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Abstract. Let X be a completely regular space and let A(X) be a ring of continuous
real-valued functions onX which is closed under local bounded inversion. We show that the
structure space of A(X) is homeomorphic to a quotient of the Stone–Čech compactification
of X. We use this result to show that any realcompactification of X is homeomorphic to
a subspace of the structure space of some ring of continuous functions A(X).

1. Introduction. Let X be a completely regular space and let A(X) be a
collection of continuous real-valued functions on X which form a ring under
pointwise operations. Two special cases are C(X), the ring of all continuous
functions on X, and C∗(X), the ring of bounded continuous functions on X.
We study the class of rings of continuous functions which are closed under
local bounded inversion (as defined in Section 2). This class includes any ring
that contains C∗(X), and any uniformly closed subring of C∗(X), as well as
others, including C1

0 (X), the ring of continuously differentiable functions on
a locally compact subset X of R which vanish at infinity (see [1]). Structure
spaces for C(X) and C∗(X) have been studied extensively. (See for example
[5], where it is shown, by different methods, that the structure space of
each ring is isomorphic to βX, the Stone–Čech compactification of X.) We
show that for any ring closed under local bounded inversion, the structure
space is compact, and is homeomorphic with a quotient of the Stone–Čech
compactification βX (Theorem 3.6). Our proofs use a map which assigns a
z-filter to every noninvertible f ∈ A(X); this map extends to one from ideals
(maximal ideals) to z-filters (z-ultrafilters). For each A(X) we identify a
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subspace υAX of M(A) which we call the A-compactification of X. We show
that υAX is a realcompactification of X and that every realcompactification
arises in this way (Theorem 4.6). Thus every realcompactification of X is a
quotient of a subspace of βX. We identify a class of rings which is in natural
one-to-one correspondence with the realcompactifications of X (Theorem
4.7). As an application of our results, we prove an extension of the Banach–
Stone theorem: Let X and Y be compact and let A(X) and B(Y ) be closed
under local bounded inversion; if A(X) and B(Y ) are isomorphic, then X
and Y are homeomorphic. (See the remark following Theorem 4.5.)

Rings of continuous functions other than C(X) and C∗(X) are also stud-
ied in [1], [6], [7], and [8].

2. Ideals and z-filters. Let X be a completely regular space and let
A(X) be a ring of continuous real-valued functions on X. A zero set in X
is a set of the form Z(f) = {x ∈ X : f(x) = 0} for some f ∈ C(X); the
complement of a zero set is called a cozero set. We define Z[A(X)] = {Z(f) :
f ∈ A(X)}; the collection Z[C(X)] of all zero sets is denoted by Z[X]. We
always assume that the rings A(X) that we consider contain the constants
and separate points and closed sets in X. We make this assumption because
of the following easily proved fact: Z[A(X)] is a base for the closed sets in
X iff A(X) separates the points and closed sets of X.

If f ∈ A(X) and E is a cozero set in X, then f is E-regular if there
exists g ∈ A(X) such that fg|E ≡ 1; that is, f is locally invertible on E. To
each f ∈ A(X) we attach a collection ZA(f) of subsets of X defined by

ZA(f) = {E ∈ Z[X] : f is Ec-regular}.
Clearly, ZA(fg) ⊂ ZA(f) ∩ ZA(g). It can be shown, as in [9], Theorem 1,
that ZA(f) is a z-filter on X iff f is not invertible in A(X). For S ⊂ A(X)
we write ZA[S] =

⋃
f∈S ZA(f). It was shown in [9] and [3] that if A(X) is

a uniformly closed subring that contains or is contained in C∗(X), then for
an ideal I in A(X), ZA[I] is a z-filter on X. The proofs there depend on the
assumption that A(X) is uniformly closed. In Theorem 2.1 below we show
that this is in fact true for any subring of C(X). The inverse of the map
ZA, considered as a set map, is denoted by Z←A and defined by

Z←A [S] = {f ∈ A(X) : ZA(f) ⊂ S},
where S is a collection of zero sets in X. It follows immediately from the
definition that Z←A [ZA[S]] ⊃ S and ZA[Z←A [S]] ⊂ S for all S ⊂ A(X) and
S ⊂ Z[X]. For a z-filter F on X we define

IA[F ] = {f ∈ A(X) : lim
F
fh = 0 for all h ∈ A(X)},

where limF f denotes the limit of the filter base f(F). Clearly, IA[F ] is an
ideal of A(X).
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Theorem 2.1. (a) If I is an ideal in A(X) then ZA[I] is a z-filter on X.
(b) If F is a z-filter on X then IA[F ]⊂ Z←A [F ].

