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Banach principle in the space of T-measurable operators
by

MICHAEL GOLDSTEIN (Toronto, ON) and
SEMYON LITVINOV (Fargo, ND)

Abstract. We establish a non-commutative analog of the classical Banach Principle
on the almost everywhere convergence of sequences of measurable functions. The result, is
stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measur-
able (with respect to a trace} operators affiliated with a semifinite von Neumann algebra.
Then we discuss possible applications of this result.

Introduction. The study of measurable operators associated with a von
Neumann algebra (vINA) and different types of the almost everywhere con-
vergence for sequences of measurable operators goes back to the celebrated
paper of I. Segal [Se]. Since then this branch of the theory of operator al-
gebras has been explored in many different directions. One of them is the
so-called non-commutative ergodic theory, which treats the almost every-
where (or norm) convergence of the Cesiro averages along the trajectory
(under some kind of contraction in a non-commutative LP-space) of an op-
erator in LP. This study was initiated by a number of aunthors, among whom
we mention Lance [La] and Yeadon [Ye]. In the classical ergodic theory, one
of the most powerful tools in dealing with the almost everywhere convergence
of ergodic averages is the well-known Banach Principle on the convergence of
sequences of measurable functions generated by a sequence of linear maps in
an LP-gpace. This principle is often applied in proofs concerning the almost
everywhere convergence of weighted averages, averages along subsequences,
moving averages, etc.

In this paper, using the notion of r-measurable operator, we establish a
non-commutative analog of the Banach Principle. Since we do not assume
the finiteness of the trace, the result is stated for the quasi-uniform con-
vergence. The proof of the main result of this paper, Theorem 2, can be
easily modified for different types of the “almost everywhere” convergences
in vNA, in particular, for the bilateral almost uniform (b.a.u.) convergence
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(Theorem 5). In this form, due to the presence of fundamental results on
b.a.1. convergence of the ergodic averages of integrable operators [Ye], the
non-commutative Banach Principle can be utilized to prove some subse-
quential and weighted ergodic theorems in the vNA setting. Note that one
of the most complete accounts on the almost uniform convergence theorems
in vNA’s is presented in [Jal.

1. Preliminaries. Let M be a von Neumann algebra acting on a Hilbert
space H, and 7 a faithful semifinite normal trace on M. Let B(H) be the
algebra. of all bounded linear operators in H, and let || - [l {or || - [|) be
the operator norm in B{H). By the weak topology in B(H) we mean the
topology defined through the system {(z&,n) : £,m € H} of seminorms on
B(H), where (-,-) is the inner product generated by || - ||. Tn what follows,
we use the letter w to denote this topology.

Algebra of measurable operators. A closed operator @ in H with the
domain D, is said to be affiliated with M if D, C D, and y'z C zy’ for
every ¥ from the commutant M’ = {y’ € B(H): oy’ = y'c for all z € M}
of M.

Denote by P{M) the complete lattice of all projections in M. A densely
defined closed operator z affiliated with M is called r-measurable if for each
£ > 0 there exists e € P(M) such that eH C D, and 7(et) < e ([Ne),
[FK!). Note that if  ig 7-measurable and eH C D, for some ¢ € P(M),
then re € M.

If z,y are T-measurable operators, then z + y, 2y and z* are densely
defined and preclosed. Moreover, the closures (z 4 %)™, (zy)~ and z* are
again T-measurable, and the set M of all T-measurable operators is a *-
algebra with respect to these operations.

The measure topology on M can be defined by the following system of
neighborhoods of zero: for e > 0, § > 0,

Vi{e,8) = {z € M : ||ze]| < & for some e € P(M) with (e*) < §}.
One can show (see [FK], Lemmas 3.1 and 3.4) that V (e, d) is closed for all
£ > 0,6 > 0. It is known that M is a complete topological *-algebra, and
M is dense in it [Ne).

