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Two dichotomy theorems on colourability of
non-analytic graphs
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Vladimir K a n o v e i (Moscow)

Abstract. We prove:

Theorem 1. Let κ be an uncountable cardinal. Every κ-Suslin graph G on reals satisfies
one of the following two requirements: (I) G admits a (κ+ 1)-Borel colouring by ordinals
below κ; (II) there exists a continuous homomorphism (in some cases an embedding) of a
certain locally countable Borel graph G0 into G.

Theorem 2. In the Solovay model , every OD graph G on reals satisfies one of the
following two requirements: (I) G admits an OD colouring by countable ordinals; (II) as
above.

Introduction. A new direction in the theory of graphs was discovered
by Kechris, Solecki, and Todorčević [9]. They demonstrated that graphs
on reals change their behaviour in the case when a definable colouring is
required. For instance, there exists a Borel locally countable and acyclic
(hence colourable by only two colours) graph G0 on reals (or rather a family
of graphs generated by a common method) which does not admit a countable
Borel colouring.

To get such a graph, let us fix once and for all a binary tuple sm ∈ 2m

for each m ∈ ω, so that for any s ∈ 2<ω we have s ⊆ sm for some m (the
density). We set, for x, y ∈ 2ω, x G0 y iff there exists m satisfying

x¹m = y¹m = sm, x(m) = 1− y(m), and x(k) = y(k) for all k > m.

Thus G0 is a Borel (more exactly, Fσ) locally countable acyclic (1) graph on
the Cantor space D = 2ω. An argument of Kechris et al. [9] shows that the
density property implies countable Borel uncolourability of G0.

1991 Mathematics Subject Classification: 03E15, 03E35, 04A15.
Partially supported by DFG, NWO, and the Carlsberg foundation.
(1) A (symmetric irreflexive) graph G is acyclic iff there does not exist a path of the

form x0 G x1 G x2 G . . .G xn where n ≥ 3, x0 = xn, and xi 6= xj except for i = 0, j = n. A
graph G is locally countable iff every vertex has at most countably many G-neighbours.

[183]
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Moreover, it is proved in [9] that G0 is in a certain sense minimal among
all Σ1

1 graphs which are not countably Borel colourable (2).
To formulate this result consistently, let us recall some notation. We refer

to [9] for a more substantial review and to [8] as a broad reference.
Let G be a graph on a set X. A set Y ⊆ X is G-discrete iff G does not

intersect Y ×Y. G is countably Borel colourable iff X is a union of countably
many Borel G-discrete sets.

In general a colouring of a graph G on X is a function φ defined on X so
that x G y implies φ(x) 6= φ(y) (adjacent vertices are coloured differently).
If, for instance, X =

⋃
α<κXα is a union of G-discrete sets Xα then the

map φ which sends every x ∈ X to the least ordinal α = φ(x) < κ such that
x ∈ Xα is a colouring.

Let G and G′ be graphs on sets X and X ′ resp. A homomorphism of
G′ into G is a function H : X ′ → X such that x G′ y ⇒ H(x) G H(y)
for all x, y ∈ X. An embedding is a 1-1 homomorphism (but the opposite
implication H(x) G H(y)⇒ x G′ y is not required).

Let X and X ′ be topological spaces. One writes G′ ≤c G if there exists a
continuous homomorphism of G′ into G. One writes G′ vc G if there exists
a continuous embedding of G′ into G. (c stands for “continuous”.)

Even G′ ≤c G suffices for G to inherit uncolourability properties from G′.
In particular, it follows from the above that any graph G satisfying G0 ≤c G
is countably Borel uncolourable. The next theorem of Kechris, Solecki, and
Todorčević [9] shows that this is also a necessary condition.

Theorem 1 (Theorem 6.3 in [9]). Every Σ1
1 graph G on reals satisfies

one and only one of the two statements, (I) and (II):

(I) G is countably Borel colourable. Moreover , if G is a Σ1
1(z0) graph,

z0 being a real , then each real belongs to a G-discrete ∆1
1(z0) set.

(II) G0 ≤c G. Moreover , G0 vc G in each of the two cases: (a) G is
acyclic; (b) G is locally countable.

By reals we understand, as usual, points of the Baire space N = ωω.

The theorem is not true for Π1
1 graphs (3). On the other hand, there is

a reasonable generalization on Suslin graphs. Recall that a set G ⊆ N2 is

(2) Essential properties of G0 do not depend on a particular choice of the tuples sm.
However, it seems unknown whether different graphs of the form G0 are isomorphic.

(3) Indeed, consider the Π1
1 graph G of all pairs of reals 〈x, y〉 such that x and y code

ordinals and the ordinal coded by x differs from the ordinal coded by y. Clearly G includes
a full ℵ1-subgraph, therefore is countably uncolourable. If nowH is a Borel homomorphism
of G0 in G then by a classical restriction theorem H involves only countably many ordinals,
so G0 would be countably Borel colourable, which is a contradiction. Kechris et al. give
in [9] more substantial examples.
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λ-Suslin iff there is a tree R ⊆ (ω × ω × λ)<ω such that

(∗) G = p[R] = {〈x, y〉 : ∃f ∈ λω [R](x, y, f)},
where [R] = {〈x, y, f〉 ∈ N ×N × λω : ∀m R(x¹m, y¹m, f¹m)}.

Theorem 2. Let κ ≥ ℵ1 be a cardinal. Every κ-Suslin graph G on reals
satisfies one (4) of the following two statements:

(I) G admits a (κ + 1)-Borel colouring by ordinals below κ. Moreover ,
if κ ≤ λ < κ+, R ⊆ (ω × ω × λ)<ω, and G = p[R], then there is a sequence
〈Cα : α < λ〉 ∈ L[R] of (λ+ 1)-Borel codes such that each real belongs to a
G-discrete (λ+ 1)-Borel set coded by some Cα.

(II) G0 ≤c G. Moreover , G0 vc G in each of the two cases: (a) G is
acyclic; (b) G is locally thin (5).

(As usual, a (λ+1)-Borel set is a set which belongs to the smallest family
containing all open sets and closed under λ-size unions and intersections—
this is the same as κ+-Borel provided κ ≤ λ < κ+.)

Thus (I) of Theorem 2 says that the reals are covered by a reasonably
effective union of κ-many G-discrete κ+-Borel sets.

Problem 1. Can (I) be strengthened in Theorem 2 to a colouring by
κ-many κ-Borel G-discrete sets? This is open even in the most interesting
case κ = ω1, which includes the case of Σ1

2 graphs.

Problem 2. Find reasonable counterexamples among Π1
2 graphs.

Problem 3. Characterize countably colourable graphs in Theorem 2.

