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The space of real-analytic functions has no basis
by

PAWEL DOMANSKI (Pozna) and DIETMAR VOGT (Wuppertal)

Abstract. Let {2 be an open connected subset of B?, We show that the space Al
of real-analytic functions on {2 has no {Schauder) basis. One of the crucial steps is to show
that all metrizable complemented subspaces of A{f2) are finite-dimensional.

1. Introduction. Let A({2) be the space of all complex-valued real-
analytic functions on the open set £2 C R%. This means that f € A(f2)
develops locally into a Taylor series at every point of £2. The space A(f2) is
assumed to be equipped with its natural topology. A((2) is always a com-
plete ultrabornological reflexive nuclear separable space. Its dual is a nuclear
LF-space. The space, being a classical object of study, has attracted some
attention in recent time mainly because of its relevance to the theory of
partial differential equations but also as an object interesting in itself. As a
main result of this paper we will show that for {2 connected the space A(f2)
has no basis. We will prove even more, namely, a complermented subspace
of A(£2) with basis must be an LB-space {see Theorem 4.1).

A sequence (f,,) of functions which forms a (Schauder) basis in a function
space X is not only interesting because of the structure of X. If the space
in question is natural in the sense that it appears in problems of classical
analysis, then (f,) is usually very useful from the analytical point of view.
For instance, see the special role played by Hermite functions in the space $
of rapidly decreasing smooth functions, Chebyshev polynomials in the space
of smooth functions on the closed interval [—1, 1] or the Franklin system in
the Hardy space H{ID) [39]. Clearly, the space of real-analytic functions is
natural so the above remarks apply. Unfortunately, as our paper shows, life
is hard and there are no such special real-analytic functions.
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The problem of whether every separable Banach space has a basis ap-
peared in 1931 {probably for the first time) on page 141 of the Polish edition
of Banach’s book [1] and then it was repeated in the later French version
[2, Ch. VIL, §3]. It was clear to Banach, Mazur and Schauder (see [30, Ch.
I11]} that this problem is related to the approximation problem posed in [2,
Rem. VI, §1]. The latter question was repeated (in a hidden form) by Mazur
in 1936 as Problem 153 of “The Scottish Book” [23] and analyzed in depth
by Grothendieck in [10]. Thanks to the paper of Enflo [9] (comp. [20, Sec.
2.d]) we know that there are subspaces of {,, even without the approxima-
tion property. Although every nuclear Fréchet space has the approximation
property, they also need not have a basis (see Mityagin~Zobin [26], comp.
(3], [6], [27]) or the bounded approximation property [8] {comp. [35]). All
these counterexamples are artificial in the sense that they were constructed
on purpese and they are not “natural” spaces of functions, measures or oper-
ators appearing in analysis. The only exception is the highly non-separable
space L(la) of all bounded operators on ls which fails the approximation
property {32]. A(2) is a natural example of a separable complete function
space without basis. Although this space is not metrizable it has many nice
properties, in particular, the approximation property. For the role of A{{2)
in recent research see e.g. (4], [5], [11], [16]-[19], [21], [22].

There are at least two natural ways of defining a topology on A(£2). Due
to [22, Prop. 1.9, Th. 1.2] they are equivalent. One is to use the projective
limit topology of projyenyH(Ix), where (Ix) is an increasing exhaustion
of 12 by compact sets. Here H{JIy) is the space of germs of holomorphic
functions on Iy € C? equipped with the standard topology of a nuclear LB-
space. That means H(I) := indpew H*(U,) topologically, where H*(U,,)
is the space of bounded holomorphic functions on U, with the sup-norm
| - lloo,v, and (U,) forms a fundamental sequence of neighbourhoods of I
in C?¢. Clearly, the topology of H(I) does not depend on the choice of (U,,)
and the topology of A(f2} does not depend on the choice of (Ix). The other
canonical way is to use the topology defined by A(f2) = ind H(U), where
the inductive limit runs over all neighbourhoods of 2 C R* C €% in C¢.
Here H(U) denotes the space of all holomorphic functions on U with the
compact-open topology (see [22, Prop. 1.9, Th. 1.2]}. Thus A(£2) is always
a complete ultrabornological reflexive nuclear separable webbed space and
its dual is a nuclear LF-space.

