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Weakly mixing but not mixing quasi-Markovian processes
by

ZBIGNIEW 5. KOWALSKI (Wroctaw)

Abstract. Let (f, o) be the process given by an endomorphism f and by a finite par-
tition a = {A;}{_, of a Lebesgue space. Let E(f, &) be the class of densities of absclutely
continuous invariant measures for skew products with the base (f, ). We say that (f, o)
is quasi-Markovian if

E(f,a)C{g‘- \/ suppg:OAixBi}.

{Bidia. =1

We show that there exists a quasi-Markovian process which is weakly mixing but not
mixing. As a by-product we deduce that the set of all coboundaries which are measurable
with respect to the “chequer-wise” partition for o x 9, where ¢ is a Bernoulli shift and 5
is & weakly mixing automorphism, consists of constants.

0. Introduction. The following characterization of processes by using
skew products has been introduced in [Ko]. The processes considered are
given by pairs (f, @), where f is a positively non-singular measure-preserving
map of a Lebesgue probability space (X, A,q) and o = {A;},_, is a finite
one-sided generator for f. Let (Y,8, ) be another Lebesgue probability
space and let {T}}{.; be a family of positively and negatively non-singular
maps of Y into Y. The process (f, @) and the family {T}}{_, define the skew
product map

(1) T(may) = (f(m)sTa.(m)(y))n
where ¢ : X — {L,...,s} is determined by a(x) = i & z € A;. Let
E(f,a) = {g : there exists a Lebesgue probability space (Y,B, ) and a
family of positively and negatively non-singular maps {T;};_, such that g is
the density of an absolutely continuous invariant measure (a.c.im.) under
the skew product as in (1)}.

We also denote by o the field of unions of elements of o. It has been
shown [Ko] that the process (f, &) is
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(i) Bernoulli iff for every g € E(f, o), g is measurable with respect to B,
(if) Markovian iff for every g € E(f, o), g is measurable with respect to
a x B.

Moreover, the class of quasi-Markovian processes has been introduced as
a generalization of the Markovian class.

DEFINITION. We say that (f, @) is a guasi-Markovien process (q.m.p.)
if for every g € E(f,«) the set {g > 0} is measurable with respect to
ax B.

The description of basic properties of q.m.p. may be found in [Ko], The
class of q.m.p. contains the Lasota—Yorke and Misiurewicz type maps (in-
troduced in [LY] and [M] respectively) with Markovian partitions [Ko] as
well as mixing Gibbs—Markov maps [AD]. The above examples have the fol-
lowing property: total ergodicity of f implies exactness. In [KK] it has been
observed that a totally ergodic q.m.p. is weakly mixing. In [KS] a weakly
mixing but not mixing process is considered which satisfies some conditions
weaker than the quasi-Markovian property. In this paper we show that some
modification of the above process is q.m.p. Therefore there exists a weakly
mixing but not mixing g.m.p. The above result is based on Bose’s example
[Bo2] and the following two facts:

THEOREM 2 (see Section 2). Let 5 be a weokly mizing automorphism,
with finite entropy, of the space (X, A,p). Let R = {Ryp,...,Ri_1} be the
generating partition for S. Let (2,G,m,c) be a one-sided Bernoulli shift
with independent generator @ = {Qo, ..., Qi—1}. Take the product dynamical
system ‘

(2 x X,6xA,mxp,ox8)
and define o measurable partition P = {Pp,...,P_1} of 2 x X as follows:
Pi= ) QxR j=0..,1-1
s4t=7 (mod!)

Then for every g € E(o x S, P) the set {g > 0} is measurable with respect
to B.

CoNecLustoN 1. If the partition P is o one-sided generator for ¢ x S,
then (o x §,P) is g.m.p. .

The next conclusions are related to the ergodic properties of skew prod-
uct maps. ‘

CoONCLUSION 2 (see Theorem 8 of [Ko|). Let h € L?(m x p) and let
g: 2 xX — 5 where S ={z:|2| =1, 2 € C} and g is o P-measurable
Junction. Then h(o x S) == gh a.e. iff h = constant.
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By Conclusion 2 we see that g is a circle-valued P-measurable cobound-
ary of o x 5 iff g = constant. Here ¢ is a one-sided or a two-sided Bernoulli
shift.

For the general discussion of coboundaries see [Ba).