It is a common practice that theorems on Borel, analytic etc. sets gen-
eralize in the Solovay model (6) on ROD (real-ordinal definable) sets. The
following theorem is such a generalization of Theorems 1 and 2.

Theorem 3 (7). In the Solovay model , every ROD graph G on reals
satisfies one and only one of the two statements, (I) and (II):

(4) In this case (I) and (II) are generally speaking compatible. For instance assuming
the axiom of constructibility every graph admits a∆1

2 (in the codes) colouring by countable
ordinals via a ∆1

2 bijection between ω1 and the reals.
(5) A thin set is a set which does not contain a perfect subset. A graph G is locally

thin if for any vertex x the set of all G-neighbours of x is thin. This includes for instance
locally countable graphs.

(6) The Solovay model is a model of ZFC, defined by Solovay [10], where all projective
sets are Lebesgue measurable.

(7) It is mentioned in [9] with a reference to Woodin that a similar dichotomy theorem
is a consequence of a determinacy hypothesis.
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(I) G admits a colouring by countable ordinals, ROD in HC (8). More-
over , if G is an OD(z0) graph, z0 being a real , then each real belongs to a
G-discrete Borel set with a code in L[z0].

(II) G0 ≤c G. Moreover , G0 vc G in each of the two cases: (a) G is
acyclic; (b) G is locally thin (then in fact G is locally countable).

(A code in (I) of this theorem is understood to code the construction of
a Borel set by operations which are countable, but not necessarily countable
in L[z0].)

Problem 4. Prove Theorems 2 and 3 with (II) in the form G0 vc G for
all relevant graphs G. (This is also open for Theorem 1.)

Our preprint [7] contains preliminary versions of Theorems 2 and 3. (The
former much weaker than Theorem 2 here, in particular we consider in [7]
only Σ1

2 graphs and require that the universe is a generic extension of L,
the constructible universe.) The proofs in [7] involve a technique quite close
to arguments in [9] but with the topology generated by OD sets (similarly
to [6] where the OD topology is applied for a problem of classification of
ROD equivalence relations in the Solovay model) rather than the Gandy–
Harrington topology as in [9]. We choose here a different approach.

The major part of the paper is devoted to Theorem 2.
The proof makes use of a method outlined in a note by Hjorth [5], who

attributes the technique to Harrington and Shelah [3].
Starting the proof, we fix an ordinal λ, κ ≤ λ < κ+, and a tree R ⊆

(ω×ω×λ)<ω satisfying G = p[R]. To simplify the notation we suppose that
actually R ∈ L (otherwise L uniformly changes to L[R] in the reasoning).

The idea is similar to several other recent dichotomy results in descriptive
set theory (see for example Harrington et al. [2]): either the union of some
suitably regular sets covers the reals, easily leading to a (I)-like case, or
otherwise we have enough singularity to work towards a (II)-like case, which
is usually more difficult. So the initial point is to choose the covering sets.

We take G-discrete (λ + 1)-Borel sets coded in L to be the covering
sets, but, to avoid triviality, consider the covering property in a suitably
comprehensive generic extension V+ of the basic set universe V.

Section 2 introduces the dichotomy: either every real in V+ belongs to
a G-discrete set having a (λ+ 1)-Borel code in L, or this is not the case.

In the either case a kind of compactness argument reduces the number of
covering sets to λ leading to a partition of the reals into λ-many G-discrete
(λ + 1)-Borel sets in the original universe; see Section 3. The partition we
define is effective: there is a constructible λ-sequence of (also constructible)
(λ+ 1)-Borel codes for sets in the partition.

(8) HC is the set of all hereditarily countable sets.
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Sections 4 and 5 handle the or case. We show that then G0 ≤c G, even
G0 vc G provided G is acyclic or locally thin. This argument involves a split-
ting construction of Kechris et al. [9], but technically realized in a different
way: instead of making use of Choquet games we all the time keep watching
to guarantee that each level of the splitting system contains, in V+, reals
not covered by the above-mentioned discrete sets.

Section 6 presents a proof of Theorem 3 which involves an appropriate
modification of the basic technique.

Theorem 2 has a special case, the case of Σ1
2 graphs, which admits a

much simpler proof (of indeed a weaker result) based on Theorem 1. We
outline this argument, close to a proof of the theorem that a Σ1

1 equivalence
relation has either ≤ ℵ1 or c equivalence classes by Burgess, in Section 7.

We finally demonstrate, in Section 8, that the basic technique is also
applicable for Σ1

1 graphs (the subject of Theorem 1).
The exposition starts with a review and development of some facts re-

lated to coding of Borel and Suslin sets, in particular a version of the classical
separation theorem, in Section 1.

1. Constructible coding of Borel and Suslin sets. The proof of the
“lightface” (R ∈ L) version of Theorem 2 will make use of sets having Borel
and Suslin codes in L. (The general case changes this to L[R].) This section
introduces an appropriate formalism.

We shall consider spaces presented in the form X = Bω, where B ∈ L, as
e.g. the Baire space N = ωω, or the product N×N identified with (ω×ω)ω,
or λω where λ ∈ Ord. If X = Bω is such a space and u ∈ B<ω then we define
Xu = {x ∈ X : u ⊂ x}, a basic clopen set in X.

1.1. Borel and Suslin codes. Let λ ∈ Ord. A λ-Borel code for a space
X = Bω is a pair of the form C = 〈T, F 〉, where T ⊆ ν<ω for some ν < λ
is a non-empty well-founded tree (in particular s∧γ ∈ T implies s ∈ T for
all s ∈ ν<ω and γ < ν), and F maps the collection MaxT of all ⊆-maximal
elements of T into B<ω.

If C = 〈T, F 〉 is a λ-Borel code then a set [C]t ⊆ X is defined for each
t ∈ T by induction on the rank of t in T, as follows:

• if t ∈ MaxT then [C]t = XF (t) = {x ∈ X : F (t) ⊂ x};
• if t ∈ T \ MaxT then [C]t = {

⋃
u∧γ∈T [T ]u∧γ .

({ denotes the complement.) Finally, we define [C] = [C]Λ. (Λ is the empty
sequence.) Sets of this form are called λ-Borel sets.

Classically Suslin sets are defined as projections of closed sets. In what
follows we will make use of projections of Gδ sets, which is essentially one
and the same class of course, but the associated coding is much more flexible.
We shall add weak to the relevant notation.
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By a weak λ-Suslin code for a space X = Bω we understand an indexed
family d = 〈Dξ : ξ < λ′〉, where λ′ ≤ λ+ ω, of sets Dξ ⊆ (B × λ)<ω. Let

[d] = {〈x, a〉 ∈ X× λω : ∀ξ < λ′ ∃m (〈x¹m, a¹m〉 ∈ Dξ)}
and define the projection p[d] = {x ∈ X : ∃a [d](x, a)}. Sets of the form p[d],
d being a weak λ-Suslin code, are called weak λ-Suslin sets.

