144 A. Béttcher and M. Seybold

[2] A. Bdticher and M. Seybold, Wackelsatz and Stechkin’s inequality for discrete
Muckenhoupt weights, preprint 99-7, 'TU Chemnitz, 1999.

[3] A. B&ttcher and B. Silbermann, Analysis of Toeplitz Operators, Akademie-
Verlag, Berlin, 1989, and Springer, Berlin, 1690.

[4] A.BéticherandI Spitkovsky, Wiener—Hopf integral operators with PC symbols
on spaces with Muckenhoupt weight, Rev. Mat. Iberoamericana 9 (1993), 257-279.

[5] L. A. Coburn, Weyl's theorem for non-normal operators, Michigan Math. J. 13
(1966), 285-286.

[6] R.V.Duduchava, Discrete Wiener-Hopf equations in & spaces with weight, Soob-
sheh. Akad. Nauk Grozin. S$R. 67 (1972), 17-20 {in Russian).

[7] =, On convolution integral operators with discontinuous symbols, Trudy Thiliss.
Mat. Inst. 50 (1975}, 33—41 (in Russian).

[8] —, On discrete Wiener-Hopf equations, ibid., 42-59 (in Russian).

[9] ——, Integral Equations in Convolution with Discontinuous Presymbols, Singular In-

tegral Bquations with Fized Singulerities, and Their Applications to Some Problems
of Mechanics, Teubner, Leipzig 1979,

0] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities
and Reloted Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam,
1985.

[11] I Gohberg and N. Krupnik, One-Dimensional Linear Singular Integral Equa-
tions, Vols. 1 and 11, Oper. Theory Adv. Appl. 53 and 54, Birkhduser, Basel, 1692
(Russian original: Shtiintsa, Kishinev, 1973).

[12] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for
the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973),
227-252.

[13] N. K. Nikol'skiY, On spaces and algebras of Toeplitz matrices acting on £F, Sibirsk.
Mat. Zh. 7 (1966), 146-158 (in Russian).

[14] 8. Roch and B. Silbermann, Algebras of convolution operators and their image
in the Oalkin algebra, report R-Math-05/90, Karl-Weierstrass-Inst. f. Math., Berlin,
1990.

[15] R. Schneider, Integral equations with piecewise continuous coefficients in the LP
spaces with weight, J. Integral Equations 9 (1985), 135-152.

[16] I B. Simonenko, Some general guestions of the theory of the Riemann boundary
value problem, Math, USSR-Izv. 2 {1968), 1091-1099.

{17] 1. Spitkovsky, Singular integral operators with PC symbols on the spaces with
general weights, J. Punct. Anal. 105 (1992), 120-143.

[18] 8. B. Stechkin, On bilirear forms, Dokl. Akad. Nauk SSSR 71 (1950), 237-240
(in Russian}.

[19] J.-O.Strémbergand A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in
Math. 1381, Springer, Berlin, 1989,

Fakultat fiir Mathematik

TU Chemnitz

D-091.07 Chemnitz, Germany

E-mail: albrecht.boettcher@mathematik.tu-chemnitz.de
matthias. seybold@mathematik.tu-chemnitz.de

Received October 14, 19329 (4414)

icm

STUDIA MATHEMATICA 143 (2) (2000)

The stability of Markov operators on Polish spaces
by

TOMASZ SZAREK (Katowice)

Abstract. A sufficient condition for the asymptotic stability of Markov cperators
acting on measures defined on Polish spaces is presented.

1. Introduction. We study Markov operators defined on a Polish
space X. Our goal is to prove sufficient conditions for the asymptotic sta-
bility of such operators. The crucial point in proving stability is to show the
existence of an invariant measure. When Markov operators are defined on
a compact space, the proof of the existence goes as follows. First we con-
struct a positive, invariant functional defined on the space of all continuous
bounded functions f : X — R and then using the Riesz representation theo-
rem we define an invariant measure. This method was extended by A.. Lasota
and J. Yorke to the case when X is a locally compact and o-compact metric
space [8]. When X is a Polish space this idea breaks down, since a positive
functional may not correspond to a measure. Therefore we base on the con-
cept of tightness. The main idea taken from [8] is nonexpansiveness in the
Fortet-Mourier distance. It is known (for details see [1, 6, 7, 8, 9]) that a
broad spectrum of Markov processes do not increase the distance between
measures transported by the corresponding transition operators. For such
operators our results could be applied.