CONCLUSION 3 (see Theorems 2 of [Ko] and 2 of [KK]). If T is a skew
product as in (1) for f = o x S and o =P and p is a.c.i.m. for T, then for
every T-eigenfunction H € Li{p) we have

-1
Hlp, (w,z,y) = Z 1p,(w,z}g:(y) ™ X px p-ae.
Here D, = suppu. If we assume additionally that T;, ¢ = 0,...,1 — 1,
are one-one and bimeasurable and p ~ m X p X g, then H{w, z,y} = ¢{v)
mXDX p-0.€

1. An example of a weakly mixing but not mixing q.m.p. We
start with a one-sided version of Bose's d > § property (for the definition of
the d > § property see [Bo2]).

_ DermiarioN. Let § > 0. We say that the process (X, A, p, S, R) has the
dt > § property if there is an X’ C X, p(X') = 1, such that if z,y € X',
z #£ y, then
nﬁ d(zl,y3) > 6.
Here )
d{zd, ¥l = - card{i € [0,n) : =; # ¥i}-
and z§°,y$° are the 5-R names of z and y, respectively.

Bose [Bo2] has shown the d > § property for Chacén’s automorphism.
We prove the dt > § property for Chacén’s automorphism So constructed by
using five cuts. We construct Sy by using the cutting and stacking method,
in the following terms:

Iy = [0,4/5] = Cb,
Chi1 = S5,1Cn * 85,20 * 85,3Cn * 85,4Cn * Int1 * 95,500,

where {I,}32, is the partition of [4/5,1] into intervals such that AMIn) =
4/5™1 for n = 1,2... Let us explain the definition of Cni1. The column
Chr1 is obtained as follows. We decompose the column ), into five dis-
joint subcolumns S5,1Ch,. .., 85,50 by partitioning the base of (), into
five intervals of the same length. Sp maps the top of Ss,:;C, linearly onto
the base of S5441Cn for i = 1,2,3, and the top of S5 4Cr onto fny1, next
I.+1 onto the base of 85,5C,. In other words, we stack the subcolumns
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.5'5,10,1,...,S5,4Cn,In+1,.S'5,50n to form the column C,41. For a descrip-
tion of this method, see [Fr].
According to the above construction we obtain the n-blocks

By=0, Br1=B,®B,®B,@B,®1Q B,.

Here @ denotes the concatenation of blocks., The system of n-blocks deter-
mines the set X C {0,1}% and the measure p which is invariant under the
shift o. The dynamical systems (I, ), Sp) and (X, 4, ) are isomorphic. This
isomorphism is obtained by using the two-sided generator R = {ly, I§} for
coding elements of I. Let us denote by C}, the union of the stack C.

REMARK 1. The entropy of Sy being zero, we conclude that {Iy, I§} is
a one-sided generator for Sy.

LEMMA 1. There exists o set Xo C I of full measure such that for every
pair x # y € Xo and for every ng there exists n > ng such that

4
{z, 5} € | (S5.4Cn)".
k=1
Proof By the definition of C, there exists ny such that for every n >
n1, {z,y} < C.. Consider a pair (z,y) for which the conclusion of the
lemma does not hold. Then there exists ng > n1 such that for every n > ny,
z € (85,5C,) ory € (S55C,) . Hence z or y belongs to the set

n—oo 1}

4= {"”  Em > cardfk <n o€ (55,0)) 2 é}

Fagr 1. Let J be a union of levels in §55C,. Then

)\(J N ﬂ (Ss,an,ﬂ)’) =5""XJ) for any sequencen < ny < ... < My
k=1

Proof. This is a consequence of the following observation. If J is a
union of levels in (S55Cy) and I > n, then J is a union of levels in C; and
therefore A(J M (S5,5Cr)) = 5~1A(J).

Let 7 be a real such that » < 271 and 57 < r(1 ~ r)1/""1, As usual we
denote by [z] the integer part of . For a natural number n we denote by
H,, the set of [rn]-element subsets of {1,...,n}. Let 4, =1, {S5,5C;)’ for
8 € Hy,. By the definition of A we have

AcNU U A
k nzkscH,
Now, we will estimate the measure of A. By the Stirling formula we have
card H, < 2n[nr](1—r))"*2((r — 1/n)(1 — pyr/Inrl=1y=lnr]

L
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There exists ky such that for n > kg,
5 =(r—1/m(1—-r)PI15 51 and (2rfnr](l — )2 < 1.
By Fact 1, M{U,ep, As) <81 for n > kg. Consequently,

}\(A) < iénr—l —

n=Fk

for k > kp and hence A{A) = 0. n

REMARK 2. We use the 5-fold Chacén automorphism instead of the
classical 3-fold construction, since there does not exist any 0 < r < 27" such
that 31 < r(1 — r)*/7%, The above is necessary in the proof of Lemma 1.