We shall be especially interested in constructible codes. Sets of the form
[C] where C ∈ L is a λ-Borel code will be called λ-L-Borel sets. Sets of the
form p[d] where d ∈ L is a weak λ-Suslin code will be called weak λ-L-Suslin
sets. (L is the class of all constructible sets.)

Lemma 4. If λ < ω1 then any (λ+ 1)-L-Borel set is weak λ-L-Suslin.

P r o o f. Let C = 〈T, F 〉 ∈ L be a (λ+ 1)-Borel code for a space X = Bω;
T ⊆ λ<ω. Let x ∈ X. Define a map hx : T → {0, 1} by hx(t) = 1 iff x ∈ [C]t,
for all t ∈ T. Then x ∈ [C] iff hx(Λ) = 1. Consider the set

P = {〈x, b, a〉 ∈ X× Tω × 2ω : b is a bijection from ω onto T &

a ∗ b−1 = hx & a(b−1(Λ)) = 1},
where (a ∗ b−1)(t) = a(b−1(t)) for all t ∈ T. One easily sees that [C] is the
projection of P, so that [C] = {x ∈ X : ∃b ∃a P (x, b, a)}. On the other hand,
the property of being equal to hx can be expressed by a Π0

2 -like statement,
leading to a weak λ-Suslin code d ∈ L satisfying P = [d].

1.2. Constituents and separation. This subsection shows that some clas-
sical constructions in the theory of Suslin sets have their counterparts in the
“weak” setting.

Let λ, λ′ ∈ Ord, λ′ ≤ λ+ ω.
Consider a tree T ⊆ λ<ω and a family d = 〈dξ : ξ < λ′〉 of sets dξ ⊆ λ<ω.

We define T ′d = {t ∈ T : ∀ξ < λ′ ∃t′ ∈ T ∩ dξ (t comp t′)}, where t comp t′

means that t, t′ are ⊆-comparable, i.e. t ⊆ t′ or t′ ⊆ t.
The operation can be iterated: we define T 0

d = λ<ω, Tα+1
d = (Tαd )′d for all

ordinals α, and T γd =
⋂
α<γ T

α
d for all limit ordinals γ. There is an ordinal %

satisfying T %d = T %+1
d ; let T∞d = T %d . We observe that T∞d = ∅ iff there does

not exist a branch a ∈ λω such that ∀ξ < λ′ ∃m (a¹m ∈ dξ).
Consider a weak λ-Suslin code d = 〈Dξ : ξ < λ′〉 for a space X = B<ω.

For each x ∈ X and ξ < λ′, let Dξ(x) =
⋃
m{s ∈ λm : 〈x¹m, s〉 ∈ Dξ}.

Define d(x) = 〈Dξ(x) : ξ < λ′〉. Clearly x ∈ p[d] iff T∞d(x) is not empty.
Let Tα(x) = Tαd(x), for all x ∈ X and α. The inner and outer constituents

associated with d are defined, following the standard setup, by

Cαinn(d) = {x ∈ X : Tα(x) = Tα+1(x) 6= ∅& ∀β < α (T β(x) 6= Tα(x))};
Cαout(d) = {x ∈ X : Tα(x) = ∅& T β(x) 6= ∅ for all β < α}.
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Lemma 5. Assume that λ < ω1 and d is a weak λ-Suslin code. Then
p[d] =

⋃
α<ω1

Cαinn(d) and {p[d] =
⋃
α<ω1

Cαout(d). The constituents Cαinn(d)
and Cαout(d) are Borel sets. If d ∈ L then the constituents Cαinn(d) and
Cαout(d) are ω1-L-Borel sets, even (λ+ 1)-L-Borel provided α < (λ+)L.

P r o o f. The sets Xα
t = {x : t ∈ Tα(x)} and Ξξt = {x : t ∈ Dξ(x)}

(t ∈ λ<ω, ξ < λ′, and α < ω1) satisfy the following classical equalities:

X0
t = X;

Ξξt = {x : 〈x¹m, t〉 ∈ Dξ}, where m = dom t;

Xα+1
t = Xα

t ∩
⋂

ξ<λ′

⋃

t′ comp t

(Xα
t′ ∩Ξξt′);

Xγ
t =

⋂
α<γ

Xα
t for all limit ordinals γ;

Cαout(d) = {Xα
Λ ∩

⋂

β<α

Xβ
Λ;

Cαinn(d) = Xα
Λ ∩

⋂
t

(Xα+1
t ∪ {Xα

t ) ∩
⋂

β<α

⋃
t

(Xβ
t \Xα

t ).

(Here t and t′ vary over λ<ω while α < ω1.) Since all operations involved
are effectively presented we easily obtain ω1-Borel codes for the constituents
Cαout(d) and Cαinn(d) by induction on α < ω1 in L.

Corollary 6. Let λ < ω1. Every weak λ-L-Suslin set , as well as its
complement , is a union of ℵ1-many ω1-L-Borel sets.

Theorem 7 [Separation]. Let λ < ω1. Two disjoint weak λ-L-Suslin sets
can be separated by a (λ+ 1)-L-Borel set.

P r o o f. Consider a pair of weak λ-Suslin codes d, d′ ∈ L. They define
the sets X = p[d] and X ′ = p[d′]. Assume that X ∩X ′ = ∅.

Suppose for a moment that (λ+)L = ω1. In view of Lemma 5 it suffices to
prove that X ′ ⊆ Cαout(d) for some α < ω1. The proof of this “boundedness”
result can be obtained by a routine modification of a classical proof.

(One easily proves that the function ν sending each x ∈ {X to the unique
α < ω1 such that x ∈ Cαout(d), is a Π1

1-norm, in particular, there is a Σ1
1

relation P (x, y) such that ν(x) < ν(y)⇔ P (x, y) for all x, y ∈ {X. It follows
that the relation: x ≺ y iff x, y ∈ X ′ and ν(x) < ν(y), is a well-founded Σ1

1
relation on X ′. Hence ≺ has a length γ < ω1 by the Kunen–Martin theorem.
This implies X ′ ⊆ Cαout(d) for some α < ω1.)

If (λ+)L < ω1 then the universe includes a λ-collapse extension V′ of L,
so that (λ+)L = ω1 in V′. This allows one to get the result in V′, as above,
and then extend it to the universe by absoluteness.
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2. Approach to the proof of Theorem 2. Let V, κ ∈ V, and G denote
the universe, the cardinal, and the graph for which Theorem 2 is being
proved. Let us fix an ordinal λ, κ ≤ λ < κ+, and a tree R ⊆ (ω × ω × λ)<ω

satisfying G = p[R] in V.
It will be assumed that R ∈ L. (Otherwise L uniformly changes to L[R]

throughout the reasoning, including the content of Section 1.)
Let V+ be the (λ++)V-collapse generic extension of V.
We are going to define a certain “copy” G+ of the graph G in V+.