The organization of the paper is as follows. Section 2 contains some
notation from the theory of Markov operators. In Section 3 we give some
general conditions for asymptotic stability and discuss the condition for
nonexpansiveness of P.

2. Preliminaries. Let (X, p} be a Polish space, i.e. a separable, complete
metric space. Throughout this paper B(z,r)} stands for the open ball in X
with centre at x and radius r. For every set € C X we denote by diam &
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the diameter of C. For every C C X and r > 0 we denote by N'°(C, r} the
open r-neighbourhood of C, i.e.

NUC,r) = {z € X : 0(C,z) <7},
and by N (C,r) the closed r-neighbourhood of C, i.e.
N(Cr)={ze X :p(C,z) <7},

where p(C, 2) = inf{o(z,y) :y € C}.

By Mg, and M; we denote the sets of Borel measures (nonnegative,
o-additive) on X such that u(X) < oo for 4 € Mg, and pu(X) = 1 for
i € M;. The elements of M1 are called distributions.

We say that u€ Mg, is concentrated on a Borel set AC X if pu{X \ A)=0.
The set of all distributions concentrated on the Borel set A is denoted
by M#.

By Ce, € > 0, we denote the family of all closed sets ¢ C X for which
there exists a finite set {z1,...,2,} C X such that C C |Ji._; B(zs,¢).

As usual, B(X) stands for the space of all bounded Borel measurable

functions f : X — R, and C(X) is the subspace of all bounded continuous
functions. In both spaces the norm is

[ fllo = sup | f(=)|-
zEX
An operator P : Mg, — May, is called a Markov operator if it satisfies
the_following two conditions:
(i) positive linearity:
P(Arpr + dgpig) = A Ppy + AaPps

for Ay, A2 > 0 and uy, pe € Mgy,
(ii) preservation of the norm:

Pu(X) = p(X)  for y € M.

It is easy to prove that every Markov operator can be extended to
the space of signed measures

Meig = {4y — pg @ 1, 2 € Men}.
Namely for every v € Mg, v = py — g, we set
Py = Pp.',]_ I P/,Lg.

To simplify the notation we write

(2.1) (f,v) = { @) v(dz) for f € B(X), v € My,
3 :
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A Markov operator P is called a Feller operator if there is a linear oper-
ator U : C{X) — C(X) (dual to P) such that

(2.2) {Uf,w) = {f,Pu) for f e C(X), p€ Mpgn.

We may extend U to all bounded measurable (or nonnegative measur-
able) functions by setting

(2.3) Uf(z) = (f,Pb;) for fe B(X), z€X,

where §; € M is the point (Dirac) measure supported at z.
In the space My, we introduce the Fortet-Mourier norm (see [5])

vl = sup{|(f, )i : f € F,
where F C C(X) consists of the functions such that |f] < 1 and |f(z) —
fly)! < e{z,y). It is known that the convergence

(2.4) lim [[pn —pl| =0 for pn, e My
N300

is equivalent to the weak convergence of (fin)n>1 to ju (see [3, 4]).

A family of distributions (pn)rp1 is called tight if for every £ > 0 there
exists a compact set K C X such that u,(K) > 1—eforn e N

It is well known (see [2, 8]) that if the family of distributions (4n)n>1
is tight then there exists a subsequence of integers (mn)n>1 and a measure
My € My such that

Jim i, — g = 0.

A Markov operator P is called nonexpansive if
(2.5) [Pus — Pugll < |l — pal]  for paa, p2 € M.

Let P be a Markov operator. A measure p € Magy is called stationary
or invariant if Py = p, and P is called asymptotically stable if there exists
a stationary distribution i, such that

(2.6) ,}5_1:130 [Py — sl =0 for p€ M.
Clearly the distribution u, satisfying (2.6) is unique.

