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Locally constant functions
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Abstract. Let X be a compact Hausdorff space and M a metric space. E0(X,M) is
the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant
on some neighborhood of x. We describe some general classes of X for which E0(X,M) is
all of C(X,M). These include βN\N, any nowhere separable LOTS, and any X such that
forcing with the open subsets of X does not add reals. In the case where M is a Banach
space, we discuss the properties of E0(X,M) as a normed linear space. We also build
three first countable Eberlein compact spaces, F,G,H, with various E0 properties. For all
metric M , E0(F,M) contains only the constant functions, and E0(G,M) = C(G,M). If M
is the Hilbert cube or any infinite-dimensional Banach space, then E0(H,M) 6= C(H,M),
but E0(H,M) = C(H,M) whenever M ⊆ Rn for some finite n.

0. Introduction. If X is a compact Hausdorff space and M is a metric
space, let C(X,M) be the space of all continuous functions from X into M .
C(X,M) is a metric space under the metric induced by the sup norm. C(X)
denotes C(X,R), which is a (real) Banach algebra. Following [5, 6, 7, 14,
15], if f ∈ C(X,M), let Ωf be the union of all open U ⊆ X such that f is
constant on U . Then E0(X,M) is the set of all f ∈ C(X,M) such that Ωf
is dense in X; these functions are called “locally constant on a dense set”.
E0(X) denotes E0(X,R).

Clearly, E0(X) is a subalgebra of C(X) and contains all the constant
functions. As Bernard and Sidney point out [6, 7, 15], if X is compact
metric with no isolated points, then E0(X) is a proper dense subspace of
C(X). In this paper, we study the two extreme situations: where E0(X)
contains only the constant functions, and where E0(X) = C(X).

A standard example of elementary analysis is a monotonic f ∈ C([0, 1])
which does all its growing on a Cantor set; then f is a nonconstant func-
tion in E0([0, 1]). More generally, for “many” X, E0(X) separates points
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in X, and hence (by the Stone–Weierstrass Theorem), is dense in C(X).
Specifically,

0.1. Theorem. If X is compact Hausdorff and E0(X) is not dense in
C(X), then

(a) X has a family of 2ℵ0 disjoint nonempty open subsets.
(b) X is not locally connected.
(c) X is not zero-dimensional.

Part (c) of the Theorem is obvious. Parts (a) and (b) are due to M. E.
Rudin and W. Rudin [14], and generalize earlier results of Bernard and
Sidney that if X is compact and second countable, then E0(X) is dense in
C(X).

First countable, however, is not enough. In §2, we produce a first count-
able compact space X such that E0(X) contains only the constant functions.
A non-first countable example was constructed in [14]. Our example, pat-
terned after [14], requires some additional complexity, yet we simplify the
geometry of the construction by building our space inside a Hilbert space.
Our space will be compact in the weak topology, and hence a uniform Eber-
lein compact space (that is, a weakly compact subspace of a Hilbert space).
The approach we describe in §2 may be used to simplify the construction
of [14] as well as to demonstrate that the Rudins’ example is a uniform
Eberlein compact space. We compare the two constructions further in §2.

In §3, we consider the other extreme, and construct a uniform Eberlein
compact space Y with no isolated points and with E0(Y,M) = C(Y,M) for
all metric spaces M . Furthermore, we show that this property can depend
on M . Although it is easy to see that E0(X,C) = C(X,C) iff E0(X,R) =
C(X,R), there is a uniform Eberlein compact space Z such that E0(Z,R) =
C(Z,R) but E0(Z,Q) 6= C(Z,Q), where Q is the Hilbert cube.

Of course, there are other compact Hausdorff spaces X which satisfy
E0(X,M) = C(X,M) for at least some metric spaces M . In §4, we con-
sider several classes of such spaces X. For many familiar compact spaces
X, E0(X,M) = C(X,M) for all metric spaces M . In addition to the triv-
ial cases where the isolated points are dense in X, E0(X,M) = C(X,M)
holds when X is βN\N or a Suslin line. For some classes of spaces, such
as compact ordered spaces and compact extremally disconnected spaces, we
present simple necessary and sufficient conditions for E0(X,M) = C(X,M).
For some spaces, as in the example of §3, this can vary with M . The de-
tailed discussion of this question entails generalizing the “E0” notion to
Baire measurable and Borel measurable maps.

In §5, we specialize the results of §4 to the case where M is a Banach
space, and consider the properties of E0(X,M) as a normed linear space.
In particular, following Bernard and Sidney, E0(X,M) always satisfies the
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Banach–Steinhaus Theorem, although it is also first category in itself in
most (but perhaps not all) cases in which it is a proper dense subspace
of C(X,M). For example, E0(X,M) is a dense first category subspace of
C(X,M) whenever X is a non-trivial infinite product.

In §1, we prove some preliminary results on Cantor sets used in our
construction in §2.

Bella, Hager, Martinez, Woodward, and Zhou, independently of Bernard
and Sidney, defined in [2, 3, 12] the space E0(X) (they called it dc(X)), and
showed (in the spirit of our Theorem 0.1) that E0(X) is dense in C(X) in
many cases. We comment further on their work at the end of §4.

1. Cantor sets. By a closed interval we mean any compact space homeo-
morphic to [0, 1] ⊆ R. By a Cantor set we mean any space homeomorphic
to the usual Cantor set in R; equivalently, homeomorphic to 2ω, where 2 =
{0, 1} has the discrete topology. The following lemma was used also in [14].

1.1. Lemma. If J is a closed interval , f ∈ C(J), and f is not constant ,
then there is a Cantor set H ⊂ J such that f is 1-1 on H.

In our construction, we need a uniform version of this. If H is a subset
of a product X × J , we use Hx to denote {y ∈ J : (x, y) ∈ H}.

1.2. Lemma. Suppose J is a closed interval and X is a compact zero-
dimensional Hausdorff space, and suppose f ∈ C(X × J) is such that for
every x ∈ X, f¹({x} × J) is not constant. Then there is a set H ⊂ X × J
such that :

(1) Hx is a Cantor set for every x ∈ X.
(2) f is 1-1 on {x} ×Hx for every x ∈ X.
(3) There is a continuous ϕ : H → 2ω such that the map (x, y) 7→

(x, ϕ(x, y)) is a homeomorphism from H onto X × 2ω.

R e m a r k. Lemma 1.1 is the special case of Lemma 1.2 where X is a
singleton. If we deleted (3), then 1.2 would be immediate from 1.1, using
the Axiom of Choice, without any assumption on X. But (3) says that we
can choose the Cantor sets continuously. As stated, Lemma 1.2 requires X
to be zero-dimensional. For example, suppose X = J = [0, 1], and take f to
be constant on the strip {(x, y) : |x − y| < 1/3}. Then H must be disjoint
from the strip, which is easily seen to contradict (3). Of course, (1) follows
from (3).

Lemma 1.1 may be proved by a binary tree argument, and we prove
Lemma 1.2 by showing how to build this tree “uniformly” for all x ∈ X. A
simpler proof of Lemma 1.1 in [14] takes advantage of the ordering on R,
but this proof does not easily generalize to a proof of Lemma 1.2. Moreover,
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the tree argument extends to non-ordered spaces. For example, in Lemma
1.2, J could be any compact metric space which is connected and locally
connected, and f could be any map into a Hausdorff space.

The following general tree notation will be used here and in §§2–4. If ∆
is some index set, then ∆<ω denotes the tree of all finite sequences from ∆;
this is the complete ∆-ary tree of height ω. For s ∈ ∆<ω, let lh(s) ∈ ω be its
length. We use () to denote the empty sequence. If i ≤ lh(s), let s¹i be the
sequence of length i consisting of the first i elements of s; t ⊆ s iff t = s¹i
for some i ≤ lh(s). Let tα denote the sequence of length lh(t) + 1 obtained
by appending α to t. Note that ∆<ω, ordered by ⊆, is a tree with root (),
and the nodes immediately above s are the sα for α ∈ ∆. We say s, t ∈ ∆<ω

are compatible iff s ⊆ t or t ⊆ s. We let s ⊥ t abbreviate the statement that
s, t are incompatible (not compatible).

A path in ∆<ω is a chain, P , such that sα ∈ P implies s ∈ P for all
s and α. A path may be empty or finite or countably infinite. The infinite
paths are all of the form {ψ¹n : n ∈ ω}, where ψ : ω → ∆. In particular,
for binary trees, ∆ = 2 = {0, 1}, and the infinite paths through the Cantor
tree, 2<ω, are associated with the points in the Cantor set, 2ω.

To prove 1.2, fix a metric on J . For E ⊆ J , let diam(E) be the diameter
of E with respect to this metric. We call a subset of X × J simple iff it is
of the form

⋃
i<kQi × Ii, where k is finite, the Qi for i < k form a disjoint

family of clopen sets whose union is X, and each Ii is a closed interval. We
prove 1.2 by iterating the following splitting lemma.

1.3. Lemma. Let J , X, f be as in 1.2 and let ε > 0. Then there are
simple A0, A1 ⊂ X × J such that the following hold :

(a) A0 ∩A1 = ∅.
(b) For each x ∈ X, f({x} × (A0)x) ∩ f({x} × (A1)x) = ∅.
(c) For each x ∈ X and µ = 0, 1, diam((Aµ)x) ≤ ε.
(d) For each x ∈ X and µ = 0, 1, f¹({x} × (Aµ)x) is not constant.

P r o o f. For each z ∈ X, f¹({z}×J) is a non-constant map from an inter-
val into an interval, so we may choose disjoint closed intervals I0(z), I1(z) ⊂
J such that f({z} × I0(z)) ∩ f({z} × I1(z)) = ∅, diam(Iµ(z)) ≤ ε, and
f¹({z}×Iµ(z)) is not constant (µ = 0, 1). By continuity, there is a neighbor-
hood Uz of z such that for all x ∈ Uz, f({x}×I0(z))∩f({x}×I1(z)) = ∅ and
f¹({x} × Iµ(z)) is not constant. Since X is compact and zero-dimensional,
there are a finite k, points zi ∈ X (i < k), and clopen Qi ⊆ Uzi such that
the Qi form a partition of X. Then let Aµ =

⋃
i<kQi × Iµ(zi).