If G is not locally thin in L then we simply set G+ = p[R] in V+, so that
G+ is the direct V+-copy of G.

Suppose that G is locally thin in L.
It is a standard fact (see for instance Guaspari [1], Theorem 1.5) that

then, in V, x G y ⇒ L[x] = L[y], hence G ⊆ ⋃α,β<ωV
1

Kαβ where Kαβ is the

set of all pairs 〈x, y〉 ∈ N2 such that x is the αth real in the sense of the
Gödel wellordering of L[y] and y is the βth real in the sense of the Gödel
wellordering of L[x].

We define in this case, in V+, G+ = p[R] ∩⋃α,β<ωV
1

Kαβ .

In both the first and the second case G+ is a graph in V+ satisfying G =
G+∩V. By a simple absoluteness argument G+ is disjoint from the diagonal.
We can assume that R is symmetric enough for p[R] to be symmetric in any
model, hence G+ is symmetric in V+.

Finally, G+ is a weak λ-L-Suslin set in V+ because λ ≥ κ ≥ ωV
1 .

Definition 8. C is the collection of all (λ + 1)-Borel codes C ∈ L for
the space N such that [C] ⊆ N is a G+-discrete set in V+.

The following theorem implies Theorem 2.

Theorem 9. If
⋃
C∈C[C] = N in V+ then (I) of Theorem 2 holds in V.

But if
⋃
C∈C[C] $ N in V+ then (II) of Theorem 2 holds in V.

The first part of Theorem 9 will be proved by a compactness argument:
we show in the next section that the assumption leads to a set C′ ⊆ C,
C′ ∈ L, of cardinality ≤ λ in L, such that the union

⋃
C∈C′ [C] still covers N

in V+, therefore in V as well, which yields the required colouring.
The second part (getting a homomorphism or embedding, Sections 4

and 5) involves a splitting construction similar to that of Kechris et al. [9].

Proposition 10. The set C belongs to L.

P r o o f. As the ordinal (λ+)L is countable in V+, this universe includes
a λ-collapse extension of L, so, by the Shoenfield theorem, C ∈ C iff the
λ-collapse forcing forces over L that [C] is G+-discrete.
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3. Getting a colouring. Thus we assume that the union
⋃
C∈C[C]

covers the reals in V+.

Lemma 11 [Compactness]. Let C ∈ L be a collection of (λ + 1)-Borel
codes for a fixed space of the form S = Nm × (λω)n such that S =

⋃
C∈C[C]

in V+. Then there exists a subcollection C′ ⊆ C, C′ ∈ L, of cardinality ≤ λ
in L, such that we still have S =

⋃
C∈C′ [C] in V+.

P r o o f (9). Otherwise the set P of all (λ + 1)-Borel codes c ∈ L for S

such that for any set C′ ⊆ C, C′ ∈ L, of cardinality ≤ λ in L, we have
[c] 6⊆ ⋃C∈C′ [C] in V+, is non-empty. We order P as follows: c ≤ c′ (c′ is
stronger as a forcing condition) iff [c′] ⊆ [c] in V+. Notice that both P and
the order belong to L, as in Proposition 10.

Consider a P-generic (over V) set G ⊆ P, G ∈ V+.

We assert that
⋂
c∈G[c] 6= ∅ in V+.

Any point x ∈ ⋂c∈G[c] is then contained in some [C], C ∈ C, which con-
tradicts the genericity of G, because the set DC of all codes c ∈ P satisfying
[c] ∩ [C] = ∅ in V+ belongs to L and is dense in P.

Thus let us prove the emphasized assertion.
This is a standard argument. First, there is, in V+, a unique point x ∈ S

contained in every basic clopen set the natural code of which belongs to G.
We prove that x ∈ [c] for every code c ∈ G.

Assume that this is not the case. Consider a code c = 〈T, F 〉 ∈ G satis-
fying x 6∈ [c] such that the tree T has the least possible rank.

Obviously T cannot be equal to {Λ}. Therefore [c] = {
⋃
ν<λ[cν ], where

〈cν : ν < λ〉 ∈ L is a sequence of (λ + 1)-Borel codes cν = 〈Tν , Fν〉 having
the ranks of the trees Tν less than the rank of T, so x ∈ [cν ] for some ν.

It is impossible, as above, that Tν = {Λ}, so in fact [cν ] = {
⋃
ξ<λ[c′ξ],

where 〈c′ξ : ξ < λ〉 ∈ L is a sequence of (λ + 1)-Borel codes c′ξ = 〈T ′ξ, F ′ξ〉
having the ranks of the trees T ′ξ smaller than the rank of Tν . Since [c] ⊆⋃
ξ<λ[c′ξ], it follows from the genericity that at least one among the sets [c′ξ]

belongs to G. Then x ∈ [c′ξ], which is a contradiction as x ∈ [cν ].

Coming back to the first part of Theorem 9, we observe that by the
lemma there exists a set C′ ⊆ C, C′ ∈ L, of cardinality ≤ λ in L, such that
N =

⋃
C∈C′ [C] in V+. Then N =

⋃
C∈C′ [C] in V as well. 1st part of Thm. 9

4. Getting a homomorphism or an embedding. We begin the proof
of the second part of Theorem 9. Thus suppose that the set X = {

⋃
C∈C[C]

is non-empty in V+.

(9) It is mentioned by the referee that the lemma admits a more straightforward proof
which involves countable submodels and an absoluteness argument.
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4.1. Preparations for the locally thin case. We have to take some time in
order to prepare consideration of the locally thin case in (II) of Theorem 2.
The aim is to get a system of weak Suslin codes for the graphs of the form
G+

αβ = G+ ∩ Kαβ (α, β < ωV
1 ) in V.

Lemma 12. Let α, β < ω1. Then Kαβ (see the beginning of Section 2) is
a weak γ-L-Suslin set , where γ = max{α, β}.

P r o o f. Let WO be the Π1
1 set of all reals w ∈ N which code ordinals, and

|w| be the ordinal coded by w ∈ WO. We put WOξ = {w ∈ WO : |w| = ξ}.
It is a standard fact that there is a Σ1

1 formula σ(w,w′, x, y) such that

∀w ∈ WOα ∀w′ ∈ WOβ ∀x, y ∈ N (Kαβ(x, y)⇔ σ(w,w′, x, y)).