By a PLN-spuce we mean the projective limit of a sequence of LN-
spaces, i.e., LB-spaces with nuclear linking maps. Analogously PLS-space
means the projective limit of a sequence of LS-spaces, i.e., LB-spaces with
compact linking maps. Clearly A(f2) is always a PLN-space. We show that
an ultrabornological PLN-space with basis is either an LN-space or it has
an infinite-dimensional Fréchet subspace. On the other hand it is either a
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Fréchet space or it has an infinite-dimensional complemented LN-subspace
(see Corcllary 2.3). The proof of this result is based on a refinement of the
Dynin-Mityagin theorem (see Theorem 2.1).

In order to prove the main result of our paper, we show that for {2
connected, metrizable quotients of A(f2) have property (Q) (see Theorem
3.4), and metrizable subspaces of A(f?) have (DN) (Theorem 3.6). As a
consequence we find that metrizable complemented subspaces of A(f2) are
finite-dimensional (Theorem 3.7). Of course, this result is also of strong
independent interest.

Recall that a locally convex space X is ultrabornological if it is an induc-
tive limit of a family of Banach (or Fréchet) spaces or, equivalently, every
absolutely convex set absorbing Banach discs is a O-neighbourhood. For
PLS-spaces there is a nice characterization of ultrabornologicity in terms
of the representing projective spectra. If X = projyex Xn and i%"’l :
Xn+1 — Xy are linking maps, then ¢ : J[[ Xy — []Xn is defined as
o((zxy)nen) i= (&y — N zy41) and Proj'X = [[ Xn/Imo (see (28], [29],
[37], [36]). If X are LS-spaces, then Proj' does not depend on the choice
of the projective spectrum (Xn) and X is ultrabornological if and only if
Proj*X =0 (see [38] and [37, Th. 3.4, Lemma 4.1], [36, Th. 5.7, Th. 6.2]).

By pp we denote the Minkowski functional of the absolutely convex
set B. For other unexplained notions and facts from functional analysis see
124] or [12]. Similarly, [14] is our reference book for complex analysis, [13]
for plurisubharmonic functions, and [15] for real-analytic functions.

2. Bases in PLN-spaces. A scalar matrix A = (a;n,n) is called a

Kéthe PLB-matriz if it satisfies:
1. for all j there is N such that for all n: a;nn > 0;
2. for all 4, N, n: aj;841,n = Q4N n;

3. for all j, N, n! ajiNnt1 < G4,N e

The matrix A is strictly positive if there is Ny such that for every N > Np
we have ;v > 0 for all j,n € N. A Kéthe PLB-space Ep(A) for a Kothe
PLB-matrix A is defined to be

@) 3 Hp
By(4) = {z = (eg) : YN In: 2l = (S (asdasin)?) < oo}
j=0
for 1 € p < oo with its natural PLB-topology of EP(A) = projy EX (4),
where

E)(A) = i%%E;‘““(A),

Eﬁ*”(A) = {z = (%;)jeIy : ||m||§§3,)n < oo}, In:={j: Vn:ajnn >0}
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Analogously, we define E,,(A)}, where
2175 = sup 25 asi.n

We omit the superscript in the notation of norms when it produces no
misunderstanding.

TreeoreEM 2.1. Let X be a PLN-space with an equicontinuous basis
(e5)jen- Then X = Ep(A), where 1 < p < oo, for e suitable chosen Kdthe
PLB-matriz A not depending on p. In fact, we can choose A = (ajnn) as
Sollows:

aj;Nm = PBu.. (€5),
where (By ) are the unit balls in LN-spaces Xn, X = proj Xn, sotisfying
BN,n+1 ;) BN,'n.: i§+1BN+1,n c BN,n fOT‘ 'n'aN € Na

with iNT 1 X1 — Xn denoting the linking map.