P r o o f o f 1.2. For s ∈ 2<ω, choose simple As ⊆ X × J such that

(a) For each s ∈ 2<ω, As0 ∩As1 = ∅.
(b) For each x ∈ X and s ∈ 2<ω, f({x}× (As0)x)∩ f({x}× (As1)x) = ∅.
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(c) For each x ∈ X and t ∈ 2<ω, diam((At)x) ≤ 1/ lh(t).
(d) For each x ∈ X and t ∈ 2<ω, f¹({x} × (At)x) is not constant.

We may take A() = X × J ; then, for t = (), (c) is vacuous and (d) follows
from the hypothesis of 1.2. Given As, we obtain As0 and As1 by applying 1.3
to each box making up As. Let H =

⋂
n∈ω

⋃{As : lh(s) = n}. Let ϕ(x, y)
be the (unique) ψ ∈ 2ω such that (x, y) ∈ Aψ¹n for all n ∈ ω.

2. Making E0(X) small. We describe how to construct a first countable
compact space Lω such that E0(Lω) contains only the constant functions.
Let D ⊆ C be the closed unit disk; D will be a subspace of Lω. We shall first
focus on the easier task of constructing a space L2 such that D ⊂ L2 and
each f ∈ E0(L2) is constant on D. After explaining this, we shall iterate the
procedure to produce Lω.

Before we build L2, we shall show that every non-constant function f ∈
C(D) is 1-1 on “many” disjoint Cantor sets. Then, by gluing new disks on
those Cantor sets to form L2, we can make sure that no such f can extend
to a function in E0(L2).

For θ ∈ [0, 2π), let Rθ denote the ray {z ∈ D : z 6= 0 & arg(z) = θ}. Let
c = 2ℵ0 .

2.1. Lemma. If f ∈ C(D) is non-constant , then there are c distinct θ
such that f is non-constant on Rθ.

P r o o f. The set of all such θ is open.

We identify c with a von Neumann ordinal, so that we may use c also as
an index set.

2.2. Lemma. There is a disjoint family {Kα ⊂ D\{0} : α ∈ c} of c
Cantor sets with the following property : For each non-constant f ∈ C(D),
there is a Cantor set Hf ⊂ D\{0} such that f is 1-1 on Hf and such that
A = {α ∈ c : Kα ⊆ Hf} has size c.

P r o o f. First, applying Lemma 2.1 and transfinite induction, assign to
each non-constant f ∈ C(D) a θf ∈ [0, 2π) so that f is non-constant on Rθf
and θf 6= θg whenever f 6= g. Then, applying Lemma 1.1, choose a Cantor
set Hf ⊂ Rθf such that f is 1-1 on Hf . Partition each Hf into c disjoint
Cantor sets. Since the Hf are all disjoint, this gives us the desired family of
c · c = c Cantor sets.

Informally, we now replace each Kα by a copy of Kα × D, identifying
Kα×{0} with the old Kα. For different α, we want the Kα×D to point in
“perpendicular directions”. To make the notion of “perpendicular” formal,
we simply embed L2 into a Hilbert space. Since we want each “direction”
to be a whole disk, we use a complex Hilbert space to simplify the notation.
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One could use a real Hilbert space instead by replacing each unit vector in
the following proof by a pair of unit vectors. In either case, the following
simple criterion can be used to verify first countability.

2.3. Lemma. If B is a Hilbert space and X ⊂ B is compact in the weak
topology , then X is first countable in the weak topology iff , for each ~x ∈ X,
there is a countable (or finite) C~x ⊂ B such that no ~v ∈ X\{~x} satisfies
~x · ~c = ~v · ~c for all ~c ∈ C~x.

P r o o f. By definition of the weak topology, the stated condition is equiv-
alent to each {~x} being aGδ-set inX, which is equivalent to first countability
in a compact space.

We remark that the condition of Lemma 2.3 need not imply first count-
ability when X is not weakly compact.

2.4. Lemma. There is a first countable uniform Eberlein compact space
L2 such that D is a retract of L2 and each f ∈ E0(L2) is constant on D.

P r o o f. Let B be a complex Hilbert space with an orthonormal basis
consisting of c unit vectors ~eα, for α ∈ c, together with one more, ~e. We
identify D with its homeomorphic copy, D′ = {z~e : |z| ≤ 1} ⊂ B. Let π
be the perpendicular projection from B onto the one-dimensional subspace
spanned by ~e.

Let the Kα ⊂ D′\{~0} be as in Lemma 2.2 (replacing the D there by D′).
Let L2 be the set of all ~x ∈ B that satisfy (1)–(3):

(1) |~x · ~e | ≤ 1, and, for each α ∈ c, |~x · ~eα| ≤ 1/2.
(2) For all distinct α, β, either ~x · ~eα = 0 or ~x · ~eβ = 0.
(3) For all α, either ~x · ~eα = 0 or π(~x) ∈ Kα.

So, points of L2 are either of the form z~e, with |z| ≤ 1, or of the form
z~e + w~eα, where |z| ≤ 1, |w| ≤ 1/2, and z~e ∈ Kα. In particular, D′ =
π(L2) ⊂ L2.

We give L2 the topology inherited from the weak topology on B. Note
that L2 is weakly closed. Since L2 is also norm bounded, L2 is compact.
To see that L2 is first countable, apply Lemma 2.3. If π(~x) is in no Kα, set
C~x = {~e}, while if π(~x) is in some Kα, this α is unique (by the disjointness
of the Kα), and we set C~x = {~e,~eα}.

Let Uα = L2 ∩ π−1(Kα)\Kα = {~x ∈ L2 : ~x · ~eα 6= 0}. Observe:

(i) Uα is an open subset of L2, but
(ii) For each ~x ∈ Kα, L2 ∩ π−1({~x}) is nowhere dense in L2.

Now, suppose f ∈ E0(L2). We show that f is constant on D′. If not, fix a
Cantor set H ⊆ D′ such that f is 1-1 on H and such that A = {α ∈ c : Kα ⊆
H} has size c. Since f ∈ E0(L2), we may, for each α ∈ A, choose a non-empty
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open Wα ⊆ Uα such that f is constant on Wα. Then, applying (ii) above,
choose two distinct points ~xα and ~yα in Wα such that π(~xα) 6= π(~yα).

For each α ∈ A, (π(~xα), π(~yα)) is a point in {(~v, ~w) ∈ H ×H : ~v 6= ~w},
which is a second countable space. Since A is uncountable, these points
have a limit point in the same space, so we may fix distinct ~v, ~w ∈ H and a
sequence of distinct elements αn in A (n ∈ ω) such that the π(~xαn) converge
to ~v and the π(~yαn) converge to ~w. Hence, in the weak topology of B and L2,
the ~xαn converge to ~v and the ~yαn converge to ~w. Since f(~xαn) = f(~yαn),
we have f(~v) = f(~w), contradicting that f was 1-1 on H.

A similar use of Cantor sets occurs in the construction in [14], with the
following differences: Their Kα were not disjoint; in fact, in [14] it appears
necessary that every Cantor set gets listed uncountably many times. As
a result, the space constructed was not first countable. When one does not
care about disjointness, there is no advantage to using a disk, so [14] used an
interval where we used D. The extra dimension in D lets us prove Lemma
2.2, which is easily seen to be false of [0, 1]. Actually, when the Kα are
disjoint, condition (2) above is redundant, since it follows from (3), but
if the Kα are not disjoint, (2) is required to guarantee that L2 is norm
bounded.

Although working within a Hilbert space gives us some geometric in-
sight, it is possible to present all the constructions in this section and the
next in a purely topological manner, by working instead inside a product of
copies of D. We just replace, for example, “the ~eα direction” with “the αth
coordinate” in an uncountable product. The weak topology is the same as
the usual Tikhonov product topology.

By iterating our construction, we now prove the following theorem.

2.5. Theorem. There is a first countable uniform Eberlein compact
space Lω such that every function in E0(Lω) is constant.

Observe that this is not true for the L2 of Lemma 2.4. For example,
let g ∈ E0(D) be non-constant, and define f by f(~x) = g(~x · ~eα). Then
f ∈ E0(L2), and is not constant on Uα. To prevent such functions from
existing, we shall, for each α, take disjoint Cantor sets Kαβ ⊂ Uα, and, for
each β, attach a new disk going off in a new direction, labeled by a unit
vector ~eαβ . This would create a space L3. But now, we must iterate this
procedure, to take care of functions on these new disks. Iterating ω times,
we have unit vectors ~et indexed by finite sequences from c.

To describe Lω, we use the same tree notation as in §1, where now c
is our index set. For the rest of this section, let B be a complex Hilbert
space with an orthonormal basis consisting of unit vectors {~es : s ∈ c<ω}.
We shall use ~e to abbreviate ~e() and ~eα to abbreviate ~e(α). Let πn be the
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perpendicular projection from B onto the subspace spanned by {~es : lh(s) <
n}. In particular, π0(~x) = ~0 for all ~x, and π1 is the projection onto the
one-dimensional subspace spanned by ~e.

If lh(s) = n, let Ds be the set of vectors of the form
∑
i≤n zi~es¹i, where

each |zi| ≤ 2−i. Since Ds is finite-dimensional, the weak and norm topologies
agree on Ds, and Ds is homeomorphic to Dn+1. In particular, D() = {z~e :
|z| ≤ 1} plays the role of the D′ in the proof of Lemma 2.4. Note that if
i ≤ n, then πi+1(Ds) = Ds¹i.

We begin by enumerating enough of the conditions required for the Can-
tor sets Kt (t ∈ c<ω) to define Lω. Then, after defining Lω, we prove a
sequence of lemmas, adding conditions on the Kt as necessary, to show Lω
has the desired properties.

2.6. Basic requirements on the Kt.

(Ra) K() = {~0}.
(Rb) For each s, the Ksα for α ∈ c are disjoint closed subsets of Ds, and

~x · ~es 6= 0 for all ~x ∈ Ksα.

(Rc) For each s and each β, if n = lh(s), then πn(Ksβ) ⊆ Ks.