P r o o f. (a) Clearly, ∅ 6∈ ZA[I], because I contains no invertible elements.
If F ∈ Z[X] and F ⊃ E ∈ ZA[I], then F ∈ ZA[I]. Now let E,F ∈ ZA[I], and
choose f, g ∈ I locally invertible on Ec and F c respectively. Then there exist
h, k ∈ A(X) such that fh|Ec ≡ 1 and gk|F c ≡ 1. Let w = fh + gk − fhgk.
Then w ∈ I, and since w|Ec∪F c ≡ 1, it follows that w is locally invertible
on Ec ∪ F c. Thus (Ec ∪ F c)c = E ∩ F ∈ ZA[I], and so ZA[I] is a z-filter.

(b) For f ∈ IA[F ] we show that for every E ∈ ZA(f) there exists F ∈ F
such that F ⊂ E. If no such F exists, then F ∩ Ec 6= ∅ for all F ∈ F .
Since E ∈ ZA(f) there exists h ∈ A(X) such that hf |Ec ≡ 1. But then 1
is a cluster point of {fh(F ) : F ∈ F}, contradicting the hypothesis that
limF fh = 0. Thus ZA(f) ⊂ F ; that is, f ∈ Z←A [F ].

If F is a z-filter or even a z-ultrafilter onX, then Z←A [F ] is not necessarily
an ideal. For example, in the ring P (R) of polynomials on R, for any z-
filter F , the set Z←A [F ] consists of all polynomials other than the nonzero
constants. We now introduce a class of subrings for which Z←A [F ] is an ideal
for every z-filter F . A subring A(X) of C(X) is closed under local bounded
inversion if every element of A(X) that is bounded away from 0 on a cozero
set E is locally invertible on E; that is, if f(x) ≥ c > 0 for all x ∈ E, then f
is E-regular in A(X). Any subring of C(X) that contains C∗(X) is closed
under local bounded inversion, and according to [3], Lemma 1.2(c), so also
is any uniformly closed subring of C∗(X). However, a subring of C(X) that
is closed under local bounded inversion need not be comparable to C∗(X).
(Consider, for example, the ring of all continuous functions f : R → R for
which limx→∞ f(x) exists.)

In the study of C(X) the zero sets Z(f) play a central role. The following
result gives a relationship between the z-filter ZA(f) and the zero set Z(f).

Proposition 2.2. If A(X) is closed under local bounded inversion, then
Z(f) =

⋂ZA(f).

P r o o f. Suppose y 6∈ Z(f) and without loss of generality assume that
f(y) > 0. Choose a cozero set neighborhood G of y such that f(x) ≥ c > 0
for all x ∈ G. By hypothesis f is locally invertible on G and so Gc ∈ ZA(f).
Thus y 6∈ ⋂ZA(f). This shows that Z(f) ⊃ ⋂ZA(f). The other inclusion
is immediate.

Theorem 2.3. Let A(X) be closed under local bounded inversion. If F
is a z-filter on X then Z←A [F ] = IA[F ]; in particular , Z←A [F ] is an ideal
in A(X).

P r o o f. We claim that if f ∈ A(X) and F ⊃ ZA(f), then limF fh = 0
for all h ∈ A(X). To show this, let f be a noninvertible element of A(X).
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We show that limZA(f) f = 0. Let [−ε, ε] be a neighborhood of 0 in R and
let Eε = f−1([−ε, ε]). Set

F1 = {x ∈ X : f(x) > ε} and F2 = {x ∈ X : f(x) < −ε}.
Since A(X) is closed under local bounded inversion, f is F1-regular and F2-
regular, and hence (F1∪F2)-regular ([9], Lemma 1(b)). But F1∪F2 = (Eε)c,
so Eε ∈ ZA(f) for all ε > 0. Thus limZA(f) f = 0 for all f ∈ A(X). In
particular, for all h ∈ A(X), limZA(fh) fh = 0, so since ZA(fh) ⊂ ZA(f) ⊂
F , we have limF fh = 0. This proves the claim.

Now, let F be a z-filter and let f ∈ Z←A [F ]; that is, ZA(f) ⊂ F . Then
by the claim limF fh = 0 for all h ∈ A(X), so f ∈ IA[F ]. Thus by Theorem
2.1(b), Z←A [F ] = IA[F ].

