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Subgroups of the Baer–Specker group
with few endomorphisms but large dual

by

Andreas B l a s s (Ann Arbor) and Rüdiger G ö b e l (Essen)

Abstract. Assuming the continuum hypothesis, we construct a pure subgroup G
of the Baer–Specker group Zℵ0 with the following properties. Every endomorphism of
G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has
uncountably many homomorphisms to Z.

1. Introduction. The Baer–Specker group, which is the additive group
P = Zℵ0 of all integer-valued sequences, and its obvious generalization Zκ,
the cartesian product of Z for any infinite cardinal κ, have attracted con-
tinuous research over many years. This is not too surprising because many
questions on abelian groups, like the famous Whitehead problem, can be
stated in terms of subgroups of such products. Recall that

(†) P is ℵ1-free, i.e. all countable subgroups of P are free

by a result of Baer (cf. Fuchs [15, Vol. 1, p. 94, Theorem 19.2]). Besides
the Whitehead problem, many other properties of these products turn out
to depend on the set-theoretic assumptions, which make these groups a fa-
vored playground for logicians as well as algebraists. Examples of results of
this kind can be found in [1–3, 8, 13, 17–19]; see [14] for general references.
Moreover, P carries many algebraic pathologies which also occur elsewhere
in abelian group theory but which can be studied more explicitly in P be-
cause of the sequence representation of elements in P . Such properties quite
often can be phrased in the language of the endomorphism ring of certain
subgroups of products (cf. [5, 7, 9–12, 16, 20]).

The most useful tool for constructing such groups is a fundamental result
on P which characterizes slender groups, which is due to Nunke and based on
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Specker [22] (see [15, Vol. 2, pp. 158–163]). Let S = Z(ℵ0) =
⊕

i∈ω eiZ denote
the free group on ℵ0 generators, i.e., the canonical direct sum in the product
P =

∏
i∈ω eiZ. Recall that a group G is slender if any homomorphism from

P into G maps almost all elements ei (i ∈ ω) onto 0. Specker [22] showed
that Z is slender. This has many consequences for dual groups, including
the following, where we use the notation G∗ for the dual Hom(G,Z) of G.
Specker [22] showed that P ∗ ∼= S, and obviously S∗ ∼= P . It follows that P
has no direct summand isomorphic to S. More generally, any group G whose
dual is isomorphic to S cannot have a summand isomorphic to S, for G∗ ∼= S
has no summand isomorphic to S∗ ∼= P . It is natural to ask how generally
“summand ∼= S” is the only obstruction to “dual ∼= S.” Specifically, John
Irwin asked whether a pure subgroup of P that does not have a direct
summand isomorphic to S must have a dual isomorphic to S.

Assuming the continuum hypothesis CH we shall answer this question
negatively by proving the theorem below.

To ensure that the group we construct does not have a summand iso-
morphic to S, we arrange that its endomorphism ring be as small as pos-
sible. Among the endomorphisms of any torsion-free abelian group are the
scalar multiplications by any z ∈ Z, so we can identify Z with a subring of
End(G). In addition, End(G) contains a two-sided ideal Fin(G) consisting
of endomorphisms of finite rank, i.e., endomorphisms sending all of G into a
subgroup of finite rank. We call an endomorphism almost scalar if it is the
sum of a scalar multiplication and an endomorphism of finite rank, i.e., if it
lies in Z ⊕ Fin(G). We shall arrange that all endomorphisms of our group
are almost scalar.

Groups with such a small endomorphism ring are constructed in [6, 9] and
inside P in [12, 16, 20]. The new ingredient in the present paper is to ensure
that the dual of G is uncountable. While an easy form of a “black-box-type
argument” as in [6, 9, 12] will force endomorphisms to be almost scalar,
on the other hand we must ensure that uncountably many homomorphisms
from S into Z survive while we build G up by a transfinite chain of extensions
from S inside P . In order to use topological arguments, we will restrict our
source of new elements for a potential group G to the Z-adic closure D of S
in P , which is the pre-image of the maximal divisible subgroup D/S in P/S.
It will be important that this group D can be used to test slenderness, as
observed many years ago by Ti Yen (cf. Fuchs [15, Vol. 2, p. 163, Exercise 5])
and extended recently in [20, p. 276, Corollary 2.5]:

(∗) A group X is slender if and only if Hom(P,X) = Fin(P,X) if and
only if Hom(D,X) = Fin(D,X). In particular , every homomorphism
from D to S has finite rank.
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Choosing suitable generators by induction we will construct the desired
group G as in the theorem. CH allows us to perform this in ℵ1 steps so that
at every induction step the set chosen so far is countable.