5kr—1
1-47

Now, we recall some notions from [Bo2l. We say that By, appears af ip
meeXif m:;g”“_l = B,. Given two n-blocks B, (z) and B, (y) appearing
at 4g in > and at jo in y=,, respectively, we say they overlap if

'iﬂ_bn+l§7:0£j0+bn—l-

Here b, denotes the length of B,. We will use two copies of By, B, and
B,,, with B, lying above B,. We enumerate five copies of B,_; inside B,
starting from the left as Bil_)l, . .,B,(f_)_l. Finally, for given two copies B,

and B,,, we denote by d{Bn, San) the distance measured over the overlap
of B, and B,, shifted j indices to the right relative to Ba.

LEMMA 2. Let B= B, (n > 1). Then

(a) d(B,SiB) > 1/22 if 1 < < $bn.

(b) If d(B,SiB) < 1/22, then d(B, S5 B) > 3/10 where we allow
i=0,1,...,bn. o

(c) If j=bg or j=by+1 for some k < n, then d(B, S}B) > 3/40.

The proof of Lemma 2 is similar to the proof of Lemma 4.4 of {Bo2]
and it is by induction using the definition of By1. The set of indices j, ie.
{1,...,2b,}, is divided into 7 parts in the proof of Lemma 4.4 of [Bo2] and
every part is considered separately. Since the set of indices 7 is {1,...,4bn}
in the case of Lemma, 2, we divide it into 14 parts. This is the main difference
between the proof of Lemma 2 and Lemma 4.4 of [Bo2].

‘We say that an n-block in © covers 2o if there exist np,m, np = 0 < m,
such that =7} = B,.

TurorEM 1. The process (So, R) satisfies d+ > 1/220.

Proof Let ¢ # y € Xo be fixed. We may assume Ty # o for this we
can replace @,y by Sz, Sky for some & > 0 (Remark 1). By Lemma 1 there
exists a sequence {n } such that By, (z) and By, (y) cover zp and yo in such

a manner that 1® B,(i)_l(a:‘) and 1 @)B,,(;?_1 (y) stay on the right with respect
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to ¢ and yg, respectively. Now, by using a similar argument to the proof of
Lemma 4.5 of [Bo2] we consider two cases.

Casg 1. Yf B,, () and B, (y) are shifted by one index with respect to
each other, then _ :
Aag™ ™) > 3/50,
by Lemma 2(b). Here Ny = by, — 1.
Case 2. If By, (z) and B, (y) appear shifted by more than one index
relative to each other, then
d(zy*, yg™) > 1/220,
by Lemma 2(a). Here Ni = 2by,, . w

Let o¢ be a (659/660, 1/660)-1-sided Bernoulli shift. For convenience we
define o as a piecewise linear transformation of I as follows:

S8w for w € Qo = [0, 821,
oolw) = {GGOw — 659 forwe Q= [82,1].
Let us form the product dynamical system
(IxI,Ax A XX A o9 % So)
and define a measurable partition P = {Pp, P} of I x I as follows:
Po=QoxLhiu@xIj, Pi=QyxIju@ x I
LEMMA 3. The partition P is a one-sided generator for oo x Sa.

Proof By using Remark 1 and Theorem 1 and by a similar argument
to the proof of Lemma 3.3 of [Bo2] we get the desired conclusion.

CoROLLARY 4. The process (oo % So,P) is isomorphic to the process
(g,cx) where g : I — I preserves A and has the following properties: o =
{[0,e1],[a1,1]} = {Jo, J1} for some a1 € (0,1) and

(1) g; = g|Ji fer i = 0,1 are continuous and increasing on J;,

(2) 9(Ji) = [0,1] for i = 0,1,

(3)gi =26 >1foralmostallz € J;, 1=10,1,

(4) g is weokly mizing but not mizing.

We get the above by using the argument from [Bol].

By Conclusions 1, 4 and Lemma 3 we get

CoNCLUSION 5. The process (g,¢) i3 g.m.p.