Proof. By the Dynin—Mityagin theorem [12, 21.10.1], (e;);en is an ab-
solute basis. Denote by (e}) the biorthogonal functionals.

Observe that X = projy X, where Xy are LN-spaces. Let Py be a
fundamental family of seminorms on Xy (or corresponding seminorms in-
duced on X) and let By := (b;.,);en, pepy be the Kothe matrix defined by
bj.,p = ple;). As in [12, 14.7.8], we observe that

X =proj M (Bn).
N

We will show that for every N there is M such that the (diagonal) linking
map A1(Bar) — A(Bw) factorizes through Xps. Clearly we have

p(s) < 3 e} (@)lp(es)

Thus A;{Bjs) naturally maps into Xjr. On the other hand, for every p € Py
there is a continuous seminorm ¢ on X and a constant C such that

S le}@)lp(es) < Cafa).

i=0
Assume that for any K > N there is pg € Py such that no g can be taken
from Py in the formula above with p = px. Since Py is a set of seminorms
inducing a topology of an LB-space, there is a seminorm p € Py such that

pr(r) < Cxp(z) forall K, ze X.
Therefore 352 le}()ip(e;) cannot be majorized by any continuous semi-
norm on X; a contradiction. :

We have proved that for every N there is M such that for every p € Py
there is g € Py satisfying
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Z lej(z)lp(e;) < Cqlz) forallze X.
=0

This implies that Xps maps naturally into Ay (Bx). Set
Iy = {J : dp € Py bj;p > O} and EN = (bj;p)jEIN,pEPN-
One easily sees that the spectra (Xy) and (A {By)) are equivalent and,
without loss of generality, we may assume that
P 4 XN_|_2 —3 A1(§N+1) b XN+1 —F Al(EN) = ...

As a consequence, for every p € Py there is ¢ € Py such that the map be-
tween the corresponding weighted ly-spaces I1 {((g(e;))jen) and Iy ({p(e;))jen)

is nuclear. Therefore
> "plej)/ale;) < oo
jEN
Hence, also ()\p(§ ~)) is an equivalent spectrum for any p, 1 < p < vo.
Let us choose the spectrum with p = oco. The space Xy4y has a fun-

damental sequence of Banach disks and their images are Banach disks in
Aoo(Bn) contained in the Banach disks of the form

Onn o= {2 = (2;) 1 sup |z |vjnn < 1}
J

for some sequence (vjnn)jen. Clearly, (Cnn)nen gives an LB-topology
stronger than the original topology of Aw(By) and the map Xwy41 —
Aoo(Bn) factorizes through this LB-space. We have abtained a new equiva-
lent spectrum (EX (V) with linking maps factorizing through LN-spaces.

Since for a diagonal map D on l,, 1 £ p < oo, one can easily calculate
the nth diameters of D(By,), By, the unit ball of I, as coefficients of D
(comp. [31, Sec 9.1]), by nuclearity one can assume that

Zvj;Nm/Uj;N%—l,n—l < 00.
JEN
Therefore, also the spectra (Eév (V) are equivalent for 1 < p < co.

Now, for p = 1, we may assume without loss of generality that the
linking map ENTHV) — E{(V) factorizes through X. It is easily seen
that the map B T1(V) — Xy factorizes through B{ (4) if A = (aj;nn),
5N = PBy . (€5)-

Using an analogous procedure one finds that the spectra (E‘ff (A)) are
all equivalent for 1 < p<oo. =

THEOREM 2.2. Let B be an ultrabornological Kithe PLS-space given by
the Kéthe PLB-matriz (agk,p)-

(a) If B does not admit an infinite-dimensional complemented Fréchet
subspace, then it is an LS-space. :
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(b) If E does not admit an infinite-dimensional complemented LS-sub-
space, then it is a Fréchet spoce.