Now, as every set WOξ is clearly (ξ + 1)-L-Borel, hence weak γ-L-Suslin
provided ξ ≤ γ, by Lemma 4, the set Kαβ is weak γ-L-Suslin as well.

Fix a bijection γ ∈ L, γ : ωV
1 × ωV

1
onto−→ ωV

1 , satisfying γ(α, β) ≥
max{α, β}. The proof of the lemma is effective enough to get a sequence
〈qγ : γ < ωV

1 〉 ∈ L of weak λ-Suslin codes qγ = 〈Qγξ : ξ < γ + ω〉 ∈ L
(where Qγξ ⊆ (ω × ω × λ)<ω for all γ and ξ) such that Kαβ = p[qγ(α,β)]
for all α, β < ωV

1 . A suitable enumeration of indices in V converts this
into a sequence of (now not necessarily constructible) weak λ-Suslin codes
kγ = 〈Kγ

n : n ∈ ω〉 such that [qγ ] = [kγ ], hence Kαβ = p[kγ(α,β)] for all
α, β < ωV

1 , both in V and in V+. Note that, although possibly kγ 6∈ L, the
set [kγ ] = [qγ ] ⊆ N2 × λω is (λ+ 1)-L-Borel (actually (λ+ 1)-L-Gδ in some
sense) for all γ < ωV

1 , both in V and in V+.

Let us code intersections of the form p[R] ∩ Kαβ . Let γ < ωV
1 . Applying

in V a suitable standard construction, one easily defines a weak λ-Suslin
code dγ = 〈Dγ

n : n ∈ ω〉 (where Dγ
n ⊆ (ω × ω × λ)<ω) such that the set

[dγ ] ⊆ N2 × λω is (λ + 1)-L-Borel and p[R] ∩ p[kγ ] = p[dγ ] in both V and
V+, in particular

• G ∩ Kαβ = p[dγ(α,β)] in V and G+ ∩ Kαβ = p[dγ(α,β)] in V+.

We can assume without any loss of generality that Dγ
n+1 ⊆ Dγ

n for all
γ, n.

If G is not locally thin (in V) then the construction above is needless
but, to keep the integrity of the reasoning, we define, in V, for each ordinal
γ < ωV

1 , a weak λ-Suslin code dγ = 〈Dγ
n : n ∈ ω〉 ∈ L by

Dγ
n = {〈u, v, r〉 ∈ R : domu = dom v = dom r = n′ ≥ n}

so that p[dγ ] = p[R] in both V and V+, in particular p[dγ ] = G in V and (in
the case when G is not locally thin) p[dγ ] = G+ in V+.

We observe that G+ =
⋃
γ<ωV

1
p[dγ ] in any of the two cases.
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4.2. Crucial pairs. Recall that a sequence of binary tuples sm ∈ 2m is
fixed by the definition of G0 (see Introduction). Let m ∈ ω. By a crucial
pair in 2m we shall understand any pair 〈u, v〉 of tuples u, v ∈ 2m such that
u = sk

∧0∧w and v = sk
∧1∧w, for some k < m and w ∈ 2m−k−1. (Possibly

w = Λ, the empty sequence.) Let CPm denote the set of all crucial pairs
in 2m.

Note that crucial pairs in 2m+1 are pairs of the form 〈u∧i, v∧i〉 where
〈u, v〉 is a crucial pair in 2m and i = 0, 1, plus the pair 〈sm∧0, sm∧1〉.
Moreover, the (directed) graph of crucial pairs in 2m is a tree: each pair
of u, v ∈ 2m is connected in 2m by a unique (non-self-intersecting) chain of
crucial pairs u = u0 ˜u1 ˜u2 ˜ . . . ˜un−1 ˜un = v, where u′ ˜ v′ means that
either 〈u′, v′〉 or 〈v′, u′〉 is a crucial pair. (The property of being uniquely
connected by crucial pairs is inherited from 2m by each of the two parts,
H0 = {u∧0 : u ∈ 2m} and H1 = {u∧1 : u ∈ 2m}, of 2m+1, and there is a
unique crucial pair, namely 〈sm∧0, sm∧1〉, connecting the parts.)

4.3. Splitting systems. We shall define, in V, a system of finite sequences
τu ∈ ω<ω (u ∈ 2<ω) and σuv ∈ λ<ω (〈u, v〉 ∈ CPm for some m), and an
ordinal γk < ωV

1 for each k ∈ ω, satisfying the following four requirements
for all m:

(i) τu ⊂ τu∧i for all u ∈ 2m and i = 0, 1, and σuv ⊂ σu∧i,v∧i for all
〈u, v〉 ∈ CPm and i = 0, 1;

(ii) if 〈u, v〉 ∈ CPm, k < m, and u = sk
∧0∧w, v = sk

∧1∧w for some
w ∈ 2m−k−1, then 〈τu, τv, σuv〉 ∈ Dγk

m ;
(iii) there exists, in V+, a system of reals xu ∈ Nτu ∩ X (u ∈ 2m) and

functions fuv ∈ λω (〈u, v〉 ∈ CPm) such that, for any k < m and any pair
〈u, v〉 ∈ CPm of the form u = sk

∧0∧w, v = sk
∧1∧w, for some w ∈ 2m−k−1,

we have σuv ⊂ fuv and 〈xu, xv, fuv〉 ∈ [dγk ];
(iv) if G is either acyclic or locally thin in V, u, v ∈ 2m, and u 6= v, then

τu and τv are incomparable in ω<ω.

Requirement (iii) is formally expressed in V+, but, as the existence of
the reals and functions which witness (iii) is suitably forced even in L (see
the proof of Proposition 10), we are essentially still in V.

Having such a system, we set, in V, H(a) =
⋃
m∈ω τa¹m for any a ∈ 2ω,

so that H : 2ω → N is a continuous map. We prove that G0 ≤c G in V
via H. Suppose that a, b ∈ 2ω in V and a G0 b. By definition we have e.g.
a = sk

∧0∧c and b = sk
∧1∧c for some k and c ∈ 2ω. Then, by (ii),

〈τsk∧0∧(c¹n), τsk∧1∧(c¹n), σsk∧0∧(c¹n),sk∧1∧(c¹n)〉 ∈ Dγk
n+k+1

for all n ∈ ω. It easily follows that 〈H(a),H(b)〉 ∈ p[dγk ] ⊆ G as required.
Moreover, it follows from (iv) that H is a 1-1 map, i.e. an embedding,

provided G is acyclic or locally thin in V.
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Thus the proof of the second part of Theorem 9 has been reduced to the
construction of a splitting system satisfying (i)–(iv).

5. Construction of a splitting system. Let, for any m, Sm be the
collection of all finite systems of tuples τu (where u ∈ 2≤m) and σuv (〈u, v〉 ∈
CPn and n ≤ m) and ordinals γk (k < m strictly) satisfying the requirements
at the level m and below.