Theorem. Assuming CH , there is a group G with the properties:

(a) S ⊂ G ⊂ D and G is pure in D (hence also in P ).
(b) EndG = Z⊕ FinG, i.e. every endomorphism of G is almost scalar.
(c) The dual group G∗ = Hom(G,Z) is uncountable.

This indeed answers Irwin’s question. Part (b) of the theorem implies
that G does not have a direct summand isomorphic to S, for such a sum-
mand, and therefore G itself, would have many endomorphisms that are not
almost scalar. And of course part (c) implies that G∗ is not isomorphic to
the countable group S.

2. Preliminary facts. We begin by proving a simple lemma strengthen-
ing, in the infinite case, the well-known fact that a group cannot be covered
by two proper subgroups.

Lemma 1. If A and B are proper subgroups of an infinite group G, then

|G\(A ∪B)| = |G|.
P r o o f. First of all observe that for every proper subgroup C of an

infinite group H we have |H\C| = |H|, for all cosets of C have the same
cardinality which, of course, needs to be applied only if |C| = |H|.

Thus the assertion follows in case one of the subgroups contains the
other, and the result is trivial if both of them have lesser cardinality than
G. So assume without loss of generality that |A| = |G| and that neither of A
and B contains the other. Fix an element b ∈ B \A. By the first paragraph
of this proof (applied to A and A∩B), A\B has |A| = |G| elements a. Then
the |G| sums a+ b are in neither A nor B.

Given a family F of proper subgroups of an infinite group G which can
be partitioned into subfamilies F0 and F1 neither of which generates all of
G, we see that also |G\⋃F| = |G|.

At the end of the proof of the theorem we will apply the following rather
special instance of this.

Corollary. If F is a family of linearly independent proper subgroups
of an infinite abelian group G, then |G\⋃F| = |G|.

P r o o f. If F is empty, there is nothing to prove. So let A ∈ F . Then
clearly F0 = {A} and F1 = F\{A}meet the requirements of the observation
following the lemma and the corollary follows.
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The corollary is used to have enough room to find particular elements in
P . It is interesting to observe that [7] also needs a lemma about free space
in vector spaces in order to study aspects of P .

A torsionless (abelian) group is (up to isomorphism) a subgroup of a
product Zκ or equivalently any group G where G∗ separates points in the
sense that for any 0 6= g ∈ G there is a σ ∈ G∗ such that gσ 6= 0; see [14]
and [15] for more details about torsionless groups.

For any integer z and any group G, we write z also for the endomorphism
of G given by multiplication by z, and we call such an endomorphism scalar .
We also write Z for the set of scalar endomorphisms of G. We also use this
notation and terminology when z is a rational number and G is torsion-free,
but then the homomorphism z maps G into its divisible hull rather than
into itself. We call an endomorphism of G almost scalar if it differs from a
scalar by a homomorphism which has an image of finite rank. The following
lemma shows that, when G is torsionless, it does not matter whether we
take the scalars to be integers or rationals in this definition. (The lemma
holds for many groups other than torsionless ones, but we will not need any
more generality.)

Lemma 2. Let G be a torsionless abelian group of infinite rank. Let z be
a rational scalar and σ a finite-rank homomorphism of G into its divisible
hull. Suppose z + σ maps G into itself. Then z is an integer.

P r o o f. Because G is torsionless and has infinite rank, there is a non-
zero homomorphism ϕ : G→ Z vanishing on G ∩ range(σ). Without loss of
generality, ϕ maps G onto Z (just divide by a generator of the range); fix
e ∈ G with (e)ϕ = 1. We write ϕ also for the homomorphic extension of ϕ
mapping the divisible hull of G into Q, which vanishes on range(σ). Then,
as e(z + σ) ∈ G, we have

z = (e)ϕ · z = (ez)ϕ = (ez + eσ)ϕ ∈ Gϕ = Z.