Proof. Let I C N. We denote by E(I) the subspace of E spanned over
the subset 1. We define an increasing family of subsets of N by
In = {j : aj;nn > 0 for every n € N}.
In general, E = [[yon E(In41 \ In) and each of the spaces in the product
can be equipped with a strictly positive matrix. Therefore it suffices to prove
the result only for such spaces. Note that complemented subspaces of & are
again ultrabornological. Since F is ultrabornological we get by [37, Lemma
4.1] (see also [36, Theorem 6.2])
(1) VK 3k, L VI,M Im, § Vj eN: min(aj;M,m,a.j;K,k) < Saj;ng.
Since E is a PLS-space, we may assume without loss of generality that
YL Vi : 31~1~+I£lo aj;L+1,;v1/a.j;L,; = o0,

Combining this with (1) and taking there k¥ = K, L = K +1 we may assume
without loss of generality that
VK,Z,M Jm : mjn(aj;M,m,aj;K,K) S Qi K41,1
for all except finitely many 5 € N. Finally, for all 7 € N we get
(2) VK, [,M 3m,5V¥j e N: min(Saj;M,m, ajiK,K) < ajr41,0-
We now put

Igp =1 asrx <azxirnl, Jrg =N\Ix;

and observe that Jx; C Jg 11 for all K, 1. Therefore (2) shows that E(Jx,)
is an LB-space. The same holds for E(J) if J is a finite union of the Ji .

To prove (a) we assume that F is not an IB-space. This implies that I
is infinite for every finite intersection I of the I ;. This means that we can
choose an infinite subset L C N so that for every K and [ only finitely many
elements of L are not in Ix .

If we fix K then for all j € L we have, with suitable constants C &, which.
take care of the finitely many elements,

(3) ok < Inf{Cruasri1: 1 € N} =: pre(y)
and px(j) defines a seminorm in E. Therefore E(L) is an infinite-dimen-
sional complemented Fréchet subspace of E.

To prove (b) we notice that for all K and ! the space E(Jg ) is a com-
plemented DF-subspace of E hence, due to the assumption in (b), it is
finite-dimensional. Therefore Jx,; is finite and, arguing as before, we obtain
the estimates (3) for all j € N. Therefore E is a Fréchet space. m

By the weak basis theorem [12, 14.3.4], a basis in an ultrabornological
webbed space X is automatically an equicontinuous basis. By Theorems 2.2
and 2.1 we get immediately:
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COROLLARY 2.3. Bvery ultrabornological PLN-space with basis is either
an LN-space or it contains an infinite-dimensional Fréchet subspace. Analo-
gously, it is either a Fréchei space or contains an infinite-dimensional com-
plemented LN-subspoce.

3. Complemented Fréchet subspaces of A({2). For an open or com-
pact subset M C C% we denote by H(M) the space of all holomorphic
functions on M with its canonical topology. For any function f on a set M
we set || film = sup{|f(®)| : = € M} whether it is finite or not. For z € C?
we put |z|ee = max{|z;|: § = 1,...,n}. The following lemma is, of course,
related to the proof of polynomial convexity of compact subsets of R? (see
[13, Lemma 5.4.1]).

LEMMA 3.1. Let I C J be compact subsets of B and U 2 I be an
open bounded subset of C*. Let 0 < o < 1. Then there exist finitely many
entire functions fr : C* — C, k= 1,...,m, such that the plurisubharmonic
function u := max(log|fi|,...,1log |fm|) is continuous on C* and satisfies

Ic{z:ulz) <0}, {z:u(z)<a}cCl,
Jc{z:u(z) <1} cc C%
Proof. We choose 0 < o < o < 1, put ¢ = e® and choose ¢ > 0 so
that p + 2¢ < e. We find h € C(R?) so that
Ic{zeR?: |h(x)|<1-c}, {z€R®:|h(a)|Lo+e}CCT,
Jc{z eR?: |h(z)| <e—c}
We choose R > 0 so that
JUTCB={z:|¢t|les < R—1}.
Using the Weierstrass approximation theorem we find a polynomial P so that
sup |h(z) — P(z)| <e.
LIPS
Then we have
Ic{zeR:|Px) <1}, {zeR:lzlw <R |P@)|<Le}ccl,
Jc{zeR®: |P(x) <e}.
We put u1(z) = max(log|P(z)};—1). Then w; is continuous plurisubhar-
monic on C% and we have
ITc{z:u(z) <0}, {z€ RY: |z]ee < R, wi(z) <&’} cCU,
JC{z:uwm(z) <1}
Set uy(2) = max (@' (|#|e — R -+ 1);u1(2)). Then u is again continuous and
plurisubharmonic on £* and
Ic{z:us(z) <0}, {zeR®:u(z)<a}cCl
J C{z:us(2) <1}
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Finally we put u(z) = max(uy(z); A|lmz|s — 1). Then « is continuous
plurisubharmonic on €¢ and obviously