If M is a maximal ideal in A(X), then ZA[M ] is not necessarily a z-
ultrafilter. For example, let M0 be the maximal ideal in C(R) consisting of
those functions which vanish at 0. Then ZC [M0] is the z-filter of zero-set
neighborhoods of 0, which is properly contained in the z-ultrafilter of all zero
sets that contain 0. On the other hand, if A(X) is closed under local bounded
inversion, then Z←A [U ] is a maximal ideal whenever U is a z-ultrafilter, as
we show in the following theorem.

Theorem 2.4. Let A(X) be closed under local bounded inversion. If U
is a z-ultrafilter on X, then Z←A [U ] is a maximal ideal in A(X).

P r o o f. We first show that if U1 and U2 are z-ultrafilters on X, then
the ideals Z←A [U1] and Z←A [U2] are either equal or not comparable. To this
end, suppose that Z←A [U1] is properly contained in Z←A [U2], and choose f ∈
Z←A [U2] such that f 6∈ Z←A [U1]. Then by Theorem 2.3, limU2 fh = 0 for all
h ∈ A(X), and limU1 fk 6= 0, or does not exist, for some k ∈ A(X). In either
case, there exists c > 0 and a zero set E ∈ U1 such that f(x)k(x) > c for all
x ∈ E. The set G = {x : f(x)k(x) > c} is a cozero set containing E on which
fk is bounded away from zero. Since A(X) is closed under local bounded
inversion there exists g ∈ A(X) such that fkg|G ≡ 1, and hence fkg|E ≡ 1.
Thus 1 − fkg|E ≡ 0, and so limU1(1 − fkg)h = 0 for all h ∈ A(X). But
limU2(1− fkg) = 1, which means that 1− fkg belongs to Z←A [U1] but not
to Z←A [U2], contradicting the hypothesized containment.

Now, let M = Z←A [U ] and F = ZA[Z←A [U ]]. Suppose g 6∈ M . We will
show that the ideal generated by M and g is all of A(X), which will prove
that M is maximal. We claim that the collection ZA(g) ∪ F does not have
the finite intersection property. For if it did, then there would exist a z-
ultrafilter U ′ containing both ZA(g) and F . In this case U ′⊃ ZA[Z←A [U ]];
hence Z←A [U ′]⊃ Z←A [U ], and so by the first paragraph Z←A [U ′] = M , which
is impossible since g 6∈ M . This proves the claim. So there exist zero sets
E ∈ ZA(g) and F ∈ F such that E ∩ F = ∅. By definition of F we can
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choose f ∈ M such that F ∈ ZA(f). Hence there exist h, k ∈ A(X) such
that fh|F c ≡ 1 and gk|Ec ≡ 1. Now since Ec ∪ F c = X, we see that
fh+ gk − fghk is identically 1 on all of X. Thus the ideal generated by M
and g contains the function 1.

A z-filter F is fixed if
⋂F 6= ∅, otherwise it is free. An ideal I is fixed

if
⋂ZA[I] 6= ∅, otherwise it is free. By Proposition 2.2,

⋂ZA[I] =
⋂
Z[I],

so an ideal is fixed in this sense iff it is fixed in the usual sense ([5], page
54). Note that the fixed z-ultrafilters on X are precisely the z-ultrafilters
Up, p ∈ X, where Up = {E ∈ Z[X] : p ∈ E}.

Theorem 2.5. Let A(X) be closed under local bounded inversion and let
M be a maximal ideal in A(X).

(a) If M is fixed , then there exists p ∈ X such that

M = {f ∈ A(X) : f(p) = 0}.
Moreover , Up is the unique z-ultrafilter containing ZA[M ].

(b) If M is free, then there is a free z-ultrafilter U such that

M = {f ∈ A(X) : ZA(f) ⊂ U}.
P r o o f. (a) By Proposition 2.2 we have Z(f) =

⋂ZA(f) for every
f ∈ A(X), and so

⋂ZA[I] =
⋂{Z(f) : f ∈ M}. Since M is fixed, this

intersection is not empty. So there exists p ∈ X such that f(p) = 0 for all
f ∈M . Since M is maximal, we have M = {f ∈ A(X) : f(p) = 0}.