Some general facts
LeMMA 1 (see, for example, [BR]). If by, b € My and by — b weakly,
then
7(b) < liminf7(by).
o

The next lemma follows immediately from the formula

lz| = sup |(z¢,m)|, =€ B(H)

fgl=flnll=1
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LEMMA 2. If a net {yg} in M w-converges to somey € M, then
Iyl < timinf ysf).
LEMMA 3. Let be M,0<b< I, and f be the spectral projection of b
corresponding to the interval [1/2,1]. Then
(a) 7(f*) < 27(1 —b);
(b) there ezists b~ € M with {[b~ || < 2 such that f =bb~.
Proof. (a) By the definition of f, we have
(I~b)f*+ =35t
which implies the inequality since
(I~b)—(T-b)f* =
Part (b) is obvious. m

(I-b)f = f(I-b)f>0.

COROLLARY 1. The measure topology in M can also be defined by the
system

W(e, d)={zcM: |zbl| <6 for somebe M, 0<b<]I,
with 7(I — b) < e}.

Proof. Since, given ¢ > 0, & > 0, one has V(e,8) € W{e,4), it is

enough to show that
W =W(e/2,d/2) C V(e,6).

Indeed, if x € W, then, for some b < I in M. such that 7(I —b) < &/2, we
have {|xzb|| < §/2. Let f be the spectral projection of b corresponding to the
interval [1/2,1]. Then, by Lemma 3, 7(f1) < e and, if 5~ € M, ||p7|| < 2,
is such that f = bb™, then
lzfil = l=bb~[ < 2[|wb]| < 6,
ie.zeV(e,d). m :

2. Banach Principle. We begin with presenting a variant of the clas-
sical Banach Principle (see, for example, [DS], [Gal, [BJ]).

THEOREM 1. Let (S, Z,m) be o ¢-finite measure space, X be a Banach
gpace, and {a,} o sequence of continuous linear maps from X to the space
of all measurable functions on S satisfying the condition

for every x € X, sup{lan(z)(s)|} < o0 almost everywhere (a.e.)
T

and such that a,(z) converges a.e. for every x in a dense subset of X. Then
this convergence takes place for every v € X.

A sequence {a,} in M is said to be convergent to some @ € M almost
uniformily (a.n.) if for every € > 0 there exists p € P(M) with 7(p1) < £ such
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that || (an —@)p]| — 0 as n — co. A sequence {an} in M convergesto G € M
quasi-uniformly (qav) if for every non-zero p € P(M) there is ¢ € P(M)
such that 0 # g < p and ||(a, — @)g|| — 0. For properties of different types
of convergence in von Neumann algebras each of which, in the commutative
case with finite measure, is equivalent to the a.e. convergence, see [Pal. It is
known that the following non-commutative analog of Riesz’s theorem holds
[Se]. Since, in [Se], it was stated in a slightly different form, we provide a
proof.

PROPOSITION 1. If yn — 0 in M with respect to the measure topology,
then Yn, — 0 a.u. for some {yn,} C {yn}-

Proof. Sincey, —+ 0 in the measure topology, given & > 0 and a positive
integer k, there exists a sequence {eni} C P(M) and a number N (k) such
that

m(ely,) <e/2F ¥n and  ||ynenxl| < 1/k ¥n > N{k).
Therefore, for every k, one can find ny such that, if we set ey = en g, We

have N .
Tleg) < /2" and {yn.ex] < 1/k.

If we put € = AL, e, then 7(et) < ¢ and, moreover, |yn,ell < 1/k for

all &, which means that y,, — 0 au. m

The following is a non-commutative generalization of the Banach Prin-
ciple.

THROREM 2. Let M be o won Newmann algebra with a normal faithful
semifinite trace T, and let M be the topological *-algebra of oll T-measurable
operators. Let X be a Banach space, and a,, : X — M a sequence of con-
tnuous linear maps satisfying the condition

(i} for all x € X and non-zero p € P(M) there is an operator b € M,
0 #£ b < p, such thot

sup{[ian(@)bl]} < oo.
T
If, for every z from a dense subset Xo C X,
(i) am(z) ~ an(z) — 0 q.u.,
then (if) holds on all of X.
Before we prove the result let us make some remarks.