Ic{z:u(z) <0}, JcC{z:u(z) <1}

We now determine A so that the remaining inclusion of the assertion
holds. We may choose § > 0 so that

(B) M:={z e R :yy(z) <o’} + {2 € C?: |2]o <} CC U,
(b) for |z|ee € R and |u]a < 8 we have |ua(z +w) —uz(2)| < &' — .

We choose A > 0 so'that (1+a')/A < & If u(z) < o then, of course,

us{z) < , [2|ee € R, [Im z|s < 8. Therefore we get

ua(Rez) <up(2) + juz(Rez) —ug(2) Ca+{a' —a) =o'
This implies

ze{zeR tuz(z) <ot +{z: |28} =MCCU n

The following lemma is due to Zaharjuta (see [40], Prop. 2.1.2; cf. [41]).
For completeness we give a proof. We first need some notation,

For a function u = max{log|g;| : 7 = 1,...,m}, where all g; are entire
functions on €%, and 0 < « < 1 we put Dy = {z : u(z) < a}. These are
analytic polyhedra. We notice that the u of the previous lemma is of this
type, and % will denote a function of this type in what follows. For functions
fon Dy we put |fla =1/,

LEMMA 3.2. For every 0 < a < o < 1 there is a constant C > 0 se that
for every f € H(Dyr) with |flor <1 and everyr > 0 there exist g € H(Dy)
and h € H(D,) so that f = g+ h on Dy and

1
glo <C =, Il < Cri~e,

Proof. We may assume that Dy C Ay where A, = {2 |2/ < €*} and
use the classical method of Oka. Put ¢(2) = (z,01(2),...,gm(2)) € C¥™ =
C¥ for z € Ds. This defines a biholomorphic map ¢ from Dy onto a closed
complex submanifold (D) of A;. We have (Do) = ¢(D1) N A,. We
choose & < a” < . From the Cartan—Oka theory [14, Th. 7.2.7} and the
open mapping theorem we conclude: there is a constant Cp > 0 so that
for every f € H{p(Dw)) with || |lo(p_ ) < 1 there is F € H(Au) with
“FHAQH < CO-

We expand F into a power series
F(z)= Z agz”.
B

Then Cauchy’s inequalities yield

lag| < Coe™ 818" genNy.
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For given v € Ny we put
G(z) = Z Cb’gzﬂ, H(z) - Z aﬁz‘s.
18> |81<w

Then for z € Ay we obtain

1G(2)] < Co Z e~18ie” < Oge—("“)"‘Ze‘B'(“““”)

|8[>w g

and, for z € Ay, .

HE) <G T 0"l < Cperlizal §7 gloltaa),

18lgw ¢

If r > 1 we choose ¥ € Ny so that ¢ < r < e*t, and we put C =
C Eﬁ elBlla—a'y ‘

For f as in the assumption we set f = f o™, obtain F and then G
and H, We put g = G oy and h = H 0y and obtain the assertion since for
r < 1 it is obvious. m

LeMMA 3.3. Let I C J be connected compact sets in R® and U O I be
an open bounded subset of C2. Let 0 < o < 1. Then there exist open sets
VoI W>JinC?and C >0 so that for every f € H(U) with ||flly <1
and every r > 0 there existg € H(V), h € H{W) so that f =g+h on T and

1 —
lgllv £ Or_‘l’ |hllw < Cri=e.