In particular, for s = (), we have Kα ⊂ D(), as in the proof of Lemma
2.4. Now, we iterate that construction by using the Kαβ , Kαβγ , etc. The
K() = {~0} plays no role in the definition of Lω, but is included to make
some of the notation more uniform. Item (Rc) for n = 0 says nothing; for
n = 1, π1(Kαβ) ⊆ Kα corresponds to the informal idea above that the Kαβ

are chosen inside Uα.
We shall need to add conditions (Rd), (Re) to (Ra)–(Rc) later.

2.7. Definition. Lω is the set of all ~x ∈ B that satisfy (1)–(3):

(1) For each s, |~x · ~es| ≤ 2− lh(s).
(2) For all s, t such that s ⊥ t, ~x · ~es = 0 or ~x · ~et = 0.
(3) For all t, if n = lh(t), then either ~x · ~et = 0 or πn(~x) ∈ Kt.

We give Lω the weak topology. Set Ln = πn(Lω). For ~x ∈ Lω, P (~x) = {s ∈
c<ω : ~x · ~es 6= 0}. For t ∈ c<ω and n = lh(t), set Ut = Lω ∩ (π−1

n (Kt)\Kt).

2.8. Lemma. Each Ln is a closed subset of Lω and
⋃
n∈ω Ln is dense

in Lω.

P r o o f. Ln ⊆ Lω holds because each of (1), (2), (3) is preserved under
πn. Density follows because for every ~x ∈ B, the πn(~x) converge weakly (and
in norm) to ~x. Ln is closed in Lω because πn(B) is weakly closed in B.

We think of the Ln as the levels in the construction: L0 = K(); L1 = D();
L2 is exactly the space constructed in the proof of Lemma 2.4. The Ut will
play the same role here as the Uα did there. Elements of L3\L2 are of the



Locally constant functions 75

form r0~e + r1~eα + r2~eαβ , where 0 < |ri| ≤ 2−i for each i, r0~e ∈ Kα, and
r0~e+ r1~eα ∈ Kαβ .

2.9. Lemma. (i) For each ~x ∈ Lω, P (~x) is a path in c<ω.
(ii) For each ~x ∈ Lω, ‖~x‖2 ≤ 4/3.

(iii) Lω is weakly closed in B.
(iv) Lω is first countable and compact.
(v) Each Ut is open in Lω.

P r o o f. For (i), use items (2), (3) in the definition of Lω and the fact
that ~x · ~es 6= 0 for all ~x ∈ Ksα. Now, (ii) follows by item (1), since we have
‖~x‖2 ≤ ∑∞n=0(2−n)2 = 4/3. (iii) is immediate from the definition of Lω,
and compactness of Lω follows by (iii) and (ii). First countability follows
from Lemma 2.3; C~x = {~es : s ∈ P (~x)}, unless P (~x) is finite with maximal
element s and ~x ∈ Ksα, in which case C~x = {~es : s ∈ P (~x)} ∪ {~esα}. For
(v), note that Ut = {~x ∈ Lω : ~x · ~et 6= 0}.

Applying conditions (Rc) and (Rb) on the Ks, we have the following
lemma.

2.10. Lemma. (i) For each t, if n ≤ lh(t) and s = t¹n, then Ks ⊇
πn(Kt).

(ii) Each Kt ⊆ Llh(t).

If the Kα are chosen as in the proof of Lemma 2.4, then every f ∈ E0(L2)
will be constant on D(). We must be careful not to destroy this property
in choosing the Kαβ and passing to L3. In the proof of Lemma 2.4, it was
important that each π−1({~x}) was nowhere dense. Now, L2 ∩ π−1({~x}) will
still be nowhere dense in L2, but depending on how the Kαβ meet this set,
L3 ∩ π−1({~x}) might have interior points. To handle this, we assume the
following product structure on the Ks:

(Rd) For each s of length n ≥ 0 and each α, there are a non-empty
relatively clopen subset P ⊆ Ks and a homeomorphism ψ from
P × 2ω onto Ksα, satisfying πn(ψ(~x, y)) = ~x for all ~x ∈ P and all
y ∈ 2ω.

Note that (Rd) implies that πn(Ksα) = P . Induction on lh(s) establishes
the next lemma.

2.11. Lemma. Ks is a Cantor set whenever lh(s) > 0.

2.12. Lemma. Suppose that m > 0 and C is a closed subset of Lm
such that C is nowhere dense (in the relative topology of Lm) and C ∩Ks

is nowhere dense (in the relative topology) in Ks for all s of length m.
Then Lω ∩π−1

m (C) is nowhere dense in Lω. In particular , Lω ∩π−1
m ({~x}) is

nowhere dense in Lω for all ~x ∈ Lm.



76 J. Hart and K. Kunen

P r o o f. The “in particular” follows from Lemma 2.11, which implies that
C = {~x} satisfies the hypotheses of Lemma 2.12. Now set Cn = Ln∩π−1

m (C)
for each n ≥ m; so Cm = C. To prove 2.12, since

⋃
n∈ω Ln is dense in Lω,

it suffices to prove claim (i) below. To do this, we prove claims (i) and (ii)
together, by induction on n ≥ m.

(i) For each n ≥ m, Cn is nowhere dense in Ln.
(ii) Whenever lh(s) = n, Cn ∩Ks is nowhere dense in Ks.

Claim (ii) for n+ 1 follows from (ii) for n plus assumption (Rd) on the Ks,
and claim (i) for n+1 follows from (i) and (ii) for n (just using (Ra)–(Rc)).

For each s ∈ c<ω, with lh(s) = n, let

K̂s = {~v + z~es : ~v ∈ Ks & |z| ≤ 2−n}.
Note that K̂s is homeomorphic to Ks×D and is a subset of Lω. If H ⊆ K̂s

and ~v ∈ Ks, let H~v be the “vertical slice”, {~v + z~es : |z| ≤ 2−n}. Call a
function f s-level-constant iff f only depends on the ~v here; that is, f is
constant on each (K̂s)~v. In particular, f is ()-level-constant iff f is constant
on D(), and the Kα chosen as in the proof of Lemma 2.4 will ensure that
every f ∈ E0(Lω) is ()-level-constant. Likewise, we shall choose the Ksα to
ensure that every f ∈ E0(Lω) is s-level-constant. Note first that if we do
this for all s, then f is constant.

2.13. Lemma. If f ∈ C(Lω) is s-level-constant for all s ∈ c<ω, then f
is constant.

P r o o f. By induction on n, f is constant on each Ln. The result follows
because

⋃
n∈ω Ln is dense in Lω.

Now we list the final condition on the Ksα:

(Re) For each s of length n and each f ∈ C(Lω): If f is not s-level-
constant, then there are a non-empty clopen set P ⊆ Ks, a Cantor
set H ⊆ {~v + z~es : ~v ∈ P & |z| ≤ 2−n}, and uncountably many
different α such that Ksα ⊂ H, and for each ~v ∈ P , f is 1-1 on H~v.

We must verify that we may choose the Kt to meet all five conditions
(Ra)–(Re). We choose these by induction on lh(t). Condition (Ra) specifies
K(), and the Kα will be exactly as in the proof of Lemma 2.4; these were
chosen by applying Lemma 2.2. Likewise, given Ks with lh(s) > 0, we choose
the Ksα by applying Lemma 2.14 below to K̂s. In fact, we modify the proof
of Lemma 2.2, replacing Lemma 1.1 by Lemma 1.2, to prove this lemma.

2.14. Lemma. Let {Eδ : δ ∈ c} be a partition of 2ω into c Cantor sets.
If K is a Cantor set , then there is a disjoint family {Kα ⊂ K × (D\{0}) :
α ∈ c} of c Cantor sets with the following property : For each f ∈ C(K×D)
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with f¹({x} × D) non-constant for some x ∈ K, there are a non-empty
clopen P ⊆ K and an H ⊂ P × (D\{0}) that satisfy conditions (1)–(4):

(1) Hx is a Cantor set for every x ∈ P .
(2) f is 1-1 on {x} ×Hx for every x ∈ P .
(3) There is a continuous ϕ : H → 2ω such that the map (x, y) 7→

(x, ϕ(x, y)) is a homeomorphism from H onto P × 2ω.
(4) For each δ ∈ c, the set {(x, y) ∈ H : ϕ(x, y) ∈ Eδ} is one of the Kα.

P r o o f. First, for each such f , apply continuity to choose a non-empty
clopen Pf ⊆ K such that for c different θ ∈ [0, 2π), f¹({x} ×Rθ) fails to be
constant for all x ∈ Pf . Then, by transfinite induction, choose a distinct θf
for each such f such that f¹({x}×Rθf ) is not constant for all x ∈ Pf . Then
choose Hf ⊆ Pf×Rθf such that (1)–(3) hold; this is possible by Lemma 1.2.
Of course, ϕ = ϕf depends on f . Finally, let the Kα enumerate all the sets
{(x, y) ∈ Hf : ϕf (x, y) ∈ Eδ} as f and δ vary.

Now we complete the proof of Theorem 2.5.

P r o o f o f T h e o r e m 2.5. Construct Lω as above. Suppose f ∈
E0(Lω). By Lemma 2.13, it suffices to prove that f is s-level-constant
for each s. Suppose not. Fix H,P as in condition (Re) above, so that
A = {α : Ksα ⊆ H} is uncountable. For α ∈ A, choose a non-empty
open Wα such that Wα ⊆ Wα ⊆ Usα and f is constant on Wα. Then
πn+1(Wα) ⊆ Ksα ⊆ H and πn(Wα) ⊆ πn(Ksα) ⊆ P ⊆ Ks ⊆ Ln. Choose
~xα and ~yα in Wα such that πn(~xα) = πn(~yα) but πn+1(~xα) 6= πn+1(~yα);
this is possible because πn+1(Wα) is closed in Ksα and, by Lemma 2.12, is
not nowhere dense in Ksα. As in the proof of Lemma 2.4, there are distinct
~v, ~w ∈ H and a sequence of distinct elements αk in A (k ∈ ω) such that
the πn+1(~xαk) converge to ~v and the πn+1(~yαk) converge to ~w. Then, in
the weak topology, the ~xαk converge to ~v and the ~yαk converge to ~w. So,
f(~v) = f(~w), while πn(~v) = πn(~w) ∈ πn(H) ⊆ P , contradicting that f is
1-1 on Hπn(~v).

Finally, we remark on E0(X,M) for other M .