Now let U be any z-ultrafilter containing ZA[M ]. We show that p belongs
to every element of U . For suppose that p 6∈ E ∈ U . Then there exists
f ∈ A(X) such that f(p) = 0 and f(E) ≥ 1 (and so f ∈M). Let F = {x ∈
X : f(x) ≥ 1/2}. Since A(X) is closed under local bounded inversion, f is
locally invertible on F c, so F ∈ ZA(f) ⊂ ZA[M ] ⊂ U . But this is impossible
because E ∩ F = ∅. Thus U ⊃ Up, and so U = Up is the unique z-ultrafilter
containing ZA[M ].

(b) Since ZA[M ] is free, any z-ultrafilter U ⊃ ZA[M ] is free. Clearly,
M = Z←A [U ].

Corollary 2.6. Let U be a z-ultrafilter on X. Then Z←A [U ] is a fixed
(free) maximal ideal iff U is a fixed (free) z-ultrafilter.

P r o o f. Suppose M = Z←A [U ] is a fixed maximal ideal. Since U ⊃ ZA[M ],
U is fixed by Theorem 2.5(a). Conversely, if U is fixed, then

⋂U 6= ∅. Since
ZA[Z←A [U ]] ⊂ U , we have

⋂ZA[Z←A [U ]] 6= ∅, and hence Z←A [U ] is fixed.

3. The structure space. In this section, A(X) denotes a ring of con-
tinuous functions that is closed under local bounded inversion.



156 L. Redlin and S. Watson

Let U(X) denote the collection of all z-ultrafilters on X, and let M(A)
denote the collection of maximal ideals in A(X). The map

Z←A : U(X)→M(A)

is onto. This is because if M is a maximal ideal then the z-filter ZA[M ] is
contained in a z-ultrafilter U . Then Z←A [U ] ⊃ M , and since M is maximal,
Z←A [U ] = M . We endow M(A) with the hull-kernel topology. A base for the
closed sets in this topology is given by the family of sets of the form

Nf = {M ∈M(A) : f ∈M}, f ∈ A(X).

We denote by τ the Stone topology on U(X); thus (U(X), τ) is βX, the
Stone–Čech compactification of X. A base for the closed sets in τ is given
by the family of sets of the form SE = {U ∈ U(X) : E ∈ U}, E ∈ Z[X],
([5], p. 87). We write p, q, . . . for the points of βX, but when we wish to
emphasize that these are z-ultrafilters, we write Up,Uq, . . .; if p ∈ X then Up
denotes the fixed z-ultrafilter defined before Theorem 2.5. We also endow
U(X) with a topology τA depending on A(X). A base for the closed sets in
this topology is given by the family of sets of the form

Zf = {U ∈ U(X) : ZA(f) ⊂ U}, f ∈ A(X).

By Proposition 2.2, Z(f) =
⋂ZA(f). Thus if Z(f) ∈ U , then ZA(f) ⊂ U ,

and so SZ(f) ⊂ Zf .
We now show that the collection {Zf : f ∈ A(X)} does indeed form

a base for the closed sets in a topology on U(X). First, note that X is
naturally embedded in both U(X) and M(A): a point p ∈ X is identified
with the fixed z-ultrafilter Up in U(X), and with the maximal ideal M =
{f ∈ A(X) : f(p) = 0} in M(A) (Theorem 2.5(a)).

Theorem 3.1. (a) τA is a topology on U(X).
(b) The closure in (U(X), τA) of a zero set E ∈ Z[X] is given by

⋂{Zf :
f ∈ IE}, where IE = {f ∈ A(X) : f(E) = 0}.

P r o o f. (a) First note that if f is invertible, then Zf = ∅, so ∅ is in the
base. We now show that for f, g ∈ A(X) we have Zf ∪ Zg = Zfg. Observe
that if U is a z-ultrafilter with ZA(fg) ⊂ U , then ZA(f) ⊂ U or ZA(g) ⊂ U ;
for if ZA(fg) ⊂ U , then fg ∈ Z←A [U ], which is a maximal ideal, and hence
prime. Thus either f ∈ Z←A [U ] or g ∈ Z←A [U ], and so either ZA(f) ⊂ U or
ZA(g) ⊂ U . Now if U ∈ Zfg then ZA(fg) ⊂ U , and hence ZA(f) ⊂ U or
ZA(g) ⊂ U ; that is, U ∈ Zf ∪ Zg. Conversely, suppose U ∈ Zf ∪ Zg. Then
either ZA(f) ⊂ U or ZA(g) ⊂ U ; since ZA(fg) ⊂ ZA(f) ∩ ZA(g), we have
ZA(fg) ⊂ U . Thus U ∈ Zfg.