2. Proof of Theorem 2. Let S be a weakly mixing automorphism,
with finite entropy, of the space (X, A,p). Let R = {Rg, Ry,...,Ri—1} be
the generating partition for S. Let (£2,G, m, o) be a one-sided Bernoulli shift
with independent generator @ = {Qo, @1,...,Qi-1}.
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Take the product dynamical system
2xX,Gx Amxp,oxS8)
and define a measurable partition P = {Py, Py, ..., P1} of 2x X as follows:

Pi= |J QixRy j=0,1,..,01-1
s+t=j (mad )
We will assume without loss of generality that | = 2, ¢ is a piecewise linear
transformation of I, S is an automorphism of I and the invariant measure
is the Lebesgue measure A, Consider the skew product transformation

T(wv z, y) = (0’(&)),5(:’:), Ta(u,m)(y))

related to the process (¢ x §,P). Without loss of generality we may also
assume that (Y,B,p) = (I, A,v) where v is a completed Borel measure
on I. Note that the results obtained in Section 3 of [KS] can be generalized,
without changes in the proof, to ¢ x § defined as above. Therefore any
a.c.im. for T is a product measure of the form A % p and any T-invariant
set with respect to A X p has the form 7 x A for some 4 € A x 4. Let
g be the density of a.c.im. for T. Then g = ¢(z,y). Therefore {g > 0} =
IxD. AsT(I x D) =1Ix D we obtain § x T3(D) C D for i = 0,1. Let
A % g be the invariant measure for T with the given density g. Obviously
AX ullxDadxAxwvll x D, Therefore T|I x D is A x A x v-recurrent.
For 3 = (i1,...,i%) € {0,1}* we set Tt = T}, o ... o T3,. Now, if A C D
and A x ¥(A) > 0 then for a.e. {z,y) € 4, there exists a sequence (n;) and
ik = (i1, .., 0y, ) such that (S™*{z),T3, (y)) € A for k = 1,2,... Moreover

N-1

. 1 ' _ o L %
A}l_ﬂnm —Ncard{k: i <N} = ]}1_1'5100 7 kz=0 1rcal(T*(w, z,9))
= B(lrxa | (A% AX Ainydaxp(w, z,9) = B(14 | D)u(z,y) A x v-ae.

Here
D={AcAxA:ACDand T(I x A) =1 x A}.

By T-invariance of the set I x {(z,y) € D : B(14|D)u(z,y) = 0}, we have
E(141D)u(z,y) >0  Axv-ae
Let By ={z: (z,y)e F}for FE€c Ax Aandy €Y.

LeMMA 4. Let A X v(E) > 0 for some E € Ax A and let v(C) > 0
for some C € A. Then for every ¢ > 0 there exists C; with v(C;) < & and
ve > 0 such that if y,z € C — C. and |y — 2| < 7= then A(By A B;) < 22,

Proof. For every € > 0 there exists a closed set F; such that Ax v(F.) >

" 1—¢? and 15| F; is continuous (by the Lusin theorem). Therefore there exists
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~e > 0 such that
(2) i |ly— 2| < e and (2,y), (z, %) € Fr then 15(z,y) = 1p(z, 2).
Let Cp = {y: A(F,) <1—¢c}. Here F, = {z: (z,9) € F.}. We have
A% u(F) = | MF,) dv = ( |+ §)ME,)
Y c. g
< (L—ew(C) +1—v(Ce) =1~ ev(C).
From A x v(F) > 1 — &2, we obtain ¥(C;) < €. Hence A(Fg,) > 1 —¢ for

y € C¢. Therefore A(F;, NF,) > 1-2cfory,z € C¢. Let y,z € C—C; and
- z| < 9¥s. Then

)\(Ey/_\.Ez)=( i+
FeyNFe,  (FeyNFe,)®

= S 1g(z,y) — 1p(z, 2)| dA(z) < 2
(FeyNFa,)e

) L5(s,9) - L(e,2)| d\(a)

by (2). =

Before the proof of Theorem 2 let us present its main idea. We obtain
D =1 x B for some B E A by showing that, for every 0 < § < 1 and
C ={y:6 < ADy) <1—20}, v(C) = 0. Then we use the recurrence
property of the family {S x T i }i=o,1 on D and the weak mixing property of
S to show that {D,}yec is a pairwise independent family of sets. By using
Lemma 4 we next get v(C) = 0.