3. Proof of the Theorem. G will be obtained as the union of an
increasing ω1-sequence of subgroups Gα (α < ω1), where G0 = S, Gλ =⋃
α<λGα for limit λ, and each Gα is a countable, pure subgroup of D.

This ensures that part (a) of the theorem holds. The successor stages of the
induction are designed to ensure parts (b) and (c).

To deal with (b), we begin by enumerating all homomorphisms η : S → P
as an ω1-sequence (ηα)α<ω1 such that each homomorphism η occurs station-
arily often in the sequence, i.e., {α | ηα = η} is stationary. Recall that a
subset of ω1 is called stationary if it meets every closed unbounded subset
of ω1. Recall also that ω1 can be partitioned into ℵ1 stationary subsets; see
[21, p. 59, Lemma 7.6]. The number of homomorphisms η to be enumerated
is ℵ1, because we are assuming the continuum hypothesis. So we can set up
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a bijection between the η’s and the stationary sets in a partition of ω1, and
we obtain the desired enumeration by letting ηα be the η corresponding to
the stationary set that contains α.

With respect to the Z-adic topology, S is dense in D and each ηα is a
continuous map from S into P . Hence ηα has a unique largest extension with
domain pure in D, say ηα : Dα → P . This is obtained by first extending ηα
to a homomorphism from D, which is the Z-adic closure of S in P , to the
Z-adic completion of P , and then restricting to the subgroup Dα of D that
is mapped into P .

At stage α of the construction, when we have Gα and are defining Gα+1,
we shall do nothing (i.e., set Gα+1 = Gα) if either the domain of ηα does
not include all of Gα, or ηα maps some element of Gα outside Gα, or the
restriction ηα¹Gα is almost scalar. So the only α’s that are active in the
sense that we do something in the step from α to α+ 1 are those for which
ηα¹Gα is a (total) function from Gα into itself and is not almost scalar. At
such an active stage, we shall ensure that ηα does not map (all of) Gα+1

into G.
If we achieve this, then (b) will hold. To see this, suppose e were an

endomorphism of G that is not almost scalar. Thus, for each scalar z, the
endomorphism e − z of G has infinite rank. Fixing a countable infinity of
independent elements in the range of e−z and fixing pre-images under e−z
for them in G, we see that these pre-images are all in Gβ for some countable
β. That is, (Gβ)(e− z) has infinite rank. Furthermore, since there are only
countably many scalars z, we can fix a single β that works for them all.
Now since e maps G into itself, it follows easily (in view of the continuity
of the Gα sequence at limit ordinals) that {α ≥ β | (Gα)e ⊆ Gα} is closed
and unbounded. So it has a non-empty intersection with the stationary set
{α | e¹S = ηα}. Fix some α in this intersection. Since e is an extension
of ηα and ηα is the unique largest extension of ηα, we have e = ηα¹G. In
particular, the domain of ηα includes G and therefore includes Gα. Also,
our choice of α ensures that ηα maps Gα into itself and ηα¹Gα is not almost
scalar. So α is an active stage in our construction, and therefore ηα does not
map Gα+1 into G. That is absurd, as ηα is an extension of e, which maps
all of G into G.

It remains to carry out the construction at active stages. So we have ηα
defined on all of Gα, mapping Gα into itself, and not almost scalar on Gα.
In this situation, we shall set Gα+1 = 〈Gα ∪ {x}〉∗, the pure subgroup of D
generated by Gα and one new, carefully chosen x ∈ D. If x is in the domain
Dα of ηα, then we shall also ensure that xηα 6∈ Gβ for all β; thus ηα will not
map Gα+1 into G. Of course, in order to do this, we must choose x so that
xηα 6∈ Gα+1 and, at later stages of the construction, we must be careful not
to put xηα into any Gβ .
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Thus, as the construction proceeds, we accumulate a set V of forbidden
elements, which must never be put into any Gβ . Each stage contributes at
most one element xηα to V , so V is countable at each stage of the construc-
tion. Of course the choice of x at stage α is constrained by the elements
already in V from previous stages.