(b) We show that Zf ⊃ E iff f ∈ IE . The result follows from this since
the collection {Zf} is a base for the closed sets in U(X). So suppose Zf ⊃ E.
Then for every p ∈ E, we have Up ∈ Zf , and so ZA(f) ⊂ Up whenever p ∈ E.
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Thus f ∈ Z←A [Up], p ∈ E. By Theorem 2.5(a), this means that f(p) = 0 for
all p ∈ E, and so f ∈ IE . Conversely, if f ∈ IE then f(p) = 0 for all p ∈ E,
and by Theorem 2.5(a), f ∈ Z←A [Up] for all p ∈ E. Thus ZA(f) ⊂ Up, p ∈ E,
and so E = {Up : p ∈ E} is contained in {U : ZA(f) ⊂ U} = Zf .

Theorem 3.2. X is a dense subspace of (U(X), τA).

P r o o f. First we verify that the map ι : X → U(X) taking p to Up is
a continuous embedding. (We do not distinguish between the points of X
and ι(X); that is, we consider X to be a subset of U(X).) Let f ∈ A(X);
then Zf is a basic closed set in U(X). We claim that Zf ∩ X = Z(f), the
zero set of f in X. To show this, let p ∈ X. If f(p) = 0, then ZA(f) ⊂ Up
and so p ∈ Zf . Conversely, suppose f(p) 6= 0; we may assume without
loss of generality that f(p) = 1. Let E = {x ∈ X : f(x) ≤ 1/2}. Since
A(X) is closed under local bounded inversion, E ∈ ZA(f), but since p 6∈ E,
E 6∈ Up. Thus ZA(f) is not contained in Up, and hence p = Up 6∈ Zf . This
verifies the claim, which in turn shows that the restrictions to X of the
basic closed sets {Zf : f ∈ A(X)} in U(X) are precisely the basic closed sets
{Z(f) : f ∈ A(X)} in X. Thus ι is a homeomorphism onto its image.

That X is dense in (U(X), τA) follows from Theorem 3.1(b), since the
closure of X is

⋂{Zf : f ≡ 0} = U(X).

Theorem 3.3. τA ⊂ τ ; hence (U(X), τA) is compact.

P r o o f. We show that every basic closed set Zf in the topology τA is
also closed in τ . Let f ∈ A(X). Then Zf = {U ∈ U(X) : ZA(f) ⊂ U} =⋂{SE : E ∈ ZA(f)}, where SE = {U ∈ U(X) : E ∈ U } is a basic closed set
in τ .

Theorem 3.4. The following are equivalent :

(a) τA = τ .
(b) A(X) separates zero sets in X.
(c) τA is Hausdorff.

P r o o f. (a)⇒(b). Suppose τA = τ and let E,F ∈ Z[X], with E ∩F = ∅.
Then the closure of F in τA is the same as its closure clτ F in τ . By Theorem
3.1(b) this means that

(3.1)
⋂
{Zf : f ∈ IF } = {U : F ∈ U}.

Since E and F are disjoint, E does not belong to any U for which F ∈ U .
Suppose that for every f ∈ IF , E meets every member of ZA(f). Then
E meets every element of the z-filter ZA[IF ] (this is a z-filter since IF is
an ideal). Thus there is a z-ultrafilter U1 containing ZA[IF ] ∪ {E}. This z-
ultrafilter would belong to Zf for every f ∈ IF , and so U1 ∈

⋂{Zf : f ∈ IF },
the intersection on the left in (3.1). But as noted above, the fact that E ∈ U1
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implies that F 6∈ U1, so U1 does not belong to the set on the right in (3.1),
a contradiction. Thus there must exist f ∈ IF and G ∈ ZA(f) such that
E ∩ G = ∅. Then there exists g ∈ A(X) such that fg = 1 on Gc ⊃ E. But
f ∈ IF , so fg = 0 on F ; thus the function fg ∈ A(X) separates the zero
sets E and F .