3. Asymptotic stability. The main aim of this part of the paper is
to extend the result proved by A. Lasota and J. Yorke (see [8]) concerning
Markov operators defined on locally compact and a-cqmpact metr}c spaces
to Polish spaces. In order to do it we need the following assumption for a

Markov operator P : Mgy — Mt
(A) For every & > 0 there is a Borel set A ¢ X with diam A < e and &~
number ¢ > 0 such that
1inn_1_'i°réfP",u(A) >a for p& Mi.
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We start with easy lemumas:
LEMMA 3.1, If ||p1 — || < &% for pa, pa € My and some € > 0 then
pi(NO(C,e)) 2 p2(C)— e for every Borel set C C X.
Proof. Fix a Borel set C ¢ X. Define f(z) = max(e — ¢(C, z),0). Since
feFand f(z) =0 for z g NO(C,e), while f(z) = ¢ for z € C, we have
epa(C) — epr(N(C€)) < [(Fo ) — (F, 2}l < Il — ol S 2,

and the assertion follows. m

LEMMA 3.2. Let P be o nonexpansive Markov operator. Suppose that
there exists a measure u € My such that for every € > 0 there is o set
C. € C. satisfying P*"u(Ce) > 1 —« for n € N. Then P has an invarient
distribution.

Proof. We first show that (P"u)n>1 is tight. Fix € > 0. Let Cy/or €
Ce/ar, k 2 1, be such that

P u(Crgn) 21— g/28 forneN.
Define K = [y Cr/ax- Observe that K is compact and

Pru(X \K) = Pl | J X\ Copae)
k=1

o0 oo g
< Pru(X\ C, < — =g forneN.

Set

_ _p+Pu+... +P
(3'1) ”Lﬂ._ n

By the above, the sequence (fi,)n>1 is tight. Hence there exists a subse-
quence of integers (my)n>1 and a distribution 7 such that 7, - T as
n — co. Since P is nonexpansive, we get P, — PE. From (3.1) it follows
that ||PT,,, — fim,|| — 0 as n — oo and consequently P =T. w

for n € N.

We are now in a position to prove the main result of our paper.

THEOREM 3.3. Let P be a nonexpansive Markov operator. Assume that
the condition (A) holds. Then P is asymptotically stable.

Proof. Asin the proof of Theorem 4.1 in [8], (A) gives
(3.2) Jm ([P (1 — pa)[ =0 for pa, pa € My

We proceed to show thiat for P there exists an invariant measure p, € M.

icm
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By Lemma 3.2 it is enough to prove that for every ¢ > 0 and g € M,
there exists Uy € Ce such that P*u(C.) > 1 —¢ for n € N. To do this fix

g>0and u € My. Set € =¢£%/16. Let o« > 0 and A C X be such that (A)
holds for €. If P"u(A) > /2, then

(3.3) Pru> -‘;-yn,
where vy, € Mf is of the form

Pru(BNA)
3.4 B) = ——2— L
Define

(3.5) §=sup{y 2 0:3C; 2 €Cepp limint P"u(Cerz) 2 7}
Let v > 0 and Cy 3 € Cgyg be such that 0 < § — v < /8 and
lim inf P u(Ceja) > 7.

We are now in a position to show that

(3.8) P"WN®(Cej2.e/2)) 2 1—¢/2 forn €N andre M,
Suppose that, on the contrary, for some vy € M{ and ng € N,
(3.7) Py (NO(Cpare/2)) < 1 — /2.

By the Ulam theorem, there exists a compact set X C X \ N(C.2,¢/2)
such that P"uy(K) > /2. Since P is nonexpansive, we have

[P — PMy|| < |jup — v|| < diam A < £°/16
for v € M§'. Now Lemma 3.1 shows that P (N?(K,e/4)) > /4. Putting

B = N(K,e/4) we get B € Cq/y and consequently BUC,; € C¢/2. Applying
(3.3) we see that

Pt (B) > %—PMV,,(B) > 285
for every sufficiently large n. Since B N C. /s =, we deduce that
lim int P (B U Cry) > limind P*u(B) +limint P"x(Cey2)
> v+ ae/8 >4,

which contradicts the definition of §. Thus (3.6) holds. Put C' = N (C./2,e/2)
and note that C € C,. '

We define by induction a sequence of integers (n)k>0 and two sequences
of distributions (tk k>0, (Ve )kz0- If b = 0 we set ng = 0 and po = 1p = 4. If
k> 1 and g1, k-1, Vk—1 are given we choose, according to (A), ng such
that

Py 1 (A) 2 of2
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and we define
_ P™up1(BNA)
B = = P i (A)

(3.8)

1 ni _e
(B) = 2 (s (B) - () ).
Observe that v, € M. Using (3.8) it is easy to verify by induction that