2.15. Lemma. If X is a compact Hausdorff space and M is any Haus-
dorff space, then

(1) E0(X,R) contains only the constant functions

implies

(2) E0(X,M) contains only the constant functions.

If M contains a closed interval , then (2) implies (1).

P r o o f. For (1)→(2), fix f ∈ E0(X,M). We may assume M = f(X),
whence M is compact. For each g : M → [0, 1], g ◦ f is in E0(X,R) and
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hence constant, which implies that f is constant. For ¬(1)→¬(2), if g maps
R homeomorphically into M and f is a non-constant function in E0(X,R),
then g ◦ f is a non-constant function in E0(X,M).

In particular, in making E(X) = E0(X,R) small, we also make E0(X,C)
small. Note that 2.15 can fail if M does not contain an interval, since then,
if X is a closed interval, E0(X,M) = C(X,M) contains only the constant
functions (since every arc contains a simple arc), while E0(X,R) is dense in
C(X,R). We do not study 2.15 for such M in detail here, but it seems to
involve the geometric-topological properties of X and M .

3. Making E0(X) big. In Theorem 3.1, we modify the method of §2
to produce an Eberlein compact space X such that E0(X) is all of C(X).
Of course, this is trivially true if the isolated points of X are dense in X,
but the space we obtain has no isolated points. The space of Theorem 3.1
actually satisfies E0(X,M) = C(X,M) for all metric M . However, for a
general X, this property can vary with M . In Theorem 3.2, we show how
to get an Eberlein compact space X such that E0(X,R) = C(X,R) but
E0(X,Q) 6= C(X,Q), where Q is the Hilbert cube. It is easy to see that
E0(X,R) = C(X,R) implies E0(X,Rn) = C(X,Rn) for each finite n.

3.1. Theorem. There is a first countable uniform Eberlein compact
space X such that X has no isolated points and E0(X,M) = C(X,M)
for all metric spaces M .

P r o o f. Follow exactly the notation in §2, so that X will be the Lω there.
Choose sets Kt for t ∈ c<ω so that conditions (Ra)–(Rc) of 2.6 hold, so that
all the lemmas through Lemma 2.10 still apply. But, replace (Rd), (Re) by

(Rf) Each Ks is a singleton, and the Ksα, for α ∈ c, enumerate all the
singletons in K̂s\Ks.

As before, Ut = X ∩ (π−1
n (Kt)\Kt) where n = lh(t).

Now, fix f ∈ C(Lω,M), where M is metric.

N o t e. f is constant on Ut for all but countably many t. If not, we could
find an s and an uncountable A ⊆ c such that f is not constant on Usα
for all α ∈ A. For α ∈ A, let Ksα = {~xα}, and choose ~yα ∈ Usα such
that f(~yα) 6= f(~xα). Since the range of f is compact, and hence second
countable, we may, as in the last paragraph of the proof of Lemma 2.4, fix
distinct p, q ∈M and distinct αn ∈ A (n ∈ ω) such that the f(~xαn) converge
to p and the f(~yαn) converge to q. Now, the points ~xαn are in Ks, which
is compact metric, so, by passing to a subsequence, we may assume that
the ~xαn converge to some point ~x ∈ Ks. Hence, in the weak topology, since
πn+1(~yα) = ~xα, the ~yαn converge to ~x also. Applying f to these sequences,
f(~x) = p 6= q = f(~x), a contradiction.
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It follows that Ωf is dense in X, since every non-empty open set in X
contains uncountably many Ut (to see this, apply the above Note and the
fact that the co-zero sets of continuous functions form a basis for X).

We remark that in the above Note, we used the same method to prove
E0(X) big as we used in Lemma 2.4 to prove E0(X) small; we have simply
reversed the roles of f and π.

Also, it is possible to make the space of Theorem 3.1 zero-dimensional
by restricting the coordinates to lie in a Cantor set. This would not be
possible for the spaces of §2, or the space used for Theorem 3.2(b) below.
The zero-dimensional space was actually already described by van Mill [13]
in a different way; he showed that this is an example of a first countable
homogeneous Eberlein compact space which is not second countable.

Observe that in the proof of Theorem 3.1, the Hilbert space B can be
either complex or real, since unlike in §2, we no longer need the ~es direction
to be two-dimensional. This holds in the next construction as well, although
we shall need that the base level L0 be infinite-dimensional.

Also observe that if the Ksα were not singletons, the above proof would
establish a modified Note: for all but countably many t, f(~y) = f(πn(~y))
for all ~y ∈ Ut. This is the key to building a space satisfying (2) but not (3).
We shall make sure that K̂s has “large dimension”, so that any real-valued
function will be constant on many subsets of K̂s, and these subsets will be
the Ksα; this will ensure that E0(X,R) = C(X,R). However, if M itself
has “large dimension”, then this argument will fail, so that E0(X,M) 6=
C(X,M).

The following definition and theorem pin down precisely for which M we
can conclude E0(X,M) = C(X,M) from E0(X,R) = C(X,R). It suffices
to consider only compact M , since the range of each continuous map is
compact. Let F0 be the collection of all zero- or one-point spaces. For an
ordinal α > 0, let Fα be the class of all compact metric spaces M such
that there is a ϕ ∈ C(M, [0, 1]) with ϕ−1{r} ∈ ⋃δ<α Fδ for every r ∈ [0, 1].
So, for example, induction on n ∈ ω shows that [0, 1]n ∈ Fn. Then, if
M is the one-point compactification of the disjoint union of the [0, 1]n, we
may let ϕ map M to a simple sequence to conclude that M ∈ Fω. Define
F =

⋃
δ∈ON Fδ, where ON is the class of ordinals. Actually, since every

compact metric space has at most c closed subspaces, F =
⋃
δ<c+ Fδ.

3.2. Theorem. Let M be any compact metric space.

(a) If M ∈ F , X is compact Hausdorff , and E0(X,R) = C(X,R), then
E0(X,M) = C(X,M).

(b) If M 6∈ F , then there is a first countable uniform Eberlein compact
space XM with E0(XM ,R) = C(XM ,R) but E0(XM ,M) 6= C(XM ,M).



80 J. Hart and K. Kunen

In Corollary 3.12, we strengthen (b) to the existence of a single X which
works for all M 6∈ F . Of course, this theorem is uninteresting unless we
can produce a compact metric space M 6∈ F , but that follows by a theorem
of Levshenko. There is a class of strongly infinite-dimensional spaces which
includes the Hilbert cube, [0, 1]ω. Levshenko showed that if M is a strongly
infinite-dimensional compact metric space and ϕ ∈ C(M, [0, 1]), then some
ϕ−1{r} is strongly infinite-dimensional (see [1]). This gives us the following
lemma, which is easily proved by induction on the ordinals.

3.3. Lemma. If M ∈ F , then M is not strongly infinite-dimensional.

The definition of F also gives us the following easy inductive proof of
Theorem 3.2(a).

P r o o f o f T h e o r e m 3.2(a). Suppose that M ∈ Fα, and suppose
(inductively) that the result holds for all M ′ ∈ ⋃δ<α Fδ. Suppose X is
compact Hausdorff and E0(X,R) = C(X,R). Fix f ∈ C(X,M). To prove
f ∈ E0(X,M), we fix a non-empty open U ⊆ X, and we produce a non-
empty open V ⊆ U such that f is constant on V . Applying the definition
of Fα, fix ϕ ∈ C(M, [0, 1]) such that for each r ∈ [0, 1], we have ϕ−1{r} ∈⋃
δ<α Fδ. Then ϕ ◦ f ∈ C(X,R) = E0(X,R), so fix a non-empty open set

W ⊆ U such that ϕ◦f has some constant value r on W . Now ϕ−1{r} ∈ Fδ,
for some δ < α, and E0(W,R) = C(W,R) (by the Tietze Theorem; see also
Lemma 4.1). Applying the induction hypothesis, f¹W ∈ C(W,ϕ−1{r}) =
E0(W,ϕ−1{r}), so we may choose a non-empty open subset V ⊆ W such
that f¹V is constant.

To prove Theorem 3.2(b), we first prove some more lemmas about F .
First, another simple induction yields closure under subsets:

3.4. Lemma. If M ∈ F and H is a closed subset of M , then H ∈ F .

We also get closure under finite unions:

3.5. Lemma. Suppose that M is compact metric and M = H∪K, where
H,K are closed subsets of M and H,K ∈ F . Then M ∈ F .

P r o o f. Since H is a closed Gδ, fix ϕ ∈ C(M, [0, 1]) such that ϕ−1{0} =
H. Then, ϕ−1{0} ∈ F . For r > 0, we have ϕ−1{r} ⊆ K, so ϕ−1{r} ∈ F
by Lemma 3.4. Thus, ϕ−1{r} ∈ F for each r ∈ [0, 1], which implies that
M ∈ F .

We say that M is nowhere in F iff M is non-empty and for each non-
empty open V ⊆M , we have V 6∈ F . Note that such an M has no isolated
points, since F contains all one-point spaces.

3.6. Lemma. If M is a compact metric space and M 6∈ F , then there is
a closed set K ⊆M such that K is nowhere in F .
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P r o o f. Let U = {U ⊆M : U is open and U ∈ F}, and let K = M \⋃U .
First, note that K is non-empty: If K were empty, then, by compactness,

M would be covered by a finite subfamily of U , which would imply M ∈ F
by Lemma 3.5.

To prove that K is nowhere in F , it suffices (by Lemma 3.4) to prove
that B(p, ε) ∩K 6∈ F whenever p ∈ K and ε > 0. Note that B(p, ε) and its
closure are computed in M , not K. Let N = B(p, ε). Fix ϕ ∈ C(N, [0, 1])
such that ϕ−1{0} = N ∩K. Since B(p, ε)∩K is non-empty, N 6∈ F , so there
must be some r ∈ [0, 1] such that ϕ−1{r} 6∈ F . However, for r > 0, ϕ−1{r}
is compact and disjoint from K, so it is covered by a finite subfamily of U ,
and hence, as above, is in F . So, r must be 0, so N ∩K 6∈ F .

Let N (K) be the family of all compact H ⊆ K such that H is nowhere
in F . The following lemma is trivial, given the above results, but we state
it to emphasize the abstract properties of our construction.