(b)⇒(a). Suppose A(X) separates zero sets, and let E ∈ Z[X]. We show
that the closure of E in τ is equal to its closure in τA, namely

⋂{Zf :
f ∈ IE} (Theorem 3.1(b)). This would mean that τ ⊂ τA, and so the
desired result would follow from Theorem 3.3. If U ∈ clτ E, then E ∈ U .
So for every f ∈ IE , ZA(f) ⊂ U , and hence U ∈ Zf . This shows that
clτ E ⊂

⋂{Zf : f ∈ IE}. For the other containment, let U ′ ∈ ⋂{Zf :
f ∈ IE} = {U ∈ U(X) : ZA[IE ] ⊂ U}. If F ∈ U ′, then F meets every
element of ZA[IE ]. We claim that F meets E. For suppose that E ∩ F = ∅.
Then there exists h ∈ A(X) such that h(E) = 0 and h(F ) = 1. Clearly,
h ∈ IE . The set G = {x ∈ X : h(x) ≤ 1/2} is a zero set that contains
E; moreover, G ∈ ZA(h) since h is bounded away from zero on Gc. But
F ∩ G = ∅, and this contradicts the fact that F meets every element of
ZA[IE ]. Thus E ∩F 6= ∅. Since F is an arbitrary element of the z-ultrafilter
U ′, this proves that E ∈ U ′. Thus U ′ ∈ clτ E.

(a)⇔(c). Since τ is Hausdorff ([5], p. 87), it remains to show (c)⇒(a).
If τA is Hausdorff, then the identity map (U(X), τ) → (U(X), τA) is a con-
tinuous function (Theorem 3.3) from a compact space to a Hausdorff space,
and hence is a homeomorphism ([10], p. 123).

The map Z←A : U(X) → M(A) is not necessarily one-to-one, but, as we
have seen, it is onto. Thus we may define an equivalence relation ∼

A
on U(X)

by

U1 ∼A U2 iff Z←A [U1] = Z←A [U2].

Note that if p ∈ X, then Up is the only element in its equivalence class
modulo∼

A
. Thus∼

A
does not identify points ofX (understood to be embedded

in U(X) as described above Theorem 3.1).
We now prove a result which explains the choice of the topology τA on

U(X).

Theorem 3.5. M(A) is homeomorphic to (U(X), τA)/∼
A

.

P r o o f. In this proof we denote Z←A by Φ. We show that M(A) has the
quotient topology induced by Φ; that is, a set F is closed in M(A) iff Φ−1(F )
is closed in (U(X), τA). We first observe that the inverse image under Φ of
a basic closed set in M(A) is a basic closed set in (U(X), τA). This follows
from the following equation: Φ−1(Nf ) = {U : f ∈ Z←A [U ]} = {U : ZA(f) ⊂
U} = Zf . Since any closed set F ⊂ M(A) is an intersection of basic closed
sets, it follows that Φ−1(F ) is closed.
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Conversely, if Φ−1(F ) is closed in (U(X), τA), then Φ−1(F ) =
⋂{Zf :

f ∈ Λ} for some index set Λ. We claim that

Φ
(⋂
{Zf : f ∈ Λ}

)
=
⋂
{Φ(Zf ) : f ∈ Λ}.

The result will then follow, since we would have F = Φ(
⋂{Zf : f ∈ Λ}) =⋂{Φ(Zf ) : f ∈ Λ} =

⋂{Nf : f ∈ Λ}, whence F is closed. So to prove the
claim, let M ∈ Φ(

⋂{Zf : f ∈ Λ}); then there exists U ∈ ⋂{Zf : f ∈ Λ} such
that M = Φ(U). Now U ∈ Zf for all f ∈ Λ, so M ∈ Φ(Zf ) for all f ∈ Λ,
and hence M ∈ ⋂{Φ(Zf ) : f ∈ Λ}. For the other containment, suppose
M ∈ ⋂{Φ(Zf ) : f ∈ Λ}. Then M ∈ Φ(Zf ) for all f ∈ Λ, so for each f ∈ Λ
there exists a z-ultrafilter Uf such that M = Φ(Uf ). This means that f ∈M
for all f ∈ Λ, so ZA[M ] ⊃ ZA(f) for all f ∈ Λ. Thus if U is any z-ultrafilter
containing ZA[M ] then U ∈ Zf for all f ∈ Λ, and hence U ∈ ⋂{Zf : f ∈ Λ}.
So Φ(U) = M ∈ Φ(

⋂{Zf : f ∈ Λ}).
Theorem 3.6. M(A) is homeomorphic to a quotient of the Stone–Čech

compactification βX; precisely , M(A) ' (U(X), τ)/∼
A

.