To deal with part (c) of the theorem, we shall have, at each stage α, some
homomorphisms fαξ : Gα → Z, indexed by the ordinals ξ < α, such that for

ξ < α < β we have fαξ = fβξ ¹Gα. Then, for each ξ < ω1, the homomorphisms
fαξ for all α (from ξ + 1 on) combine to give a homomorphism fξ : G→ Z.
If we make the fαξ at each stage α distinct (for distinct ξ), then all these fξ
will be distinct and (c) will hold.

Thus, what needs to be done at stage α of the construction is the fol-
lowing. We are given

(1) a countable pure subgroup Gα of D,
(2) countably many homomorphisms fαξ : Gα → Z, indexed by ξ < α,
(3) a countable set Vα of forbidden elements with Vα ∩Gα = ∅ and
(4) a homomorphism ηα : Dα → P whose domain includes Gα, which

maps Gα into Gα, and which is not almost scalar on Gα.

We seek an element x ∈ D such that

(5) 〈Gα ∪ {x}〉∗ contains neither xηα nor any element of Vα, and
(6) each fαξ extends to fα+1

ξ : 〈Gα ∪ {x}〉∗ → Z.

In addition, we need one new homomorphism fα+1
α : 〈Gα ∪ {x}〉∗ → Z,

distinct from all fα+1
ξ for ξ < α.

Getting fα+1
α is easy, as 〈Gα ∪ {x}〉∗ is a countable subgroup of P con-

taining S, hence is free of infinite rank by (†) of the introduction, and hence
has uncountably many homomorphisms to Z. So our efforts from now on
will be directed toward finding an x ∈ D subject to (5) and (6). Once we
have such an x, we can set Gα+1 = 〈Gα ∪ {x}〉∗ and Vα+1 = Vα ∪ {xηα},
and the proof will be complete.

Notice that Gα, being a countable, pure subgroup of P and dense in
the product topology of P , can be mapped onto S by an automorphism of
P , according to a theorem of Chase [4, p. 605, Corollary 3.3]. Furthermore,
since P/S = (D/S)⊕R where R is reduced and D/S is divisible, and since
S ⊆ Gα ⊆ D, we have P/Gα = (D/Gα) ⊕ R with D/Gα divisible (being
a quotient of D/S). So D is the pre-image in P of the divisible part of
P/Gα, as well as the pre-image in P of the divisible part of P/S. Therefore,
an automorphism of P that maps Gα onto S necessarily maps D onto D.
Applying such an automorphism, we obtain the following description of what
needs to be done at stage α (numbered to match the earlier description).
We are given
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(2) countably many homomorphisms fi : S → Z (i ∈ ω), where we have
re-indexed by ω in place of α,

(3) a countable set V ⊆ P − S,
(4) a homomorphism η : E → P , whose domain E includes S, such that

η¹S maps S into itself and is not almost scalar.

We seek an x ∈ D such that

(5) 〈S ∪ {x}〉∗ contains neither xη nor any member of V , and
(6) each fi extends to a homomorphism 〈S ∪ {x}〉∗ → Z.

The V part of (5) is easy to handle. We must exclude any x such that

(7) s+ xm = vn

for some s ∈ S, m ∈ Z, n ∈ Z − {0}, and v ∈ V . We need not worry
about m = 0, as S ∩ V = ∅ (and S is pure). Then, for each s, m, n, and v,
there is at most one x satisfying (7) (as P is torsion-free). So only countably
many x are excluded. Therefore, it suffices to find uncountably many x ∈ D
satisfying (6) and

(5′) xη 6∈ 〈S ∪ {x}〉∗.
Here (5′) is regarded as vacuously true if x 6∈ E.

Fix a sequence (rn)n∈ω of rational numbers in which each rational num-
ber occurs infinitely often. We shall construct a sequence of elements bn ∈
S − {0} with the following properties. We write supp(x) = {i ∈ ω : xi 6= 0}
for the set of indices where an element x =

∑
i∈ω eixi ∈ P has non-zero

components xi; for elements of S, this is a finite set, so the maximum and
minimum mentioned in (8) below make sense.