3.7. Lemma. If K is compact metric and nowhere in F , then

(1) N (K) is a family of non-empty closed subspaces of K.
(2) K ∈ N (K).
(3) For each H ∈ N (K) and each non-empty relatively open U ⊆ H,

there is an L ∈ N (K) with L ⊆ U .

Most of the proof of Theorem 3.2(b) proceeds using just the conclusion
to Lemma 3.7, without any reference to F . Note that if K is a singleton,
and N (K) is redefined to be {K}, we also have the conclusion to Lemma
3.7, and the proof of 3.2(b) then reproves Theorem 3.1.

We now construct the space XM . Applying Lemma 3.6, let K be a closed
subset of M which is nowhere in F . Let B be a real Hilbert space with an
orthonormal basis consisting of unit vectors {~es : s ∈ c<ω} ∪ {~bi : i ∈ ω}.
Let Bn be the closed linear span of {~es : lh(s) < n} ∪ {~bi : i ∈ ω}. Since B0

is infinite-dimensional, we can embed K in the first level of our space. To
do so we replace condition (Ra) of 2.6 by the following:

(Ra′) K() is a weakly compact subset of the closed unit ball of B0, and
K() is homeomorphic to K.

Actually, we could also make K() norm compact, but this is unnecessary.
Let πn be the perpendicular projection from B onto Bn. If lh(s) = n, let

Ds be the set of vectors of the form ~v+
∑
i≤n ri~es¹i, where ~v ∈ K() and each

|ri| ≤ 2−i. In particular, D() is homeomorphic to K × [−1, 1]. As in §2, the
product with [−1, 1] allows us to make the Kα disjoint subsets of D(). As
before, if i ≤ n, then πi+1(Ds) = Ds¹i.

We will choose the Kt for t ∈ c<ω so that they satisfy condition (Ra′),
along with (Rb) and (Rc) of 2.6. Now, define XM = Lω to be the set of
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~x ∈ B satisfying conditions (1)–(3) of 2.7, along with condition

(0) π0(~x) ∈ K().

As before, for t ∈ c<ω and n = lh(t), Ut = Lω ∩ (π−1
n (Kt)\Kt). So

U() = Lω \K() = {~x ∈ Lω : ~x ·~e 6= 0}. In this construction, we still have the
levels Ln = πn(Lω), with L0 = K() and L1 = D(). Now, elements of level
L3 \L2 are of the form ~v+ r0~e+ r1~eα + r2~eαβ , where 0 < |ri| ≤ 2−i for each
i, ~v ∈ K(), ~v + r0~e ∈ Kα, and ~v + r0~e+ r1~eα ∈ Kαβ .

This Lω still satisfies Lemmas 2.8–2.10, provided we replace the bound
in 2.9(ii) by 7/3. The proofs are the same, except for the proof of 2.9(iv),
where we join {~bi : i ∈ ω} to each C~x.

Now, we utilize N (K()) to choose the Ks. Choose the Ks so that they
satisfy, in addition to (Ra′), (Rb), and (Rc), three more conditions:

(Rg) Each Ks is of the form Hs + ~us, where Hs ∈ N (K()). Further,
~u() = ~0.

(Rh) For each s and each L ∈ N (K()) such that L ⊆ Hs, Ksα = L+ ~usα
for some α ∈ c. Each ~usα is of the form ~us + rsα~es.

(Ri) For each s and each non-empty relatively open V ⊆ K̂s, there are
uncountably many α such that Ksα ⊆ V .

So, (Rg) says that each Ks is a translate of a subset of K(). The K̂s are
defined precisely as in §2, so that conditions (Ra′), (Rb), (Rc) already imply
that Ksα ⊆ K̂s. Condition (Rg) guarantees that, unlike in §2, the projection
π0 : Kt → K() is 1-1 for each t (and its inverse is translation by ~ut). Using
Lemma 3.7, it is easy to see that conditions (Ra′), (Rb), (Rc), (Rg), (Rh),
(Ri) can all be met.

If f is a function on Lω and n = lh(t), we shall say that f is t-extension-
constant iff for all ~x ∈ Kt and all ~y ∈ Lω∩π−1

n {~x}, f(~y) = f(~x). By repeating
the proof of the Note in the proof of Theorem 3.1, we see the following:

3.8. Lemma. If N is metric and f ∈ C(Lω, N), then f is t-extension-
constant for all but countably many t.

In the next lemma, we use condition (Ri) to show that the Ut form a
π-base.

3.9. Lemma. If V is open and non-empty in Lω, then for some t, Ut
⊆ V .

P r o o f. We may assume that V = {~x ∈ Lω : f(~x) 6= 0}, where f ∈
C(Lω,R). First fix s such that V ∩K̂s is non-empty, and then apply condition
(Ri) plus Lemma 3.8 to set t = sα, where α is chosen so that Ksα ⊆ V ∩ K̂s

and f is sα-extension-constant.
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In the case of Theorem 3.1, all the Kt were singletons, so “t-extension-
constant” meant “constant”, and the instance of Lemma 3.9 used there was
simple enough that we omitted the proof of it. In general, we cannot improve
Lemma 3.8 to conclude that f is constant on any open set. For example, the
projection π0 is 1-1 on each Kt, so cannot be constant on Kt unless Kt is a
singleton. Applying Lemma 3.9, we get our last lemma.

3.10. Lemma. If N (K()) contains no singletons, then π0 ∈ C(Lω,K())
and Ωπ0 = ∅.

Note, however, by condition (Ri), that N (K()) contains no singletons iff
no set in N (K()) has any isolated points. Of course, this is certainly true
with N meaning “nowhere in F ”. The specific features of this N appear in
the conclusion of our proof.

P r o o f o f T h e o r e m 3.2(b). We fix an M 6∈ F and verify that
for the space XM = Lω constructed above, E0(XM ,R) = C(XM ,R), but
E0(XM ,M) 6= C(XM ,M). Since XM was constructed with K() homeomor-
phic to a subset of M which was nowhere in F , E0(XM ,M) 6= C(XM ,M)
follows from Lemma 3.10.

Now, fix f ∈ C(XM ,R). In view of Lemma 3.9, to prove that f ∈
E0(XM ,R), it suffices to fix an s and find a non-empty open V ⊆ Us on which
f is constant. By Lemma 3.8, fix α such that f is sα-extension-constant. By
condition (Rg), Ksα = Hsα + ~usα, where Hsα ∈ N (K()). Now, applying the
properties of N , we can choose an L ∈ N (K()) such that L ⊆ Hsα and f
is constant on L + ~usα. Applying condition (Rh) to sα, we can choose a β
such that Ksαβ = L+ ~usαβ . So, let V = Usαβ .

Finally, we show that the space XM can in fact be made independent of
M . To do this, we use the next lemma to glue together the spaces constructed
separately for each M .

3.11. Lemma. If {Xα : α < c} is a collection of non-empty first count-
able uniform Eberlein compact spaces, then there is a first countable uniform
Eberlein compact space X, with disjoint clopen subsets Jα homeomorphic to
Xα, such that

⋃
α∈c Jα is dense in X.

P r o o f. We may assume that each Xα is a weakly compact subset of
the closed unit ball of the Hilbert space B0, and that B0 is a closed linear
subspace of the Hilbert space B, which contains unit vectors ~mα (α ∈ c) and
~b, all orthogonal to each other and to B0.

Let rα, for α ∈ c, enumerate (0, 1). Let Jα = Xα + rα~b + ~mα. Then Jα
is homeomorphic to Xα (via translation). Let X be the union of the Jα,
together with all r~b for r ∈ [0, 1]. Then X is norm bounded (by

√
3), and is

weakly closed, since any limit of points in distinct Jα must be of the form
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r~b; the existence of these limits also shows that the union of the Jα is dense
in X. The space X is first countable by Lemma 2.3. To see that the Jα are
disjoint and (weakly) clopen in X, project along the ~mα direction.

We remark that translating along the~b direction made X first countable.
Simply setting Jα = Xα + ~mα and letting X be the union of the Jα plus
{~0} would make X the non-first countable one-point compactification of the
disjoint union of the Xα. If there were κ Xα, with κ > c, one could, of course,
construct such a compactification X, but by Arkhangel’skĭı’s Theorem, one
could not produce a first countable space X satisfying Lemma 3.11 (with c
replaced by κ).

3.12. Corollary. There is a single first countable uniform Eberlein
compact space X such that E0(X,R) = C(X,R), but E0(X,M) 6= C(X,M)
for all compact metric M 6∈ F .

P r o o f. Apply Lemma 3.11 and the fact that there are only c compact
metric spaces (up to homeomorphism).

4. General facts about E0(X,M). Here, we consider spaces X for
which E0(X,M) = C(X,M). This turns out to be an interesting topological
property of X. We begin with a simple remark.

The condition E0(X,M) = C(X,M) is not hereditary to closed subsets
of X, but it is, in many cases, hereditary to regular closed subsets—that is,
to subsets of the form U , where U is open in X.

4.1. Lemma. Suppose that X is a compact Hausdorff space, E0(X,R)
= C(X,R), and Y is a regular closed subspace of X. Then E0(Y,R) =
C(Y,R).

P r o o f. Say Y = U , where U is open. Suppose g ∈ C(Y,R). By the
Tietze Extension Theorem, g can be extended to an f ∈ C(X,R). Then
Ωg ∩ U = Ωf ∩ U . Since E0(X,R) = C(X,R), we find that Ωf is dense in
X, so Ωg is dense in Y .

We remark that in Lemma 4.1, one can replace R by any Banach space
(using a slightly longer proof), but not by an arbitrary metric space M . For a
counter-example, let M be a Cantor set and let X be the cone over M . Then
E0(X,M) = C(X,M) contains only constant functions. But X contains a
regular closed Y homeomorphic to M × [0, 1], and E0(Y,M) 6= C(Y,M).
Also, even in the simple case M = R, the property E0(Y,R) = C(Y,R)
holds for all closed Y ⊆ X iff X is scattered; if X is not scattered, then X
will contain a closed subset Y which is separable with no isolated points,
which implies E0(Y,R) 6= C(Y,R) (by (2)⇒(1) of Theorem 4.2 below).