REMARK 1. If 7 is finite, then the q.u. and a.u. convergence are equiva-
lent, while the condition (i) is equivalent to

(lo) forallz € X and2 >0 thereisbe M,0<b < I, with (I —b) < ¢
and 51p, {an (@)b]} < o0.
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REMARK 2. If 7 is semifinite, then condition (i) is equivalent to

(ip) for all z € X and p € P(M) with 7(p) < co and & > 0 there is
0 < b < p satisfying 7(p — b) < ¢ such that sup,,{{lan(z)b]|} < oo.

REMARK 3. For an arbitrary {y,} C M the convergence y, — 0 q.u. is
equivalent to the following one:

(iia) for e € P(M) with 7(e) < oo, &€ > 0, § > 0, there exists g € P(M)
with ¢ < e and (e — g) < & such that ||y.g|| < 6 for any n > N{e, ¢, §).

Proof of Theorem 2. By Remark 3, for € X and p € P(M) with
0 < 7(p) < o0, &> 0,8 >0, it is enough to construct a projection ¢ < p
such that v(p — ¢) < & and

{am(z) — an(z))ql < &

for any m,n > N(g, 4, p).

For every pair L and k of natural numbers define the set

Xpp={r € X :sup{|lan{z)b||} £ Lforsome 0 <b<p

with 7(p — b) < e = 2/2¥+%}.
We shall show that X 5 is closed. Let 2, — z in X and z,, € X%
for every m. There exista a sequence {b,} C M with 0 < &b, < p and
T(p ~ bm) < & such that
Ha'ﬂ(mm)bmn S L

for every m, n. Fix n. Since the unit ball in M is w-compact, for some
0 <b < pand a subnet {b,} C {bm}, bo — b weakly. By Lemma 1,
we have 7(p — b) < £, therefore it remains to show that ||a,(z)b|| < L.
Since @n(Tm) — an(x) in the measure topology, by Proposition 1, taking
into account the continuity of the *-operation with respect to the measure
topology, we can assume, without loss of generality, that

an(m) — an(z)
in the following sense: for every o > 0, one can find A € P(M) with 7(ht)

< o such that
[A{on{zm) — an(z))] — 0
as m — 0. In particular, for a given j, there exists h; € P(M) with fr(hi-L)

< 1/ such that
1 an{zm)l = hsan ()]

as m — oco. Therefore, without loss of generality, assume that the double-
indexed net
Fiin (Zm )ba — hjan(x)b  weakly
for every j, and then, by Lemma 2,
[|hjan ()bl < limsu)p |jan (Zm)ball < I

m,o



38 M. Geldstein and 8. Litvinov

Taking now § — oo, we get h; — I weakly, hence h;an(2)b — an(z)b weakly,
and then, applying Lemma 2 again,

l|lan (2)b]| < limsup ||hjan(z)b] < L.
i

By Remark 2, we have X = | J7__, X1k, therefore, using the Baire category
theorem, we find a number Ly, zx € X and &g > 0 such that for every
z € X satisfying ||z — zx||x < Jk there exists an operator 0 < b, x < p with
T(p — bz g) < £/2%+2 for which

Sup{“an(m)bm,k’!} < Lk-
T
Let f; i be the spectral projection of b, x in a von Neumann algebra pMp

corresponding to the interval [1/2,1]. Then Lemma 3 implies 7(p — fux)
< e/2%t? and

sgp{l[an(w)fm,kll} < 2Lg.

If |o — zg|lx < 6k and go g = fop A fop b, then 7(p — go k) < £/28! and
St;p{llan(:v — ) ek} < 4L
This means that if v, = & /(4Lx), then ||z]x < yx entails the existence of
9z € P(M), 0 < gz <p, with 7(p ~ gz,) < &/2 such that
sup{|lan(2)gxkll} < 1.