(8) If m < n then max supp(bm) < min supp(bn).
(9) If i ≤ n then bnfi = 0.

(10) max supp(bnη − bnrn) > n.

In (10), we multiplied by a rational scalar, so we should work in the divisible
hull of P . Alternatively, by clearing the denominators, we can reformulate
such statements (here and below) to involve only integer scalars.

The bn are defined inductively. Suppose b0, . . . , bn−1 are given, and let
q ∈ ω be larger than all elements of their supports. We shall choose bn in the
subgroup Sq =

⊕
i≥q eiZ of S consisting of elements of S whose supports

have minimum≥ q. This will ensure that (8) holds. Since Sq has finite corank
q in S, the range of (η− rn)¹Sq has infinite rank. (Otherwise, η¹S would be
the scalar rn plus an endomorphism of finite rank, contrary to (4).) So we
can find a finitely generated subgroup F of Sq whose image under η−rn has
rank ≥ 2n+ 3. The subgroup F ′ of F consisting of elements b with (∀i ≤ n)
bfi = 0, i.e., the subgroup of elements that could serve as bn and satisfy
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(9), has corank ≤ n+ 1 in F (being the intersection of the kernels of n+ 1
homomorphisms fi to Z). So the image of F ′ under η− rn has rank at least
(2n + 3) − (n + 1) > n + 1. This image must therefore contain an element
with a non-zero component past position n. That is, we can choose bn ∈ F ′
(thereby satisfying (9)) in such a way that (10) also holds. This completes
the construction of the sequence (bn).

Define an endomorphism β of P taking ei to bi, that is,

β : P → P,

∞∑

i=0

eixi 7→
∞∑

i=0

bixi.

The infinite sum in this definition makes sense because the bi have disjoint
supports by (8). It is trivial to check that β maps S into S and D into D.
(The latter also follows from the former by Z-adic continuity.) Since all the
bi are non-zero, β is one-to-one.

Also define, for each i ∈ ω, a partial homomorphism

gi : P ⇀ Z :
∞∑

j=0

ejxj 7→ lim
n→∞

( qn∑

j=0

ejxj

)
fi,

where qn = max supp(bn), and where the limit means the value for all
sufficiently large n provided this value is eventually independent of n. (If
the value is not eventually independent of n, the limit is undefined; that
is why gi is only a partial homomorphism.) The domain of gi is clearly
a pure subgroup of P that includes S, and gi¹S = fi. Furthermore, if∑∞
i=0 eixi = (

∑∞
i=0 eiyi)β, then

( qn+1∑

j=0

ejxj

)
fi −

( qn∑

j=0

ejxj

)
fi =

( qn+1∑

j=qn+1

ejxj

)
fi = (bn+1yn+1)fi = 0

by (9) provided n ≥ i. Thus Pβ ⊆ domain(gi). We shall ensure (6) by
choosing x to be yβ for some y ∈ D; then 〈S ∪ {x}〉∗ ⊆ domain(gi), so we
can extend fi to gi¹〈S ∪ {x}〉∗.

To obtain uncountably many x ∈ D satisfying (5′) and (6), which is
all we need to finish the proof, it now suffices, as β is one-to-one, to find
uncountably many y ∈ D such that

(11) yβη 6∈ 〈S ∪ {yβ}〉∗.
There is an easy case, namely if Dβ 6⊆ domain(η), so βη is not defined

on all of D. Then the domain Eβ−1 of βη is a proper subgroup of the
uncountable group D. By Lemma 1, D has uncountably many elements
outside this subgroup, and any of them can serve as y since they satisfy (11)
vacuously. This finishes the easy case.
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Henceforth, assume that βη is defined on all of D. To find uncountably
many y ∈ D satisfying (11), we consider how some y could fail to satisfy
(11). That would mean that

yβη · q = yβ · p+ s

for some s ∈ S and some integers p, q with q 6= 0. Write r for the rational
number p/q. Then yβ(η − r) = s(1/q) has finite support.