P r o o f. We first show that M(A) is a compact Hausdorff space. By [5],
p. 111, it suffices to show that given M1,M2 ∈ M(A), there exist h1, h2 ∈
A(X), h1 6∈M1 and h2 6∈M2, such that h1h2 ∈

⋂
M(A). We claim that there

exist E ∈ ZA[M1] and F ∈ ZA[M2] such that E∩F = ∅. For otherwise there
would exist a z-filter containing ZA[M1]∪ZA[M2], and so Z←A [F ] would be
a proper ideal containing M1 ∪M2, which is impossible. So choose f ∈ M1

and g ∈ M2 such that E ∈ ZA(f) and F ∈ ZA(g); this means there exist
f1, g1 ∈ A(X) such that ff1|Ec ≡ 1 and gg1|F c ≡ 1. Since ff1 ∈ M1 and
gg1 ∈M2, we have 1−ff1 6∈M1 and 1−gg1 6∈M2. But (1−ff1)(1−gg1) = 0
for all x ∈ X, and so h1 = 1−ff1 and h2 = 1−gg1 are the desired functions.

By Theorem 3.5, M(A) is homeomorphic to (U(X), τA)/∼
A

, and so the
latter space is also compact Hausdorff. Now the identity map ι : (U(X), τ)→
(U(X), τA) is continuous by Theorem 3.3, and hence so is the induced map
Ψ : (U(X), τ)/∼

A
→ (U(X), τA)/∼

A
. Thus Ψ is a homeomorphism, since it is

a continuous bijection from a compact space to a Hausdorff space ([10], p.
123).

4. The realcompactifications of a completely regular space. A
realcompactification of a completely regular space X is a realcompact space
in which X is densely embedded. (In particular, every compactification of
X is a realcompactification.) In this section we show that every realcom-
pactification of X is homeomorphic to a subspace of M(A) for some ring of
continuous functions A(X).

If M is a maximal ideal in A(X) then the field A(X)/M contains a
canonical copy of R: the image of the constant functions under the quotient
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map. If A(X)/M consists only of this copy of R then M is a real maximal
ideal. We say that X is A-compact if every real maximal ideal in A(X) is
fixed. (Thus a compact space is C∗-compact and a realcompact space is
C-compact.) A collection C of closed sets in X is called A-stable if every
f ∈ A(X) is bounded on some member of C.

Throughout this section, A(X) is a ring of continuous functions that is
closed under local bounded inversion.

Theorem 4.1. Let U be a z-ultrafilter on X. Then Z←A [U ] is a real
maximal ideal iff U is A-stable.

P r o o f. If M = Z←A [U ] is real, then for every f ∈ A(X) there exists
a constant function r ∈ R such that f − r ∈ M . Thus by Theorem 2.3,
limU (f − r)h = 0 for all h ∈ A(X), and so, in particular, using h ≡ 1, we
get limU f = r. Hence limU f is a (finite) real number for every f ∈ A(X),
and so every f is bounded on some member of U ; that is, U is A-stable.

Conversely, if U is A-stable then limU f is a real number for every f ∈
A(X). So it follows from Theorem 2.3 that Z←A [U ] = {f ∈ A(X) : limU f
= 0}. Thus the map

ψ : A(X)→ R, f 7→ lim
U
f,

is a well-defined ring homomorphism with kernel Z←A [U ], which is therefore
real.

Theorem 4.2. The space X is A-compact iff every A-stable z-ultrafilter
on X converges.

P r o o f. Suppose X is A-compact. If U is an A-stable z-ultrafilter then
the ideal M = Z←A [U ] is real by Theorem 4.1, and since X is A-compact, M
is fixed. Thus by Corollary 2.6, U is fixed and hence converges. Conversely,
suppose X is not A-compact. Then there exists a real maximal ideal M that
is not fixed. Let U be a z-ultrafilter such that M = Z←A [U ]. By Theorem 4.1,
U is A-stable, and by Corollary 2.6, U is not fixed. Thus U is an A-stable
z-ultrafilter that does not converge in X.

Corollary 4.3. If B(X) ⊂ A(X) and X is B-compact , then X is
A-compact.

P r o o f. Let U be an A-stable z-ultrafilter on X. Then U is also B-stable,
so U converges, since X is B-compact. Thus X is A-compact.

Since all the rings that we consider are contained in C(X), it follows
that an A-compact space is realcompact.

Let Mr(A) denote the subspace of M(A) consisting of the real maximal
ideals in A(X), and let Us(X) denote the subspace of (U(X), τA) consisting



Rings of continuous functions 161

of the A-stable z-ultrafilters on X. We define

υAX = (Us(X), τA)/∼
A
.

This space will serve as the A-compactification of X. If f ∈ A(X) and if Up
is an A-stable z-ultrafilter, then we define

fA(p) = lim
Up

f.