Since X is dense in X, for every k it is possible to find z, € X with
llzel|x < vk for which
z+ zp/k € Xo.
If yp = zx/k and g = AP 1 g2k, then g < p, 7(p — g) < £/2. Moreover,
lan{yk)gll — 0 uniformly in n.
Therefore there exists a number K such that ¥ > K would imply
llan(ye)gll < 6/3

for all n. Fix any & > K. Taking into account that z + y, € Xp, by (ii),

one may find ¢ € P(M), ¢ < g, with 7(g — ¢) < £/2 and then a number
N = N(q,¢,8) such that

[(am (@ + ) — an(z +yx))all < 6/3
for m,n > N. Finally, we have ¢ < p, 7(p — ¢) < £ and
[(@m(z) — an())ql

< (am(@ + ) ~ an(z +yi))all + lamlye)ll + fanlzr)al < &
forallmn>N.
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REMARK. As we already mentioned, the sets V (g, §) are closed. On the

other hand, one can see that the arguments of [FK] do not prove the closed-
ness of the set

X}J,k = {z € X : sup{||a,(z)e||} € L for some e € P(M),e < p,
™

with 7(p—e) < g }-
That is the reason we introduce X, 4. '

3. Applications. As a natural application of the non-commutative Ba-
nach Principle we present an alternative ending of proof of the well-known
result of Yeadon [Ye] on “almost everywhere” convergence of ergodic aver-
ages in the non-commutative L*-space.

Let M be a vNA with a faithful normal semifinite trace =. Let Ll =
LY(M, T) be the space of all 7-integrable operators (see, for example, [Se],
[Ta]). A positive linear map o : L' — L' will be called an absolute con-
traction if a(I) < I and 7(a(z)) < 7(z) for every z > 0. Note that, in the
commutative case, an operator of such a type is called a Dunford-Schwartz
operator. If  is an absolute contraction in L', then, as can be seen in [Ye],
lle(z)]lp < ||lz||p for each 2 = z* € J and all 1 < p < oo. Moreover, there
exist unigue continuous extensions o : LP — LP for all 1 < p < oo and a
unique ultra~weakly continuous extension o : M — M. Therefore, for every
x € LP and any positive integer k, one has

le*(@)lp < 2l2|p-
Define

n—1
An(z) = %Eak(w), ze M.
k=0

A sequence {a,} C M is said to be biloterally almost uniformly (b.a.u.)
convergent to some @ € M if for every ¢ > 0 there exists p € P(M) with
r{p+) < € such that ||p(an —&)pl| — 0.

In [Ye], the following form of non-commutative individual ergodic theo-
rem was proven.

THEOREM 3. If a is an absolute contraction in L' = L*(M, 1), then, for
every « € L', the averages :

n—1
1
An(m) = E :ak(m)
7
k=0
converge b.a.u. in L*.

The key role in the proof of Theorem 3 is played by the so-called maximal
ergodic theorem:
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THEOREM 4 [Ye]. Let o be an absolute contraction in L*. Then for every
x € L' and & > 0 there exists e € P(M) with (et} < deY||z||1 such that
lleAn (z)ell < 4e for every n.

Now, we shall present a non-commutative varlant of the Banach Prin-
ciple adapted to the b.a.u. convergence (the proof is analogous to that of
Theorem 2; see [LM]).

THEOREM 5. Let M be o vNA with the unit I and o foithful normal
semifinite frace 7. Let M be the topological *-algebra of all T-measurable
operators. For a Banach space X, assume that o, : X — M is o sequence
of continuous linear maps satisfying the condition

(i) for every & € X and £ > 0, it is possible to find an operator b € M,
0<b < I, with (I —b) <& such that sup,, ||ban(z)b| < oo.

If, for every x from a dense subset Xy C X,
(i) an(z) converges b.a.u. in M,
then (i} holds on all of X.

‘We apply this theorem together with Theorem 4 to reprove Theorem 3.
First of all, note that {4,.(-)} is a sequence of positive linear maps from a
Banach space X = L' to L' C M which are continuous under the norm |- |5,
hence as maps from L' to M. The condition (i) of Theorem 5 is satisfied
via Theorem 4, 80 it remains to find a dense subset Xy in L! on which the
b.a.u. convergence would take place. Such a set can be easily found via a
standard argument (see [LM]). Consequently, by Theorem 5, we obtain the
b.a.u. convergence of A,(z) for every z € L1.

For other applications of Theorems 3-5 we refer the reader to [LM]
and [Li}.
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