Now, to study the property E0(X,M) = C(X,M), it is convenient to
generalize our notions in two ways.
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First, although X will always be compact and M will always be metric,
we look at more general functions from X into M . In particular, recall that
f : X →M is called Borel measurable iff the inverse image of every open set
is a Borel subset of X, and Baire measurable iff the inverse image of every
open set is a Baire subset of X; the Baire sets are the σ-algebra generated by
the open Fσ-sets. The Baire measurable functions into a separable Banach
space form the least class of functions containing the continuous functions
and closed under pointwise limits.

Second, we consider also Ω̂f , which we define to be the union of all open
U ⊆ X such that for some first category set C ⊆ X, f is constant on U\C.
Note that regardless of f , Ωf (defined in the introduction) and Ω̂f are open,
with Ωf ⊆ Ω̂f . If f is continuous, then Ωf = Ω̂f .

The property E0(X,R) = C(X,R) is just one of a sequence of related
properties:

(1) Every non-empty open subset of X is either non-separable or con-
tains an isolated point.

(2) E0(X,R) = C(X,R).
(3) For all metric spaces M , E0(X,M) = C(X,M).
(3′) For all separable metric spacesM and Baire measurable f : X →M ,

Ω̂f is dense in X.
(3′′) For all separable metric spacesM and Baire measurable f : X →M ,

Ωf is dense in X.
(4) For all separable metric spacesM and Borel measurable f : X →M ,

Ω̂f is dense in X.
(5) For all separable metric spacesM and Borel measurable f : X →M ,

Ωf is dense in X.
(6) In X, every non-empty Gδ-set has a non-empty interior.
(∗) In X, every first category set is nowhere dense.

Conditions (1)–(6) are listed in order of increasing strength. Condition
(∗) does not fit into the sequence, but is relevant by the next theorem.

4.2. Theorem. Suppose X is compact Hausdorff. Then

(6)⇒(5)⇒(4)⇒(3)⇔(3′)⇔(3′′)⇒(2)⇒(1).

Furthermore, (5) is equivalent to (∗) plus (4).

P r o o f. For (2)⇒(1), assume (1) fails; so there is a non-empty open U
which is separable and has no isolated points. Let Y = U . By Lemma 4.1,
it is sufficient to produce an f ∈ C(Y,R) \ E0(Y,R). Let {pn : n ∈ ω} be
dense in U , hence in Y . For each distinct m,n, {f ∈ C(Y,R) : f(pm) 6=
f(pn)} is dense and open in C(Y,R) (in the usual norm topology), so by the
Baire Category Theorem, there is an f ∈ C(Y,R) such that f(pm) 6= f(pn)
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whenever m 6= n. But then for each r ∈ R, f−1{r} contains at most one
pn, and is hence nowhere dense in Y , since Y has no isolated points. Thus,
f 6∈ E0(Y,R).

Clearly, (3′′)⇒(3′)⇒(3), so to prove these three are equivalent, we as-
sume (3), fix a Baire measurable f : X → M , and show that Ωf is dense
in X. Since M can be embedded into a separable Banach space, we may
assume that M is a Banach space; now, we can let gn : X →M , for n ∈ ω,
be continuous functions such that f can be obtained from the gn by some
transfinite iteration of taking pointwise limits. Define g : X → Mω by
g(x)n = gn(x). Then Ωg ⊆ Ωf , and, by (3), Ωg is dense in X.

To prove (6)⇒(5), observe that for any compact X, if H is a non-empty
closed Gδ and f is a Borel measurable map into a second countable space,
there is always a non-empty closed Gδ-set K ⊆ H such that f is constant
on K.

The rest of the chain of implications from (6) down to (1) are now trivial.
To see that (5)⇒(∗), let C be first category; then C ⊆ ⋃n∈ωKn, where each
Kn is closed nowhere dense. Define f : X → 2ω so that f(x)n is 1 if x ∈ Kn

and 0 if x 6∈ Kn. Then Ωf is dense and open, and is disjoint from all the
Kn, so C is nowhere dense.

To see that (∗) plus (4) implies (5), we let f be Borel measurable; to
prove Ωf dense, we fix a non-empty open V and try to find a non-empty
open U ⊆ V such that f is constant on U . By (4), there is a non-empty
open W ⊆ V such that f is constant on W\C for some first category C. By
(∗), C is nowhere dense, so let U = W\C.

A familiar example of a space satisfying (6) is βN\N.
Conditions (5), (4), (3′′), and (3′) involve arbitrary Baire or Borel mea-

surable maps. Each of these conditions is equivalent to the restatement we
obtain by replacing M by the Cantor set 2ω. This is easily seen by trans-
lating the condition to one involving an ω-sequence of Borel or Baire sets.
For example, (5) is equivalent to the statement that given Borel sets Bn
(n ∈ ω), the union of all open U such that for all n, U ⊆ Bn or U ∩Bn = ∅,
is dense in X.

This is not true for (3), which involves continuous functions. For example,
if X is connected, then, trivially, E0(X, 2ω) = C(X, 2ω), whereas E0(X,R)
need not be all of C(X,R). If X is zero-dimensional, then E0(X, 2ω) =
C(X, 2ω) does imply (3). In fact, for zero-dimensional spaces, (3) has a
restatement in terms of sequences of clopen sets (see the proof of Theorem
4.3(c) below).

Regarding (3)⇒(2), if E0(X,M) = C(X,M) for any M containing an
interval, then (2) holds. By Theorem 3.2, (2) does not imply (3), although
it is easy to see that (2) implies E0(X,Rn) = C(X,Rn) for each finite n.
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Counter-examples to the other implications of Theorem 4.2 reversing are
provided by some fairly familiar spaces, as we point out below. However,
the implications do reverse for certain families of spaces. In particular, we
consider the cases when X is extremally disconnected , when X is an Eberlein
compact space, when X is a LOTS, and when X has the ccc. X is called
extremally disconnected iff the closure of every open subset of X is clopen.
X is an Eberlein compact space iff X is homeomorphic to a weakly compact
subspace of a Banach space. X is a LOTS iff X is a totally ordered set,
given the order topology. X has the ccc iff there is no uncountable family of
disjoint open sets in X.

The following theorem summarizes what we know for these and some
other simple classes.

4.3. Theorem. Let X be compact Hausdorff.

(a) If X is metric, then (1)⇔(5), and (1)–(5) hold iff the isolated points
of X are dense in X.

(b) If X is extremally disconnected , then (2)⇔(4).
(c) If X is zero-dimensional , then (2)⇔(3).
(d) If X is ccc, then (3)⇔(5).
(e) If X is an Eberlein compact space, then (4)⇔(5), and (4)–(5) hold

iff the isolated points of X are dense in X.
(f) If X is a LOTS , then (1)⇔(3).

P r o o f. (a) is immediate from the fact that compact metric spaces are
separable.

For (b), assume (2), and let f : X → M be Borel measurable. Let
{Bn : n ∈ ω} be an open base for M . Since each f−1(Bn) is a Borel set,
there are open Ui ⊆ X, for i ∈ ω, such that each f−1(Bn) is in the σ-algebra
generated by {Ui : i ∈ ω}. Let Ki = U i, which is clopen. Define g : X → 2ω

so that g(x)i = 1 iff x ∈ Ki. Since 2ω is embeddable in R, (2) implies that
Ωg is dense. Since

⋃
i∈ω(Ki\Ui) is first category, Ωg ⊆ Ω̂f , so Ω̂f is dense.

For (c), assume (2), and let f : X →M be continuous. Let the Bn be as
in the proof of (b). Since each f−1(Bn) is an open Fσ-set, there are clopen
sets Ki ⊆ X for i ∈ ω such that each f−1(Bn) is a union of some subfamily
of the Ki. Now, construct g as in the proof of (b), and note that Ωg ⊆ Ωf .

For (d), assume (3′′), and let f : X →M be Borel measurable. Since X
is ccc, there is a Baire measurable g : X →M and a Baire first category set
C such that f(x) = g(x) for all x 6∈ C. Define h : X → M × {0, 1} so that
h(x) = (g(x), 0) if x 6∈ C, and h(x) = (g(x), 1) if x ∈ C. Then, applying (3′′)
to h, Ωh is dense in X. Since Ωh ⊆ Ωg and Ωh ∩ C = ∅, Ωf is dense in X.

For (e), assume that X is an Eberlein compact space and satisfies (4); we
prove that the isolated points are dense. By a result of Benyamini, Rudin,
and Wage [4], there is a dense Gδ-set Y ⊆ X such that Y is metrizable
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in its relative topology. Fix some metric on Y ; then for E ⊆ Y , diam(E)
denotes the diameter of E with respect to this metric. For each n, let Wn

be a maximal disjoint family of open non-empty subsets of Y of diameter
≤ 2−n; then Wn =

⋃{W : W ∈ Wn} is open and dense. Assume also that
each Wn+1 refines Wn in the sense that for all W ∈ Wn+1 there is V ∈ Wn

such that W ⊆ V , and for each V ∈ Wn which is not a singleton, there are
at least two W ∈ Wn+1 such that W ⊆ V . Let Z =

⋂
nWn; then Z is also

a dense Gδ-subset of X. For each n, let fn : Z → 2 be any function such
that fn is constant on every W ∈ Wn+1 and fn is constant on no V ∈ Wn

unless V is a singleton. This defines f : Z → 2ω by f(z)n = fn(z). Let M
be the disjoint sum of 2ω and a single point, p, and extend f to a function
f̃ : X → M by mapping X\Z to p. Then f̃ is Borel measurable, and every
point in Ω̂f̃ is isolated in X.

For (f), assume (1), and fix f ∈ C(X,M); we must show that Ωf is
dense. So, fix a non-empty open interval (a, b) ⊆ X. We must produce a
non-empty open W ⊆ (a, b) such that f is constant on W . This is trivial
if (a, b) contains an isolated point, so assume that (a, b) contains no iso-
lated points, and hence is non-separable. For each n, there is a finite cover
of [a, b] by open intervals, In1 , I

n
2 , . . . , such that each diam(f(Inj )) ≤ 1/n.

Since (a, b) is non-separable, we can choose W ⊆ (a, b) to be an open in-
terval which contains none of the endpoints of any Inj . Then for each n,
W is a subset of some Inj , so diam(f(W )) ≤ 1/n. Thus, f is constant
on W .