Then fA is a continuous extension of f to Us(X). If Up and Uq are A-stable,
then Up ∼A Uq if and only if fA(p) = fA(q) for all f ∈ A(X) (by Theorem 4.1
and an argument as in [3], Lemma 2.1). Thus fA composed with the quotient
map modulo ∼

A
is a continuous extension of f to υAX, which we shall also

call fA. Let A(υAX) = {fA : f ∈ A(X)}. Clearly, A(υAX) ' A(X).

Theorem 4.4. υAX is homeomorphic to Mr(A) by a homeomorphism
that keeps X pointwise fixed.

P r o o f. By Theorem 4.1, Z←A maps Us(X) onto Mr(A). The result now
follows from Theorem 3.5.

Theorem 4.5. If A(X) and B(Y ) are isomorphic, then υAX and υBY
are homeomorphic.

P r o o f. It follows from Theorem 4.4 that the topological spaces υAX
and υBY are determined entirely by the algebraic structures of A(X) and
B(Y ).

In Theorem 4.5, if we assume in addition that X is A-compact and Y is
B-compact, then we can conclude that X is homeomorphic to Y , because
in this case υAX ' X and υBY ' Y .

R e m a r k. If X is compact, then by Theorem 4.2, X is A-compact for
any A(X). In this case υAX ' X. Thus for compact X and Y , it follows
from Theorem 4.5 that if A(X) and B(Y ) are isomorphic, then X and Y
are homeomorphic.

Theorem 4.6. (a) υAX is an A-compactification of X (and hence a
realcompactification of X).

(b) If αX is a realcompactification of X, then there exists a ring A(X) of
continuous functions such that αX ' υAX by a homeomorphism that keeps
X pointwise fixed.

P r o o f. (a) Let M be a real maximal ideal in A(X). Then every z-
ultrafilter Up containing ZA[M ] is A-stable, and so M = Z←A [Up] = {f ∈
A(X) : limUp f = 0}, as in the proof Theorem 4.1. Thus M = {f ∈ A(X) :
fA(p) = 0}, so the ideal M is fixed (considered as an ideal in A(υAX)).
Thus υAX is A-compact; since X is dense in υAX (Theorem 3.2), υAX is
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an A-compactification of X. Since A(X) ⊂ C(X), υAX is also C-compact
by Corollary 4.3; that is, it is realcompact.

(b) We first observe that if Y is realcompact, then A(X) ' C(Y ) implies
υAX ' Y (Theorem 4.5). Now let A(X) = {f ∈ C(X) : f has a continuous
extension fα to αX}. Then A(X) ' C(αX). Since αX is realcompact, every
real maximal ideal in C(αX) is fixed. But C(αX) ' A(X) ' A(υAX), and
so υAX ' αX.

It follows immediately from Theorem 4.6(b) that every realcompactifi-
cation of X is a quotient of a subspace of βX.

Two different rings of continuous functions A(X) and B(X) may give
equivalent realcompactifications υAX and υBX (that is, they are homeo-
morphic by a homeomorphism that leaves X pointwise fixed). For example,
if H(N) denotes the ring of all sequences on N which are coefficients in the
Taylor series of an analytic function on the disc, then N is H-compact and C-
compact [2]. This situation cannot occur for two different “C-rings”, defined
as follows: A ring of continuous functions A(X) is a C-ring if there exists
a completely regular space Y such that A(X) is ring isomorphic to C(Y ).
(For example, C∗(X) is a C-ring, since C∗(X) is isomorphic to C(βX).)

We now show that every realcompactification of X is equivalent to υAX
for some C-ring A(X).

Theorem 4.7. Let X be a completely regular space. There is a one-to-one
correspondence between realcompactifications of X and C-rings on X.

P r o o f. We first observe that A(X) is a C-ring iff A(X) ' C(υAX).
This is because if A(X) ' C(Y ) then υAX ' υCY (Theorem 4.5). Thus
C(υAX) ' C(υCY ) ' C(Y ), and so A(X) ' C(υAX).

Now, suppose αX is a realcompactification of X, and let A(X) = {f |X :
f ∈ C(αX)}. Then A(X) ' C(αX) since X is dense in αX. Thus A(X) is a
C-ring, so A(X) ' C(υAX), and hence αX ' υAX (because αX and υAX
are realcompact). Conversely, if A(X) is a C-ring then A(X) ' C(Y ), where
Y can be chosen to be realcompact. Then υAX ' Y . This proves that the
correspondence between C-rings A(X) and the realcompactifications υAX
is one-to-one.
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