(For instance, setting τΛ = Λ, we obtain a system in S0.)
We observe that each set Sm and the whole sequence of them belong to

V (as in Proposition 10 above).

Lemma 13. Any system in Sm can be expanded to a system in Sm+1.

P r o o f. Consider a system of tuples τu ∈ ω<ω and σuv ∈ λ<ω and
ordinals γk which belongs to Sm. We define an expansion at the level m+ 1.

To begin with we define τu∧i = τu for any u ∈ 2m, σu∧i,v∧i = σuv for
any pair 〈u, v〉 ∈ CPm, and all i = 0, 1, and finally σsm∧0,sm∧1 = Λ. This
may not be a correct expansion, and will be later changed.

Note that the ordinal γm has not yet been defined.

Assertion 14. In V+, there exist : an ordinal γm < ωV
1 , reals xs

(s ∈ 2m+1), and functions fst (〈s, t〉 ∈ CPm+1) satisfying (iii) at the level
m+ 1.

Assertion 15. If G is acyclic or locally thin in V and , in V+, reals
xs (s ∈ 2m+1) and functions fst (〈s, t〉 ∈ CPm+1) satisfy (iii) at the level
m+ 1 with some γm < ωV

1 , then xs 6= xt for all s 6= t ∈ 2m+1.

This easily implies the lemma: indeed, put us = xs¹N for all s ∈ 2m+1

and σst = fst¹N for any pair 〈s, t〉 ∈ CPm+1, for a large enough natural N.

P r o o f o f A s s e r t i o n 14. Suppose otherwise.
Then, in V+, for each γ < ωV

1 the collection Xγ of all systems of reals
xs ∈ Ns ∩ X (s ∈ 2m+1) and functions fst ∈ λω (〈s, t〉 ∈ CPm+1) which
witness (iii) at the level m+ 1 with γm = γ is empty.

Since each Xγ is by definition an intersection of sets defined by a (con-
structible) family of (λ + 1)-Borel codes (including finitely many codes of
the (λ + 1)-L-Borel sets [dγk ], k < m), Lemma 11 provides subcollections,
of cardinality ≤ λ in L, such that the intersection still remains empty.

More exactly, there is a set C′ ⊆ C, C′ ∈ L, of cardinality ≤ λ in L, such
that every set X′γ , γ < ωV

1 , defined in V+ similarly to Xγ but using the
bigger set X′ = {

⋃
C∈C′ [C] instead of X = {

⋃
C∈C[C], is still empty.

Consider, in V+, the set Y′ of all systems of reals yu ∈ Nτu∩X′ (u ∈ 2m)
and functions fuv ∈ λω (〈u, v〉 ∈ CPm) which witness (iii) at the level m.
Note that Y′ 6= ∅ as (iii) is supposed to hold at the level m.
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Clearly Y′ is a (λ + 1)-L-Borel set. Therefore the set A of all reals ysm

that occur in Y′ (the projection of Y′ onto the smth coordinate in V+) is
a weak λ-L-Suslin set in V+ by Lemma 4.

We observe that A is a G+-discrete set in V+. (Indeed, suppose that
y, y′ ∈ A and y G+ y′ in V+. As by definition G+ =

⋃
γ<ωV

1
p[dγ ] in V+,

there exists an ordinal γ < ωV
1 satisfying 〈y, y′〉 ∈ p[dγ ]. This immediately

implies Xγ 6= ∅, which contradicts the above.)
Let us cover A by a (λ+ 1)-L-Borel G+-discrete set.
Note that A ⊆ B = {x ∈ N : ∀y ∈ A (¬x G+ y)} in V+ by the discrete-

ness. Clearly B is a weak co-λ-L-Suslin set in V+. Hence by Theorem 7 there
is a (λ+ 1)-L-Borel set D′ such that A ⊆ D′ ⊆ B in V+.

Now put A′ = {x ∈ D′ : ∀y ∈ D′ (¬x G+ y)}, so A ⊆ A′ ⊆ D′ in V+.
The same argument yields a (λ+ 1)-L-Borel set D such that A ⊆ D ⊆ A′ in
V+. We now observe that D is a G+-discrete set in V+ by the construction,
hence D = [C] for a code C ∈ C.

As (iii) is satisfied at the level m, there exists, in V+, a system of reals
yu ∈ X ∩ Nτu (u ∈ 2m) and functions fuv ∈ λω (〈u, v〉 ∈ CPm) satisfying
(iii) at the level m. The system belongs to Y′ because X ⊆ X′. Thus y =
ysm ∈ A ⊆ [C], which is a contradiction since X = {

⋃
C∈C[C].

P r o o f o f A s s e r t i o n 15. As (iv) is supposed to hold at the level m,
we have to prove only the following: xu∧0 6= xu∧1 for all u ∈ 2m.

Acyclic case. Note that the acyclicity of a Suslin graph is an absolute
property. (The absence of a cycle of a length n ≥ 3 can be expressed as the
well-foundedness of a certain tree derived from the given tree.) Therefore
G+ is acyclic in V+.

However, as the reals xs satisfy (iii), we have xs G+ xt in V+ whenever
〈s, t〉 ∈ CPm+1. This implies xu∧0 6= xu∧1 because u∧0 is connected with
u∧1 in 2m+1 by a (unique non-self-intersecting) chain of crucial pairs which
definitely cannot contain exactly 2 edges.

Locally thin case. There is a unique chain of crucial pairs sm = v1 ˜ v2 ˜
. . .˜ vn = u in 2m. We prove by induction on l that xvl∧0 6= xvl∧1.

The result for l = 1 holds because 〈xsm∧0, xsm∧1〉 ∈ p[dγm ] ⊆ G+, but by
absoluteness G+ is disjoint from the diagonal in V+.

We suppose that xvl∧0 6= xvl∧1 and prove xvl+1
∧0 6= xvl+1

∧1. One of
the pairs 〈vl, vl+1〉 and 〈vl+1, vl〉 is crucial; suppose that this is the first one.
Then, as (iii) is satisfied, there is an ordinal γ < ωV

1 (γ = γk for some k < m)
such that each of the pairs 〈xvl∧i, xvl+1

∧i〉, i = 0, 1, belongs to p[dγ ]. How-
ever, in the locally thin case p[dγ ] = G+∩Kαβ is the graph of a 1-1 function in
V+. This implies xvl+1

∧0 6= xvl+1
∧1 as required. Assert. 15,Lemma 13,Thms. 9, 2
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6. Dichotomy in the Solovay model. This section proves Theorem 3.
The proof presented here differs from the proof in Kanovei [7]. We shall
simply indicate how the arguments involved in the proof of Theorem 2 above
change in the new setting.