Now, to see that most of the implications of Theorem 4.3 are as strong
as possible, we look at several examples, and we include two useful vehicles
for examining properties of topological spaces X: the Boolean algebra of
regular open subsets of X, and the corresponding notion of forcing.

In general, for a LOTS, (1) need not imply (4). A simple counter-example
is X = [0, 1]ω, ordered lexically; (4) is refuted by f(x) =

∑
n∈ω xn ·2−n. One

can replace [0, 1] by the Cantor set here to get a zero-dimensional LOTS,
providing also a counter-example to (c) extending to (2)⇔(4).

If X is an Eberlein compact space, then by (e), conditions (4) or (5) can
hold only in the trivial case that the isolated points of X are dense in X;
it is easy to see that (6) holds iff X is finite. Thus, only (1), (2), and (3)
are of interest, and for these, the Eberlein compact spaces can be tailored
to satisfy whatever we want. The one we constructed in §2 satisfied (1), but
not (2), whereas §3 produced Eberlein compact spaces which satisfied (3)
but not (4), and (2) but not (3).

The Stone space of an atomless probability algebra is a compact ex-
tremally disconnected space which satisfies (1) but not (3). To refute (3),
let the Ki (i ∈ ω) be clopen independent events of probability 1/2, and con-
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struct g as in the proof of Theorem 4.3(b). This provides a counter-example
to replacing (2) by (1) in either (b) or (c).

Each of the conditions (4), (∗), and (5) is equivalent to an algebraic
property of the Boolean algebra of regular open subsets of X (see [9, 16]).
Hence, each of these three conditions holds for X iff it holds for the absolute
(or projective cover) of X. Specifically, condition (4) is equivalent to the
(ω, ω)-distributive law:

∧
n∈ω

∨

i∈ω
bn,i =

∨{∧
n∈ω

bn,ϕ(n) : ϕ ∈ ωω
}
.

Condition (∗) is equivalent to the weak (ω,∞)-distributive law: for each
cardinal κ,

∧
n∈ω

∨
α∈κ

bn,α =
∨{∧

n∈ω

∨

α∈ϕ(n)

bn,α : ϕ ∈ ([κ]<ω)ω
}
.

Here, [κ]<ω is the set of finite subsets of κ. By Theorem 4.2, condition
(5) is simply (4) plus (∗), and is hence equivalent to the standard (ω,∞)-
distributive law.

A (compact) Suslin line in which every open interval is non-separable is
a ccc LOTS (with no isolated points) which satisfies (1), and hence (5), ap-
plying (d) and (f) of the Theorem. Of course, the Suslin line does not satisfy
(6). The absolute of a Suslin line is a compact ccc extremally disconnected
space which satisfies (5) but not (6). So is βN, but this example is “trivial”
because the isolated points are dense. Note, however, that it is consistent
with the axioms of set theory that there are no Suslin lines. In the absence
of Suslin lines, (5) for a ccc space would imply that the isolated points are
dense, because the existence of a Suslin line is equivalent to the existence
of a Suslin algebra (a non-atomic ccc (ω,∞)-distributive complete Boolean
algebra).

We may regard the open (or regular open) subsets of X as a forcing
order (see a set theory text, such as [10] or [11]). Then (4) is simply the
statement that the order adds no reals, while (5) is the stronger statement
that the order adds no ω-sequences. Condition (∗) is the finite approximation
property familiar from random real forcing or Sacks forcing: for each κ and
each ψ : ω → κ in the generic extension, there is a ϕ : ω → [κ]<ω in the
ground model such that each ψ(n) ∈ ϕ(n). Prikry forcing at a measurable
cardinal (see §37 of [10]) is an example of a forcing order (and hence, by
the standard translation, a compact extremally disconnected space) which
satisfies (4) but not (∗), and hence not (5). Another such example is Namba
forcing (see §26 of [10]).

Finally, it is natural to ask which of the properties (1)–(6), (∗) are pre-
served by finite products. Now, (1) and (6) are, trivially. We do not know
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about (2), but (3) is; to see this, identify C(X×Y,M) with C(X,C(Y,M)),
and note that C(Y,M) is another metric space. Property (5) = (4) + (∗)
is refuted by a well-known forcing order: Let S ⊂ ω1 be stationary and
co-stationary. Let P and Q be Jensen’s forcings for shooting a club through
S and ω1\S, respectively (see VII.H25 of [11]). Then P,Q each satisfy (5),
while P × Q collapses ω1, and hence satisfies neither (4) nor (∗). One may
now translate P,Q into compact extremally disconnected spaces (by the
standard translation), or into Corson compact spaces (using the fact that
these partial orders have no decreasing ω1 chains).

Preservation by infinite products is uninteresting. If X is an infinite
product of spaces with more than one point, then all of (2)–(6) fail, as does
(∗), whereas (1) will hold if, for example, infinitely many of the Xn are
non-separable. See Theorem 5.5.2 for more about such products.

Some of the results in this section overlap results of Bella, Hager, Mar-
tinez, Woodward, and Zhou [2, 3, 12]. They also defined E0(X,R) (which
they called dc(X)), and they considered spaces with our property (2), which
they called DC-spaces. With somewhat different terminology, they proved
what amounts to the fact that (6) implies (2), and that (1) and (2) are
equivalent when X is a LOTS.

5. On Banach spaces. In this section, we make a few remarks on
E0(X,M) in the case that X is an arbitrary compact Hausdorff space and
M is a Banach space. For definiteness, we take the scalar field to be R, but
all the results are unchanged if we replace R by C.

5.1. Types of X. As we have seen in §4, there are many X for which
E0(X,M) = C(X,M). For a given X, this can depend on M . However, the
range of each function in C(X,M) is compact, and hence embeddable in
the Hilbert cube, which in turn is embeddable in every infinite-dimensional
Banach space. It follows that there are really only three possibilities:

(1) E0(X,M) = C(X,M) for all Banach spaces M .
(2) E0(X,M) = C(X,M) for all finite-dimensional M , but not for any

infinite-dimensional M .
(3) E0(X,M) 6= C(X,M) for all Banach spaces M .

Furthermore, there are Eberlein compact spaces with no isolated points
realizing each of these possibilities ((3) is trivial; see §3 for (1) and (2)).

5.2. Abstract properties of E0. In studying the properties of E0(X,M)
as a normed linear space, we can isolate the two properties which are of
fundamental importance. If f, g1, g2 ∈ C(X,M), let us say that f is refined
by g1, g2 iff for all x, y ∈ X, if g1(x) = g1(y) and g2(x) = g2(y) then
f(x) = f(y). A linear subspace E ⊆ C(X,M) has the refinement property iff
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for all f, g1, g2 ∈ C(X,M), if g1, g2 ∈ E and f is refined by g1, g2, then f ∈ E.
We say that E has the disjoint summation property iff whenever

∑
i∈ω fi = f

in C(X,M), each fi ∈ E, and the sets {x : fi(x) 6= 0}, for i ∈ ω, are all
disjoint, then f ∈ E. The set of polynomial functions in C([0, 1],R) has
the disjoint summation property (trivially) but not the refinement property,
while the set of functions which are constant in some neighborhood of 1/2
has the refinement property but not the disjoint summation property. Let
us call E a nice subspace of C(X,M) iff E has both properties. Examples
of nice E are E0(X,M), C(X,M), and the space of all constant functions.
Or, one may fix any open U ⊆ X; then {f ∈ C(X,M) : U ⊆ Ωf} is
nice. Another example is the functions of essentially countable range; that
is, let µ be a Baire measure on X, and then let D(X,M,µ) be the set of
f ∈ C(X,M) such that for some µ-null-set S ⊆ X, f(X\S) is countable.
Another is the category analog of this—the set of f ∈ C(X,M) such that
for some countable P ⊂ M ,

⋃{int(f−1{p}) : p ∈ P} is dense in X (int
denotes interior).

One advantage of studying nice E is that we may restrict our attention to
the case where E separates the points of X. In general, given E ⊆ C(X,M),
we may define an equivalence relation ∼ on X by x ∼ y iff f(x) = f(y) for
all f ∈ E. Let Y be the quotient, X/∼; then Y is a compact Hausdorff
space, and there is a canonical projection, π, from Y onto X. Let E′ =
{g ∈ C(Y,M) : g ◦ π ∈ E}. Then E′ is isometric to E, and E′ separates
the points of Y . Further, both the refinement property and the disjoint
summation property are preserved here, so if E is nice, then so is E′.

Some examples, when we start with E = E0(X,M): For the spaces
constructed in §2: If X = Lω, then Y is a singleton. If X = L2, then Y is
obtained by collapsing L1 to a point. In these two cases, E′ = E0(Y,M),
but this is not in general true. For example, let Q be any dense subset of
[0, 1], and form X by attaching a copy of the Lω of §2 to each q ∈ Q, where
each copy goes off in some perpendicular direction. There is then a natural
retraction, r : X → [0, 1], and E0(X,R) consists of all functions of the form
f ◦ r, where f ∈ C([0, 1],R). So, we may identify Y with [0, 1] and π with r,
and E′ is C(Y,R), not E0(Y,R).

5.3. The refinement property . Suppose that E ⊆ C(X,M) has the re-
finement property. If ϕ ∈ C(M,M) and f ∈ E, then ϕ ◦ f ∈ E (since ϕ ◦ f
is refined by f, f). If M = R, and we view C(X,M) as a Banach algebra
(under pointwise multiplication), then E is a subalgebra. More generally, if
we fix any non-zero vector ~v ∈M , we may let Ê ⊆ C(X,R) be the set of all
g ∈ C(X,R) such that the map x 7→ g(x)~v is in E. Note that this does not
depend on the ~v chosen, and if g ∈ Ê and f ∈ E, then gf ∈ E. Note also
that Ê is nice.
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It follows that if E ⊆ C(X,M) has the refinement property and separates
the points of X, then E is dense in C(X,M). To see this, fix f ∈ C(X,M).
If M = Rn, just apply the Stone–Weierstrass Theorem to f composed with
the projections onto n one-dimensional subspaces. Then, for a general M ,
first approximate f arbitrarily closely by a map into a finite-dimensional
subspace.