Proof. We apply Lemma 3.1 and obtain a plurisubharmonic function u
which fulfills the assumptions of Lemma 3.2. Weset V = {z € C% : u{z) < 0}
and W = {z € C? : u(2) < 1}. Lemma 3.2 then gives the result. =

A Fréchet space with a fundamental sequence {||-[|») of seminorms defin-

ing the topology is said to have property (Q) if
Vk 3m Vn,9 €0, 30 Yu e B fullf < Clulli®lufl; 7.

Here | - ||* denotes the dual norm for | - ||.

REMARK. A Fréchet space F has (03) if and only if

1
YW AU YW,y >03CVr>0: UC C(T—TV—{"T‘W),

where U, ¥V, W are O-neighbourhoods in E.

THEOREM 3.4, Bvery Fréchet space B which is o quotient of A(£2) has
property ().

Proof Let q: A(R2) — E be a quotient map, and Ej the local Banach
spaces of E with unit balls Uy = {z € F : ||2|, < 1}.

For given k we may find a compact set I C {2 so that ¢ extends to a con-
tinuous linear map qx : H(I) — E. Since i*E C g (H(I )) Grothendieck’s
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factorization theorem yields an open neighbourhood U of I so that i*E C
ax(H(U)) and for some m > k we have

a({f € BU): | flly < C1}) D i*Un.
For every n > m we find a compact J C {2 so that g extends to a continucus
linear map gn : H{J) —~ BEn.

For given 0 < o < 1 we now choose open sets V' and W according
to Lemma 3.3. For z € Uy, we find f € H(U) with ||fjly < Cy so that
qsf = i*z. From Lemma-3.3 we obtain with some Cp > 0 functions g € H(V)
and h € H(W) so that f = g+ h and

1 -
lally < C1C2 =, lIhllw = CLOr ™™,

Also D > C1C; may be chosen so large that
lge@)lls < Dlvllv,  veHI),
lgn(w)lin < Dllwllw, weHW).
Therefore with £ = gx(g) and n = gn{h) we have

1 -
i< D>, il < D

and i*x = £ + i*n.
We have proved that

1
Un C Dz}._a—i Uy + Dz'l"l_aUn
or

< (R 0+ )

for all » > 0, which is equivalent to
* T *1—17
I < ClIHE R
withd=1—qa. n

LEMMA 3.5. Let F be a Fréchet space and 12 connected. Then every
continuous linear map @ : F — A(f2) factorizes through o space H(U),
where U is an open neighbourhood of (2.

o

Proof. Let (I,,), I, Clnt1, be an exhaustion of {2 by compact connected
subsets. For every n the induced map @, : F — H{I,) is compact. Hence
there is a neighbourhood U, := {z = z+iy : 2 € Wy, |y|ce < En}, Wn CC 12
open and connected, so that ¢, factorizes through H(U,).

For every € F we obtain functions ¢n(z) € H(U,) which coincide
pairwise on U, N Uy, N 2. So ¢(z) may be extended to H(U), where U =
Un Up.

Therefore ¢ gives rise t¢ a map ¢ : F - H(U') which is clearly linear
and, due to the closed graph theorem, also continuous. It is obvious that
¢ = g o1, where p is the restriction to 2. m

icm

Space of real-analytic functions 197

A Fréchet space with a fundamental sequence (|- ||) of seminorms defin-
ing the topology is said to have property (DN) if
In Vk A,C >0, T€)0,1[: izl < Cllallpli=l; ™"
for every z € E.

THEOREM 3.6. If 12 is connected then every Fréchet subspace E of A(12)
has property (DN).

Proof. By Lemma 3.5 every Fréchet subspace of A(f2) is isomorphic to
a subspace of H(U), where U is an open subset of (4, Since the latter space
has (DN) (see [33, Cor. 5.3) or [25, Prop. 2.1]), £ also has this property
because (DN) is inherited by subspaces [33, Lemma 2.2]. =

THEOREM 3.7. If 12 is connected then every complemented Fréchet sub-
space of A(f2) is finite-dimensional.

