} and B =

⋃
ζ<κBζ are as required.

During the induction at stage i concerning (ι), if ε + 1 = i then for some
j < κ, Bε∩Mα∗

i
,j has cardinality λjε , hence we can replace Bε by a subset of

the same cardinality which belongs to the model Mα∗
i
,j if j is large enough

such that µj > λi; if ε + 1 < i then by the demand for ε + 1, we have∨
j<κBε ∈ Mα∗

i
,j . So assume that the sequence 〈(jε, Aε, Bε) : ε < i〉 has

already been defined.
We can find ji(0) < κ satisfying requirements (α), (β), (γ) and (ι) and

such that
∧
ε<i λjε < µji(0). Then for each ε < i we have δε ∈ a

α∗i
ji(0) and
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hence Mδε,jε ≺ Mα∗
i
,ji(0) (for ε < i). But Aε ∈ Mδε,jε (by clause (ζ))

and Bε ∈ Mα∗
i
,ji(0) (for ε < i), so {Aε, Bε : ε < i} ⊆ Mα∗

i
,ji(0). Since

κ>(Mα∗
i
,ji(0)) ⊆ Mα∗

i
,ji(0) (see (ii)), the sequence 〈(Aε, Bε) : ε < i〉 belongs

to Mα∗
i
,ji(0). We know that for γ1 < γ2 in nacc(Cδi) we have c(γ1, γ2) ≤ i

(remember clause (B) and the choice of c). As ji(0) > i and so µji(0) ≥ µ+
i ,

the sequence

M∗ := 〈Mα,ji(0) : α ∈ nacc(Cδi)〉
is ≺-increasing and M∗¹α ∈ Mα,ji(0) for α ∈ nacc(Cδi) and Mα∗

i
,ji(0) ap-

pears in it. Also, as δi ∈ acc(E), there is an increasing sequence 〈γξ : ξ < µ+
i 〉

of members of nacc(Cδi) such that γ0 = α∗i and (γξ, γξ+1) ∩ E 6= ∅, say
βξ ∈ (γξ, γξ+1) ∩ E. Each element of nacc(Cδ) is a successor ordinal, so
every γξ is a successor ordinal. Each model Mγξ,ji(0) is closed under se-
quences of length ≤ µ+

i , and hence 〈γζ : ζ < ξ〉 ∈ Mγξ,ji(0) (by choos-
ing the right C and δi’s we could have managed to have α∗i = min(Cδi),
{γξ : ξ < µ+

i } = nacc(Cδ), without using this amount of closure).
For each ξ < µ+

i , we know that

(H(χ),∈, <∗χ) |= “(∃x ∈ A∗)[x > γξ & (∀ε < i)(∀y ∈ Bε)(d(x, y) = g∗(jε))]”

because x = α∗ satisfies it. As all the parameters, i.e. A∗, γξ, d, g∗ and
〈Bε : ε < i〉, belong to Nβξ (remember clauses (e) and (c); note that Bε ∈
Mα∗

i
,ji(0), α∗i < βξ), there is an ordinal β∗ξ ∈ (γξ, βξ) ⊆ (γξ, γξ+1) satisfying

the demands on x. Now, necessarily for some ji(1, ξ) ∈ (ji(0), κ) we have
β∗ξ ∈Mγξ+1,ji(1,ξ). Hence for some ji < κ the set

Ai := {β∗ξ : ξ < µ+
i & ji(1, ξ) = ji}

has cardinality µ+
i . Clearly Ai ⊆ A∗ (as each β∗ξ ∈ A∗). Now, the sequence

〈Mγξ,ji : ξ < µ+
i 〉_〈Mδi,ji〉 is ≺-increasing, and hence Ai ⊆ Mδi,ji . Since

µ+
ji
> µ+

i = |Ai| we have Ai ∈ Mδi,ji . Note that at the moment we know
that the set Ai satisfies the demands (δ)–(ζ). By the choice of ji(0), as
ji > ji(0), clearly Mδi,ji ≺ Mα∗,ji , and hence Ai ∈ Mα∗,ji . Similarly, 〈Aε :
ε ≤ i〉 ∈Mα∗,ji , α

∗ ∈Mα∗,ji and

sup(Mα∗,ji ∩ λji) = fα∗(ji) < f∗(ji).