Proof of Theorem 2. We show that there exists B € A such that D =
I x B. Consider two measurable (by the Fubini theorem) functions f(y,2) =
MDy N D,) and h(y) = A(Dy). Let the closed set G correspond to the
function f by the Lusin theorem. There exists a finite covering {In X Jo}5_;
of G, where I,,.J,, are intervals, such that if (y, 2}, (y1,21) € In X Jn N G,
then |f(y, 2) — f(y1, 21)| < e. Similarly, the set H, and the covering {T Y
correspond to h. Here the intervals {J,}£_, are chosen uniformly for both
purposes. Let

A=Dn(Ix (B |
yel,N(C—C)
where C. is the set from Lemma 4 for E = D and C = {y: § < A(Dy) <
1 — 8} for some & > 0. Assume that A(L,) < v, n = 1,..., k. If Ax
v(A,) > 0 then for a.e. (z,2z) € A, there exists a sequence (ng) such that
(87 (), T3, (2)) € Ap fork = 1,2,... Hence, for ae. 2 € H:NG:, N(C — C)
N Jn, Tz (2) € H. NG,y N{C — Cs) N Jy for some sequence (i)} and yi €

Ge, NIn N (0~ C)) ).
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LN(C—-C),k=1,2,... (as AM(4,,) > 0). Consequently,
(3) [F (¥ 2) = flue T (2) <&, k=12,...
On the other hand
(4} |fyn, T3, (2)) — Fy, T3, (2))]
= [A(Dy, N DT;,G z)) —~AMDyN DT;k(z])l <MDy, A Dy) < 2¢,

by Lemma 4. Since § x ;D € D for ¢ = 0,1, we have §D, C Dy
for ¢ = 0,1 and consequently §™D, C DT?k (z)» The fact that S preserves
A implies A(D;) < A(Dry(y)) for i = 0,1. Let @, = limp—oo h(T3, (2})- As
T;, (2) € H; N J, we have a; — h(z) < e. Let us estimate

[f(y, 2} = A(Dy N 8™ D))
< f Y, 2) — Fy, Ty, ()| + [A(Dy N Dy ()
<3+ )\(DTgk (2) JAY Snsz) < 4e.
The last inequality holds by (3), (4) and by
A(Dzy (zy AS™D,) = /\(DT?k(zJ —5"D,)<a, —h(z) <e.

— A(D, N8™D,)|

Now, as S is weakly mixing and limpy s ~_,%,- card{k : ng, < N} > 0, without
loss of generality we can assume that

lim A(Dy N ™ D) = A(Dy)A(D:)
(see [Wa)). Finally, we obtain
| A(Dy N D;) — A(Dy)A(D;) € 48 v X v-a.e.
on the set G, N (C — C.) x (C — C;) N H,. Taking ¢ — 0 we get
A(DyND,) =ADy)A(D;}) ae.onCxC.
By the last equality and the definition of C' we have A(Dy A D} > &2 a.e.
on ' x C, which contradicts the conclusion of Lemma 4 for £ < 2716% and

(y,2) € (C~ C;) x (C — C.) such that |y — 2| < .. Hence v{(C) = 0. This
implies D =Ix Bforsome B € A w
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On ideals consisting of topological zero divisors
by

ANTONI WAWRZYNCZYK (México)

Abstract. The class w{A) of ideals consisting of topological zero divisors of a com-

mutative Banach algebra A is studied. We prove that the maximal ideals of the class w{A}
are of codimension one.

1. Introduction. Let A be a commutative Banach algebra over the com-
plex field C with unit e. An element a € A is a topological zero divisor (TZD)
if there exists a sequence b, € A such that ||b,|| =1 and lim,_, ab, = 0.
One says that an ideal I C A consists of joint tepological zero divisors (joint
TZD) if for every finite collection a, ..., ar € I there exists a sequence (by,)
of normalized elements of A such that

k
H]Lngoz lla;ball = 0.
Jj=1

The set of all ideals of A consisting of joint TZD is denoted by #(A) while
£(A) denotes the set of those elements of #(A) which are maximal ideals of
A. The class t( A} was intensively studied in the 70’s. The most important
results are the following theorems:

TreoREM 1.1 (Zelazko [5}). The mazimal ideals of A which belong to the
Shilov boundary S(A) are elements of E(A). If A is a function algebra then
E(A) = 5(A).

THEOREM 1.2 (Stodkowski [3]). If J € H(A) then there ewists I € E(A)
such that J C I.

V. Miiller has proved a result conjectured by W. Zelazko which provides
a complete characterization of #{A): :

THEOREM 1.3 (Miiller [2]). An ideal I of A belongs to {{A) if and only
if I is not removable. : '

2000 Mathematics Subject Classification: Primary 46J20.

Research partially supported by SNI

[245]