For each rational number r, let

Wr = {y ∈ D | yβη − yβ · r has finite support}.
The preceding discussion shows that any y ∈ D violating (11) is in some
Wr. So, to complete the proof, we need to find uncountably many elements
of D that are in no Wr.

Since both η and β map S into itself, we clearly have S ⊆Wr. Also, Wr

is a pure subgroup of D. Therefore, Wr/S is a pure subgroup of the rational
vector space D/S. We shall prove that these subgroups are proper, linearly
independent, pure subgroups of D/S.

Once this is done, the corollary of Lemma 1 will produce uncountably
many elements of D/S not contained in any Wr; the pre-images in D of
these elements will be the desired y’s, and the proof will be complete.

First, we show that Wr/S is a proper subgroup of D/S. Suppose not,
i.e., suppose Wr = D for a certain r = p/q, where p and q are integers. In
view of the definition of Wr,

y 7→ (yβη − yβ · r) · q = yβη · q − yβ · p
is a homomorphism from Wr = D into S. Such a homomorphism has finite
rank, by (∗) in the introduction. SoDβ(η−r) would have finite rank. But this
group contains, by definition of β, the elements bn(η− r) for all n, including
the infinitely many n for which rn = r. And those elements generate a group
of infinite rank, by property (10). This contradiction shows that Wr/S is a
proper subgroup of D/S.

It remains to show that the subgroups Wr/S are linearly independent.
This proof is a minor variation of the standard proof that eigenspaces of a
linear operator corresponding to different eigenvalues are linearly indepen-
dent. Suppose we had a linear dependence between these subgroups of D/S.
Back in D, this would mean

(12)
k∑

i=1

wici ∈ S,

where ci ∈ Q−{0}, k ≥ 1, wi ∈Wri −S, and all ri are distinct. (As before,
we adopt the convention that we either work with divisible hulls and in
particular that S in (12) really means its divisible hull, so that the rational



28 A. Blass and R. Göbel

scalars make sense, or interpret statements like (12) as meaning the result
of clearing denominators, so that only integer scalars occur.) Take a relation
of the form (12) with k as small as possible. Note that k ≥ 2, for w1c1 ∈ S
would imply w1 ∈ S, a contradiction. Apply βη−β ·r1 to (12), remembering
that S is closed under η and β and that βη is defined on all of D so that
this makes sense. The result is, in view of the definition of Wri ,

k∑

i=1

[wiβ(ri − r1) + elements of S]ci ∈ S.

Therefore, (∑

i

wi(ri − r1)ci
)
β =

∑

i

wiβ(ri − r1)(ci) ∈ S.

It is immediate from the definition of β (since no bi is 0) that Sβ−1 = S. So
we have ∑

i

wi(ri − r1)ci ∈ S.

The i = 1 term here contains r1 − r1, so it vanishes, but the other terms
have non-zero coefficients. So we have a relation of the form (12) with fewer
summands. This contradicts the minimality of k, and this contradiction
completes the proof.

References

[1] A. Blass, Cardinal characteristics and the product of countably many infinite cyclic
groups, J. Algebra 169 (1994), 512–540.

[2] —, Near coherence of filters, II : Applications to operator ideals, the Stone–Čech
remainder of a half-line, order ideals of sequences, and slenderness of groups, Trans.
Amer. Math. Soc. 300 (1987), 557–581.

[3] A. Blass and C. Laf lamme, Consistency results about filters and the number of
inequivalent growth types, J. Symbolic Logic 54 (1989), 50–56.

[4] S. U. Chase, Function topologies on abelian groups, Illinois J. Math. 7 (1963),
593–608.

[5] A. L. S. Corner, A class of pure subgroups of the Baer–Specker group, unpublished
talk given at Montpellier Conference on Abelian Groups, 1967.
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[16] R. Göbe l and B. Goldsmith, On separable torsion-free modules of countable den-

sity character , J. Algebra 144 (1991), 79–87.
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Note added in proof (December 1995). While answering a question of S. U. Chase
a different construction was used recently to eliminate the continuum hypothesis from our
Theorem; see A. L. S. Corner and R. Göbe l, Essentially rigid floppy subgroups of the
Baer–Specker group, in preparation.