Proof. By Theorems 3.4 and 3.6, E has both (ﬁ) and (DN). On the
other hand, exactly as in [24, 29.21] using [34, Satz 4.4] instead of [24, 29.16]
one proves that spaces with both properties above are Banach spaces. This
completes the proof by use of the nuclearity of A({2). =

REMARK. There is an alternative proof that complemented Fréchet sub-
spaces B of A(f2) are Banach spaces. Namely, let T : B — A({2) be the
topological embedding. Since every map A(2) — E' is bounded by [4, Th.

91] and [5, Th. 5] (& has () !1), T and also T' are bounded.

4. The main result

THEOREM 4.1. Let {2 be connected. If E is a complemented subspace
with basis of A((2), then E is an LB-space. In particular, A(f2) has no
basis.

Proof. The result follows immediately from Theorem 3.7 and Corollary
2.3. Clearly, A(f) is not an LB-space because by an easy interpolation
argument it has the Fréchet space w of all sequences as a quotient. =

5. Final remarks. In fact Lemma 3.3 can be used to prove for A(£2)
the following property which we can define for general PLS-spaces.
A PLS-space X = projyen Xn, Xn LS-spaces with fundamental se-

quences of bounded sets (B s )nen, satisfies the condition (Pﬁ) if
1
YN AKX VL, k,v>03n,1,0: Bgx C O(—T—;f-BNm +7‘BL‘;)

for every r > 0. Clearly, the condition does not depend on the choice of the
representing spectrum (X )nen and sequences (B N,n)ﬁN. For simplicity we
have omitted the linking maps in the definition of (P(): to be precise the
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inclusion is valid for images under linking maps in Xas, M = min(N, K, L).
Since any complete quotient of a PLS-space is a PLS-space [7, Th. 1.3],
property (Pﬁ) is inherited by such quotients. For Fréchet spaces it coincides
with (£2).

PROPOSITION 5.1. If & PLS-space X = proj Xn satisfies (PSY), then for
any sequence (Vi) of 0-neighbourhoods in Xy, we have

(4) VN 3K, 0-neighbourhood V C Xx VL,v > 0 3C
1
vV C C(r_’TVN + TVL) .

In particular, every metrizable quotient of X safisfies (ﬁ)

Proof. It is easily seen that for a fixed v > 0 we have, for some con-
stant C,

1
Vo= ﬂ r_’YVN +rVr 2 CBg .

r>0

Clearly, since the above inclusion holds for all k, V., 1. is a O-neighbourhood
in Xg. Moreover, since X is an LB-space, there is & O-neighbourhood T in
Xy which is absorbed by all V,, 1, m, L € N, This is the 0-neighbourhood
we are looking for.

As is easily seen, condition (4) is inherited by quotients. If the quo-

tient is metrizable then condition (4) becomes (ﬁ) if we take as (Vy) a
O-neighbourhood base of the quotient space. w

The proof of Theorem 3.4 now shows:
THEOREM 5.2. The space A(f2) satisfies (PQ).
By Proposition 5.1, we find again that every Fréchet quotient of A((2)

has (£2). In fact the only Fréchet quotients of A(f2) the authors know are
isomorphic to w, i.e., the space of all sequences.

Added in proof (September 2000). The paper was written consistently for connected
open sets in B? but, in fact, A(f2) has no basis for any open set 2 C R? as the following
argument shows,

The same proof as in the paper gives all the results for {2 having finitely many con-
nected components. If 2 = |J;o £, £2; convected components, and if X is & com-
plemented subspace of A(f2) = J[;en A(f2;) with basis, then the proof of Theorem 2.2
implies that X o J] yew Xy, where the Xy have bases and continuous norms. Since the
A(£2;) have continuous norms, it follows easily that each X is a complemented subspace
of a finite product of A(£2;) and, via the above mentioned version of Theorem 4.1, X
is an LB-space. We have proved that for an arbitrary open set {2, every complemented
subspace of A(£2} with basis is a product of LB-spaces, in particular, A(f2) has no basis.
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