Actually, one can get more than just what is provided by a simple appli-
cation of the Stone–Weierstrass Theorem. For example, we can arrange for
the approximating function to be identically zero wherever f is zero:

5.3.1. Lemma. Suppose E ⊆ C(X,M) has the refinement property and
separates the points of X. Fix f ∈ C(X,M) and fix ε > 0. Then there is
a g ∈ E with ‖g − f‖ ≤ ε, ‖g‖ = ‖f‖, and ‖g(x)‖ = ‖f(x)‖ for all x such
that ‖f(x)‖ equals either 0 or ‖f‖.

P r o o f. Assume ε < ‖f‖. Fix h ∈ E with ‖h − f‖ ≤ ε/2. Then, let ϕ :
M →M be any continuous map such that for all ~v ∈M , ‖ϕ(~v)−~v‖ ≤ ε/2,
ϕ(~v) = ~0 when ‖~v‖ ≤ ε/2, and ϕ(~v) = ‖f‖ when | ‖~v‖ − ‖f‖ | ≤ ε/2 (ϕ can
just move each ~v radially). Then, let g = ϕ ◦ h.

5.4. Is E0(X,M) a Banach space? Certainly it is in the extreme cases
where it is all of C(X,M) and where it contains only the constant functions.
To analyze the general situation, we may, as pointed out above, just consider
the case where E ⊆ C(X,M) is nice and separates the points of X. Then,
clearly, E is a Banach space in the standard norm iff it is all of C(X,M).
Furthermore, if E is not all of C(X,M), then, following Bernard and Sidney
[6,15], it is not even Banachizable; that is, there is no norm which makes
E into a Banach space and gives E a topology finer than the one inherited
from C(X,M). In fact, every nice E is barreled , which is a stronger property.
There are a number of equivalents to being barreled, discussed in [15]. One
is that for every linear space L with E ⊆ L  E, L is not Banachizable
(E is the completion of E; here, E = C(X,M)). Another is the “weak
sequential property” for E, which is the conclusion of the next lemma; this is
a convenient way of establishing barreledness. The proof of the next lemma
is very similar in spirit to that of Theorem 2 of [15], but we include it
because at first sight, the proof as stated in [15] might appear to require
some additional assumptions about E and X. The two examples above of
subspaces of C([0, 1],R) show that neither of the two components of “nice”,
“refinement property”, and “disjoint summation property” is sufficient here.

5.4.1. Lemma. Let X be compact and let M be a Banach space. Suppose
that E is a nice subspace of C(X,M). Let Λn, for n ∈ ω, be in the dual
space, E∗. Assume that for every g ∈ E, Λn(g)→ 0. Then supn ‖Λn‖ <∞.
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P r o o f. As pointed out above, we may also assume that E is dense in
C(X,M), so we may consider Λn to be in C(X,M)∗. Note that if E =
C(X,M), the conclusion is immediate by the Banach–Steinhaus Theorem.
In any case, whenever H is a closed linear subspace of C(X,M) such that
H ⊆ E,

(1) sup{|Λn(h)| : h ∈ H ∩B(0, 1) & n ∈ ω} <∞.
Here, B(0, 1) is the closed unit ball of C(X,M). Now, assume that supn ‖Λn‖
=∞. We shall get a contradiction by applying (1).

For any f ∈ C(X,M), let supt(f) be the closure of {x ∈ X : f(x) 6= ~0}.
By compactness of X, we may fix a point p such that for all neighborhoods
V of p,

sup{|Λn(f)| : f ∈ B(0, 1) & n ∈ ω & supt(f) ⊆ V } =∞.
By Lemma 5.3.1 (applied to Ê—see above), let g ∈ Ê be such that ‖g‖ = 1,
g(p) = 1, and supt(g) ⊆ V . Then H = {g~v : ~v ∈ M} is a closed linear
subspace of C(X,M) (isometric to M) such that H ⊆ E, so we may apply (1)
above. It follows, by considering functions of the form x 7→ f(x)− g(x)f(p),
that for all neighborhoods V of p,

sup{|Λn(f)| : f ∈ B(0, 1) & n ∈ ω & supt(f) ⊆ V & f(p) = ~0} =∞.
Next, we show that for all neighborhoods V of p,

sup{|Λn(g)| : g ∈ B(0, 1) ∩ E & n ∈ ω & supt(g) ⊆ V \{p}} =∞.
To see this, fix K > 0, and then fix n and f ∈ C(X,M) such that ‖f‖ ≤ 1,
supt(f) ⊆ V , f(p) = ~0, and |Λn(f)| ≥ 3K. Let f ′ ∈ C(X,M) be such
that ‖f ′‖ ≤ 1, supt(f ′) ⊆ V , f ′ vanishes in some neighborhood of p, and
‖f ′ − f‖ ≤ K/‖Λn‖. Applying Lemma 5.3.1 to f ′, let g ∈ E be such that
‖g‖ ≤ 1, supt(g) ⊆ V , g vanishes in some neighborhood of p, and ‖g−f ′‖ ≤
K/‖Λn‖. Then |Λn(g)| ≥ K.

Thus, we may inductively choose open neighborhoods Vj of p, nj ∈ ω,
and hj ∈ E such that each V j+1 ⊆ Vj , supt(hj) ⊆ Vj\V j+1, ‖hj‖ = 1, and
|Λnj (hj)| ≥ j. Let H be the closed linear span in C(X,M) of the hj . Since
the hj are disjointly supported, it follows that H ⊆ E (and H is isometric
to c0), so we have a contradiction to (1) above.

5.5. Is E0(X,M) first category in itself ? We ask this because if
E0(X,M) is of second category, then Lemma 5.4.1 becomes trivial by the
Banach–Steinhaus Theorem. Fortunately, E0(X,M) is first category in
many cases; for example, when X contains a non-empty separable open
subset with no isolated points (see the proof of (2)⇒(1) of Theorem 4.2). In
fact, as pointed out by Bernard and Sidney, the original interest of E0(X)
was that it provided examples of first category normed linear spaces which
satisfy the Banach–Steinhaus Theorem, as well as a number of other results
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usually proved by category arguments. The following lemma describes some
other situations in which E0(X,M) is of first category.

5.5.1. Lemma. Let X be compact and let M be a Banach space. Suppose
that E0(X,M) is not a Banach space. Then E0(X,M) is of first category
in itself if either of the following holds:

(a) M is infinite-dimensional.
(b) X is zero-dimensional.

P r o o f. First, as indicated above, we may pass to a quotient and consider
a nice E ⊆ C(X,M) which is dense in C(X,M) but is not all of C(X,M);
of course, in (b), this quotient operation is trivial. Now, we need only show
that E is of first category in C(X,M).

Whenever H and K are closed subsets of X, let U(H,K) = {g ∈
C(X,M) : g(H)∩g(K) = ∅}. Note that U(H,K) is always open in C(X,M).
If H and K are disjoint, then either (a) or (b) guarantees that U(H,K) is
dense in C(X,M).

Fix an f ∈ C(X,M)\E. Since f(X) is second countable, there are
closed Hn,Kn ⊆ X for n ∈ ω such that each Hn ∩ Kn = ∅, and for all
x, y ∈ X, if f(x) 6= f(y), then for some n, x ∈ Hn and y ∈ Kn. Let
G =

⋂
n∈ω U(Hn,Kn). Then G is a dense Gδ, and f is refined by g, g for all

g ∈ G, so G is disjoint from E.

The situation for finite-dimensional M seems more complicated. We do
not actually have an example of an E0(X,R) which is second category but
not a Banach space, although it is easy to produce a consistent example of
this by forcing [10, 11]. In the ground model, V , let X = Lω be the space
constructed in the proof of Theorem 3.2(b), so E0(X,R) = C(X,R). Let
V [G] add one Cohen real. Then, in V [G], E0(X,R) is of second category,
since it contains the ground model C(X,R), which is of second category with
this forcing. However, in V [G], E0(X,R) is not all of C(X,R), since V [G]
will contain a g ∈ C(K(),R) which is 1-1 on K()∩V ; if f = g◦π0 ∈ C(X,R),
then Ωf = ∅. To verify the details of this construction, one must compare
X and C(X,R) in both models, V and V [G]; this is described in §3 of [8].

The following theorem yields a class of examples where E0(X,R) is of
first category.

5.5.2. Theorem. Let M be any Banach space, and let X =
∏
i∈ωXi,

where each Xi is compact Hausdorff and has more than one point. Then
E0(X,M) is of first category , and is dense in C(X,M).

P r o o f. Let Pn =
∏n
i=0Xi, and let σn be the projection from X onto

Pn. We call a function f on X n-supported iff f = g ◦ σn for some function
g on Pn.
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To prove that E0(X,M) is dense in C(X,M), it is sufficient to show
that E0(X,R) separates points. Fix two distinct points, x, y ∈ X. Since an
infinite product has no isolated points, we may assume (by partitioning the
index set into infinitely many infinite sets) that each Xi has no isolated
points. We may also assume that σ0(x) 6= σ0(y). We now produce an f in
E0(X,R) which separates x, y.

Note that if σn(Ωf ) = Pn for all n, then Ωf will be dense. To obtain
this situation, we shall focus on the dyadic rationals. Let Dn = {j · 2−n :
0 ≤ j ≤ 2n}; so, D0 = {0, 1} and D1 = {0, 1/2, 1}. Inductively choose
fn ∈ C(X, [0, 1]) so that

(1) x ∈ int(f−1
0 {0}) and y ∈ int(f−1

0 {1}).
(2) fn is n-supported.
(3) ‖fn+1 − fn‖ ≤ 2−n.
(4) f−1

n {q} ⊆ f−1
n+1{q} whenever q ∈ Dn.

(5)
⋃{σn(int(f−1

n+1{q})) : q ∈ Dn+1} = Pn.

Let f = limn fn. This limit exists by (3). We have σn(Ωf ) = Pn for all n
by (4)–(5), and f separates x, y by (1). Condition (2) allows the inductive
construction of fn+1.

Now, we prove that E0(X,M) is of first category in C(X,M). For each
n, let Un be the set of all f ∈ C(X,M) such that for all z ∈ Pn, f is not
constant on {x ∈ X : σn(x) = z}. Then Un is dense and open in C(X,M),
and Ωf = ∅ whenever f ∈ ⋃n∈ω Un.
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