By the Solovay model we shall understand a certain generic extension of
a constructible model, as defined by Solovay [10].

It is not worthwhile to present here the construction of the model in
detail because all that is necessary to prove Theorem 3 is concentrated in
the next proposition.

In the remainder, a weak <ω1-Suslin code means a weak λ-Suslin code
for some λ < ω1, and a weak <ω1-L[z0]-Suslin set means a set of the form
p[d] where d ∈ L[z0] is a weak <ω1-Suslin code.

Proposition 16. The following is true in the Solovay model. Let z0 ∈ N.
Then

(1) ω1 is inaccessible in L[z0].
(2) If X ⊆ N is OD[z0] and thin then X ⊆ L[z0].
(3) If X ⊆ L[z0] is OD[z0] then X ∈ L[z0].
(4) Every OD[z0] set X ⊆ N is a union of weak <ω1-L[z0]-Suslin sets.

P r o o f. (1)–(3) are standard. (4) is also a rather known fact. We refer to
Proposition 5(3) in Kanovei [6]; sets of the form Xt(S) in [6] are by definition
weak <ω1-L[z0]-Suslin sets provided S = z0.

We argue in the Solovay model. Starting the proof of Theorem 3, in order
to eliminate the real parameter, let us assume that G is an OD graph.

Let us prove that statements (I) and (II) of Theorem 3 are incompatible
(in the Solovay model). Suppose on the contrary that they are compatible.
Then the graph G0 admits a ROD colouring φ : D = 2ω → ω1. We obtain
a contradiction following an argument in [9]. By known properties of the
Solovay model at least one of the sets Xα = φ−1(α), α < ω1, is not meager.
Then Xα is co-meager on a set of the form Du = {x ∈ D : u ⊂ x},
where u ∈ 2<ω. We have u ⊆ sn for some n (see Introduction). Then Xα

is co-meager on Dsn . Define an automorphism H of D by H(x) = y, where
y(k) = x(k) whenever k 6= n, but y(n) = 1−x(n). Then Y = H−1(Xα∩Dsn)
is co-meager on Dsn . Hence there is x ∈ Xα∩Y ∩Dsn . Now y = H(x) ∈ Xα,
but x G0 y, which is a contradiction.

Let us describe the splitting point of the dichotomy. In principle it has a
resemblance with the case λ = ωV

1 in the proof of Theorem 2. However, as
the Solovay model is already quite generic, we are not in need of any further
generic extension, as in Section 2, and Lemma 11 is also needless.
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We define C to be the set of all ω1-Borel codes C ∈ L for the space N

such that [C] is a G-discrete set. Since the case when N =
⋃
C∈C[C] easily

leads to (I) of Theorem 3, it suffices to prove the following

Theorem 17 (in the Solovay model). If the set X = {
⋃
C∈C[C] is non-

empty then (II) of Theorem 3 holds.

P r o o f. Enumerate, as 〈Gγ : γ < ω1〉, the set of all weak <ω1-L-Su-
slin subsets of G—in the case when G is not locally thin, and all weak
<ω1-L-Suslin subsets of G which are graphs of (partial) 1-1 functions—in
the case when G is locally thin. It follows from Proposition 16((2), (4)) that
G =

⋃
γ<ω1

Gγ in each of the two cases.
As every <ω1-L-Suslin set is ω1-L-Suslin as well, there exists a sequence

〈dγ : γ < ω1〉 of weak ω1-Suslin codes dγ = 〈Dγ
m : m ∈ ω〉 (each Dγ

m being
a subset of (ω × ω × ω1)<ω) such that Gγ = p[dγ ] for all γ < ω1.

We define, in the Solovay model, a system of finite sequences τu ∈ ω<ω
(u ∈ 2<ω) and σuv ∈ ω1

<ω (〈u, v〉 ∈ CPm, m ∈ ω), and an ordinal γk < ω1

for each k ∈ ω, satisfying the following requirements for all m :

(i) τu ⊂ τu∧i for all u ∈ 2m and i = 0, 1, and σuv ⊂ σu∧i,v∧i for all
〈u, v〉 ∈ CPm and i = 0, 1;

(ii) if 〈u, v〉 ∈ CPm, k < m, and u = sk
∧0∧w, v = sk

∧1∧w for some
w ∈ 2m−k−1, then 〈τu, τv, σuv〉 ∈ Dγk

m ;
(iii) there exists a system of reals xu ∈ Nτu ∩ X (u ∈ 2m) and functions

fuv ∈ ωω1 (〈u, v〉 ∈ CPm) such that, for any k < m and any pair 〈u, v〉 ∈ CPm
of the form u = sk

∧0∧w, v = sk
∧1∧w for some w ∈ 2m−k−1, we have

σuv ⊂ fuv and 〈xu, xv, fuv〉 ∈ [dγk ];
(iv) if G is either acyclic or locally thin, u, v ∈ 2m, and u 6= v, then τu

and τv are incomparable in ω<ω.

(The only difference with (i)–(iii) in Section 4 is that the reals and func-
tions in (iii) are required to exist in the same universe rather than in its
generic extension.) Such a system guarantees that G0 ≤c G, even G0 vc G
provided G is acyclic or locally thin, as in Section 4, so it suffices to carry
out the construction satisfying (i)–(iv).

Suppose that the construction has been accomplished at a level m, and
show how to expand it at the level m + 1. Following the line of reasoning
in Section 4, we first define τu∧i = τu for all u ∈ 2m and σu∧i,v∧i = σuv for
any pair 〈u, v〉 ∈ CPm, and all i = 0, 1, and finally σsm∧0,sm∧1 = Λ.

Now the problem is to prove Assertions 14 and 15 in Section 5 in the
new setting. The proof of Assertion 15 is completely similar to the reasoning
in Section 5 (is even simpler because all the time one argues in the Solovay
model). Assertion 14 needs a more careful analysis.
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Assertion 18 (A counterpart of Assertion 14 in the Solovay model).
There exist an ordinal γm < ω1, reals xs (s ∈ 2m+1) and functions fst ∈ ωω1
(〈s, t〉 ∈ CPm+1) satisfying (iii) at the level m+ 1.

P r o o f. Otherwise for each γ < ω1 the collection Xγ of all systems of
reals xs ∈ Ns ∩ X (s ∈ 2m+1) and functions fst ∈ ωω1 (〈s, t〉 ∈ CPm+1)
satisfying (iii) at the level m+ 1 with γm = γ is empty.

However, the set Y of all systems of reals yu ∈ Nτu ∩ X (u ∈ 2m) and
functions fuv ∈ ωω1 (〈u, v〉 ∈ CPm) which satisfy (iii) at the level m is
non-empty as (iii) is supposed to hold at the level m.