(3_9) P'ﬂ-1+-..+nkM - %Pn2+..,+nhyl e %(1 - %)Pns+,..+nk Ve

o a\*t a\*
+---"|-*2~(1—“2*) Vk*i-(l——z-) Lk
Let & € N be such that

(1-(1-a/2)")(1=~e/2)21=~e.
Since v; € M, i=1,..., k, and (3.6) holds, we have

Pn,U,(O) “>“ %Pn_nlb’l(C) + % (1 — E;_) Pn——-n-L--nsz(O‘)

k—1
oty (1 B %) promme T u(C)
>(1-(1-a/2")1-¢/2)21-¢

for n > my 4+ ...+ ng. By the Ulam theorem, we can find a compact set
K C X such that

Pru(KUC)>1—g forneN,
Since K UC € C;, Lemma 3.2 shows that P has an invariant distribution. =

The remaining part of this paper is devoted to nonexpansiveness. We
formulate a sufficient condition for the nonexpansiveness of P.

ProrosiTiON 3.4. Let P be a Markov operator. Suppose that P is con-
tinuous in the weak topology. Then P is a Feller operator. Moreover, if the
operator U : B(X) — B(X) given by (2.3) satisfies U(F) C F, then P is
nonepansive.

Proof. Let P be as in the statement of the proposition and let U :
B(X) — B(X) be given by (2.3). Obviously U is linear. Further, for every
sequence Tn — Tg, Tn,%Zo € X, we have d,, — 4, in the weak topol-
ogy. Since P is continuous, we obtain P4, — P4, in the weak topology.
Consequently, by the definition of I/ we have

Uf(zn) — Uf(zo) for f € C(X).

icm
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Thus we have verified that I'(C(X)) c C(X). According to the definition
of I we have the equality

{Uf,py={f,Pu)

for f € C(X) and p = §;. Since the linear combinations of point measures
are dense in Mg, (in the weak topology) and P is continuous, the equality
bolds for every p € Mgy. Since U(F) C F, we have

[Py = Ppol| = sup{(f, Pur— Pua) : f € F} = sup{(Uf, 1 —p2) : f € F}
< sup{(f, Pu1~ Pz} : f € F} = ||pa — pafl
for all iy, o € My, which completes the proof. w

Since the convergence in the Fortet-Mourier distance is equivalent to
the weak convergence, the asymptotic stability of 2 Markov operator acting
on measures defined on the Polish space (X, p) may be verified without the
precise knowledge of the metric p. An important role is played by the space
C(X) of all continuous functions. Following Lasota and Yorke we introduce
the definition of essentially nonexpansive Markov operators.

We say that a metric ¢’ is equivalent to g if the classes of bounded sets
and convergent sequences in both spaces (X, ¢) and (X, ¢’) are the same.
Obviously, if g and g’ are equivalent, the space (X, ¢’} is still a Polish space.

We say that a Markov operator P is essentially nonexponsive if there
exists a metric o' equivalent to ¢ such that P is nonexpansive in (X, o'}

Lasota and Yorke discuss precisely such cases (see [8]). Finally we may
reformulate our main result.

TuroREM 3.5. Let P be an essentially nonerpansive Markov operaior.
Suppose that the condition (A) holds. Then P is asymptotically stable.
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Functional equations in real-analytic functions
by

G. BELITSKI! and V. TKACHENKO (Beer-Sheva)

:Abstmct. The equation ¢(z) = g(z,¢(z)) in spaces of real-analytic functions is
considered, Connections between local and global aspects of its solvability are discussed.

1. Introduction. Given a real-analytic manifold X countable at infinity,
dim X = m, we consider an equation

(1) o(w) = g(x, p(F2))
with real-analytic mappings
F:X—-X, g:. X xR =R
and an unknown real-analytic vector function
w: X —= R

Our aim is to discuss solvability conditions for (1).

The above problem has “local” and “global” aspects. The former means
the solvability in a neighborhood of a given point z¢ € X, while the latter
deals with the question of whether (1) has a global solution ¢(z), © € X, if

it is solvable in o neighborhood of every point mg € X.
It turns out that at least in the case of a linear equation

(2) (T} () = p(w) — A(z)e(Fz) = 7(2)
a collection. of local solutions may be used to construct a cocycle “obstruct-
ing” global solvability. This situation is similar to the Stokes phenomena
and Fealle- Voronin modules arising in classification problems of dynamical
systems (see {I]}.

The construction of the obstructing cocycle and its applications are the
main object of the present paper (see Theorem 3.1 and results of Sections 4
and 5).
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