Consequently,
⋃
ε≤iAε ∪{α∗} ⊆Mα∗,ji (by the induction hypothesis or the

above) and it belongs to Mα∗,ji . Since
⋃
ε≤iAε ∪ {α∗} ⊆ A∗, clearly

(H(χ),∈, <∗χ) |= “
(
∀x ∈

⋃

ε≤i
Aε ∪ {α∗}

)
(d(x, f∗(ji)) = g∗(ji))”.

Note that⋃

ε≤i
Aε ∪ {α∗}, g∗(ji), d, λji ∈Mα∗,ji and f∗(ji) ∈ λji \sup(Mα∗,ji ∩ λji).
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Hence the set

Bi :=
{
y < λji :

(
∀x ∈

⋃

ε≤i
Aε ∪ {α∗}

)
(d(x, y) = g∗(ji))

}

has to be unbounded in λji . It is easy to check that ji, Ai, Bi satisfy clauses
(α)–(κ).

Thus we have carried out the induction step, finishing the proof of the
theorem. 2.1

Theorem 2.2. Suppose µ is a singular limit of measurable cardinals.
Then

(1)
(
µ+

µ

)
→
(
µ

µ

)

θ

if θ = 2 or at least θ < cf(µ).

(2) Moreover , if α∗ < µ+ and θ < cf(µ) then
(
µ+

µ

)
→
(
α∗

µ

)

θ

.

(3) If θ < µ, α∗ < µ+ and d is a function from µ+ × µ to θ then for
some A ⊆ µ+, otp(A) = α∗, and B =

⋃
i<cf(µ)Bi ⊆ µ, d¹A×Bi is constant

for each i < cf(µ).

P r o o f. Clearly (3)⇒(2)⇒(1), so we shall prove part (3).
Let d : µ+ × µ → θ. Let κ := cf(µ). Choose sequences 〈λi : i < κ〉 and

〈µi : i < κ〉 such that 〈µi : i < κ〉 is increasing continuous, µ =
∑
i<κ µi,

µ0 > κ + θ, each λi is measurable and µi < λi < µi+1 (for i < κ). Let Di

be a λi-complete uniform ultrafilter on λi. For α < µ+ define gα ∈ κθ by
gα(i) = γ iff {β < λi : d(α, β) = γ} ∈ D (as θ < λi it exists). The number
of such functions is θκ < µ (as µ is necessarily strong limit), so for some
g∗ ∈ κθ the set A := {α < µ+ : gα = g∗} is unbounded in µ+. For each i < κ
we define an equivalence relation ei on µ+:

αeiβ iff (∀γ < λi)[d(α, γ) = d(β, γ)].

So the number of ei-equivalence classes is ≤ λiθ < µ. Hence we can find an
increasing continuous sequence 〈αζ : ζ < µ+〉 of ordinals < µ+ such that:

(∗) for each i < κ and ei-equivalence class X, either X ∩ A ⊆ α0, or for
every ζ < µ+, (αζ , αζ+1) ∩X ∩A has cardinality µ.

Let α∗ =
⋃
i<κ ai, |ai| = µi, 〈ai : i < κ〉 pairwise disjoint. Now, by induction

on i < κ, we choose Ai, Bi such that:

(a) Ai ⊆
⋃{(αζ , αζ+1) : ζ ∈ ai} ∩ A and each Ai ∩ (αζ , αζ+1) is a

singleton,
(b) Bi ∈ Di,
(c) if α ∈ Ai, β ∈ Bj , j ≤ i then d(α, β) = g∗(j).

Now, at stage i, 〈(Aε, Bε) : ε < i〉 are already chosen. Let us choose Aε. For
each ζ ∈ ai choose βζ ∈ (αζ , αζ+1) ∩ A such that if i > 0 then for some
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β′ ∈ A0, βζeiβ′, and let Ai = {βζ : ζ ∈ ai}. Now clause (a) is immediate,
and the relevant part of clause (c), i.e. j < i, is O.K. Next, as

⋃
j≤iAj ⊆ A,

the set
Bi :=

⋂

j≤i

⋂

β∈Aj
{γ < λi : d(β, γ) = g∗(i)}

is the intersection of ≤ µi < λi sets from Di and hence Bi ∈ Di. Clearly
clause (b) and the remaining part of clause (c) (i.e. j = i) holds. So we can
carry out the induction and hence finish the proof. 2.2
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