Note that the set A of all reals ysm that occur in Y (the projection of
Y onto the smth coordinate) is G-discrete. (Otherwise it is not Gγ-discrete
for some γ < ω1 because G =

⋃
γ<ω1

Gγ , which implies Xγ 6= ∅.)
Consider a system of reals yu ∈ Nτu∩X (u ∈ 2m) and functions fuv ∈ ωω1

(〈u, v〉 ∈ CPm) which belongs to Y. Then ysm ∈ A.
By Proposition 16, A is the union of weak <ω1-L-Suslin sets A′ ⊆ A.

(This is the point where we avoid the involvement of a generic extension
of the universe. Any set is “enough Suslin” in the Solovay model.) More-
over, it follows from Corollary 6 (10) that A is the union of all ω1-L-Borel
sets B ⊆ A. Therefore ysm belongs to an ω1-L-Borel set B ⊆ A which
is G-discrete together with A. Thus ysm 6∈ X, which is a contradiction.

Assert. 18,Thms. 17, 3

7. A simplified dichotomy for Σ1
2 graphs. This section presents a

short proof of the fact that any Σ1
2 graph G satisfies χ(G) ≤ ℵ1 or G0 ≤c G.

The proof reduces the problem to Theorem 1 via an argument similar to a
proof of the Burgess theorem on the number of equivalence classes of Σ1

1
equivalence relations from the Silver theorem on Π1

1 relations, as described
by Hjorth [4].

We may suppose, as usual, that G is a Σ1
2 graph. It is a classical theorem

that G has the form of a union G =
⋃
γ<ω1

Gγ of Borel subgraphs Gγ ⊆ G.
Such a decomposition can be realized in such a way that the statement:
“there exist an ordinal γ < ω1 and a continuous function H which witnesses
G0 ≤c (

⋃
α<γ Gα)” is Σ1

2 , therefore absolute.
Let, as above, V be the universe in which we prove the result.
We set κ = ωV

1 . Consider a κ-collapse extension V+ of V. Let G+ be the
V+-copy of G defined in V+ by the same Σ1

2 formula. Let finally Γ ∈ L be
a (κ+ 1)-Borel code which naturally defines the approximation

⋃
α<κ Gα of

G, so that G = [Γ ] in V, but perhaps [Γ ] $ G+ in V+.

(10) This argument might also have been used in the proof of Assertion 14, instead
of a sophisticated application of the separation theorem; however, this would lead to a
somewhat weaker result than Theorem 2.
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Then [Γ ] is a Borel graph in V+. It follows from Theorem 1 that, in V+,
either [Γ ] is countably Borel colourable or G0 ≤c [Γ ]. In the “or” case, we
immediately obtain G0 ≤c G in V by the absoluteness argument above.

Thus assume that [Γ ] is countably Borel colourable in V+.
Let P be the κ-collapse forcing; in particular, P ∈ L is a p.o. set of

cardinality ≤ κ in L. Let us fix a P-term t such that, in V, P forces t to be
a colouring of [Γ ] by natural numbers.

We define, in V, for any real x, h(x) to be the least, e.g. in the sense of
the Gödel wellordering of L, pair 〈p, n〉 ∈ P ×ω such that p forces t(x) = n.
Clearly h witnesses that χ(G) ≤ ℵ1 in V.

This argument can be elaborated, towards a stronger result: if G is a Σ1
2

graph then either there is a constructible sequence of (ω1 + 1)-Borel codes
Cγ , γ < ω1, such that the sets [Cγ ] are G-discrete and cover N, or G0 ≤c G.
However, it is not clear whether the same result can be obtained in the case
when the given graph is ω1-L-Suslin in V.

8. Applications for analytic graphs. In this section the technique
used above in the proof of Theorem 2 is applied for a different purpose. We
prove a form of Theorem 1 which does not seem to be an easy corollary of
Theorem 1 itself.

Theorem 19. Let λ < ω1. Suppose that R ⊆ (ω×ω×λ)<ω is a tree such
that G = p[R] is a graph on N = ωω. Then G satisfies one of the following
two statements:

(I) G is countably Borel colourable. Moreover , N is covered by a union
of L[R]-countably many G-discrete (λ+ 1)-L[R]-Borel sets.

(II) G0 ≤c G. Moreover , G0 vc G provided G is acyclic.

Note that (I) and (II) are incompatible: this easily follows from Theo-
rem 1.

To see that the theorem is not formally covered by Theorem 1 consider
the case when λ ≥ ω

L[R]
1 . Then the graph G = p[R] may not be Σ1

1(z0) for
a real z0 ∈ L[R].

It is not clear whether one gets G0 vc G in the locally countable case as
well. (Note that locally thin Σ1

1 graphs are locally countable.) The method
how we treated locally thin graphs above does not seem adequate.

P r o o f (of Theorem 19). We follow the general scheme applied above.
Let us suppose that R ∈ L; otherwise L changes to L[R] in the reasoning.

Let V denote the universe of Theorem 19. V+ will be the ωL[R]
2 -collapse

extension of V. We finally set G+ = p[R] in V+.
Define, in V+, C to be the collection of all (λ+ 1)-Borel codes C ∈ L for

the space N such that [C] is a G+-discrete set in V+.
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If
⋃
C∈C[C] = N in V+ then, using Lemma 11, we obtain a subcollection

C′ ⊆ C, C′ ∈ L, of cardinality ≤ λ (therefore countable) in L, such that still
N =

⋃
C∈C′ [C] in V+, hence in V, which easily leads to (I). Thus we may

assume that X = {
⋃
C∈C[C] ⊆ N is non-empty in V+.

In this assumption we define, in V, a system of finite sequences τu ∈ ω<ω
(u ∈ 2<ω) and σuv ∈ λ<ω (where 〈u, v〉 ∈ CPm for some m) satisfying the
following three requirements for all m:

(i) τu ⊂ τu∧i for all u ∈ 2m and i = 0, 1, and σuv ⊂ σu∧i,v∧i for all
〈u, v〉 ∈ CPm and i = 0, 1;

(ii) if 〈u, v〉 ∈ CPm then 〈τu, τv, σuv〉 ∈ R;
(iii) there exists, in V+, a system of reals xu ∈ Nτu ∩ X (u ∈ 2m) and

functions fuv ∈ λω (〈u, v〉 ∈ CPm) such that, for any pair 〈u, v〉 ∈ CPm, we
have σuv ⊂ fuv and 〈xu, xv, fuv〉 ∈ [R].

The existence of such a system implies G0 ≤c G in V, as above. (If G
is acyclic in V then requirement (iv) of Subsection 4.3 joins the list (i)–
(iii).) The construction itself is pretty much similar to the construction in
Section 5, and is left to the reader.
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