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Characterization of compact subsets of algebraic varieties
in terms of Bernstein type inequalities

by

M. BARAN and W. PLESNIAK (Krakéw)

Abstract. We show that in the class of compact sets K in R" with an analytic
parametrization of order m, the sets with Zariski dimension m are exactly those which
admit a Bernstein (or a van der Corput-Schaake) type inequality for tangential derivatives
of (the traces of) polynomials on K.

0. Introduction. Markev and Bernstein type inequalities furnish esti-
mates of derivatives of polynomials in terms of their degrees and uniform
norms on compact subsets. The multivariate theory of such inequalities is
relatively new. It was essentially developed in the eighties (for a detailed sur-
vey on this subject see [P12]). In particular, in papers [PaPl1], {PaP12] and
[P11] Pawtucki and Pleéniak showed that Markov type inequalities are closely
related to Hironaka and Lojasiewicz’s subanalytic geometry. In [PaP12] and
[P11], they also constructed a continuous linear operator extending C*° Whit-
ney jets on Markov compact subsets of R* to C* functions in the whole
space R™. This extended in a relatively simple way earlier results on this
topic obtained among others by Mityagin, Seeley, Stein, Tidten and Bier-
stone. Further important applications of Markov type inequalities to modern
multivariate analysis were found by Bos and Milman (see [BoMil], [BoMi2])
and Baran (see [Ba3], [Bad], [Ba5]).

In a few recent papers Markov and Bernstein type inequalities have been
investigated on algebraic subvarieties of R™ (see [BLT], [BLMT], [FeNal],
[FeNa2|, [FeNa3|, [Bru], [BaPll], [BaPI2], [RoYc]). In particular, in [BaPl11]
the authors have characterized semialgebraic curves in B" in terms of Bern-
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stein and van der Corput-Schaake type inequalities. The purpose of the
present paper is to extend results of [BaPll] to the case of semialgebraic
sets in R” of higher dimensions. The main result (Theorem 4.5) shows that
in the class of subsets of B® with an analytic parametrization of order m,
compact sets of Zariski dimension m are exactly those which admit Bern-
stein (or van der Corput—Schaake) type inequalities.

A related characterization of algebraic submanifolds of R™ in terms of
tangential Markov inequalities (with exponent 1) was also proved in [BLMT].
However, our approach essentially differs from that presented in [BLMT] and
is mainly based on the concept of an analytic parametrization combined with
formulas for Siciak’s extremal function of the unit ball in the space IR™ that
were established by the first-named author (see [Bal], [Ba2]). Since the class
of sets admitting an analytic parametrization we consider here contains all
compact R-analytic manifolds, Theorem 4.5 yields in particular the main
result of [BLMT].

1. Siciak’s extremal function for the unit ball in R"™. In what
follows, an irnportant role is played by the Joukowski function
(w) = 3(w+1/w), weC\{0}

which establishes a biholomorphism between {w € C : |w| > 1} and C\
[—1,1]. Its inverse function 2 = g=* : C\ [~1,1] = C\ {|w| < 1} has the
form

h(z) = 2+ (2% — 1)1/

if we choose the branch of the square root such that A(R) > 1 for R > 1.
We shall need the following

Levma L1 If o€ (~1,1), 0 < ¢ < 1/2, and |8] < (L — |a)/e with

B eR, then
(1—£)|8I(1~ o®)~/2

Proof. Since |h{¢)]
Rule we check that

Jim = loglh(a+zsﬂ)|—|ﬁ1(1 o)

< %%lh(aﬂaﬁ)i < |81 — a?)~Y2,

= h(3]¢— 1|+ 3[¢ + 1), applying the de I"'Hépital

= A(a:ﬂ)‘

On the other hand, since log |h| is a continuous, subharmonic function in C
that is holomorphic in C\ [~1,1], by the P01sson Formula applied to log |h|
restricted to R, we get, forany (€ C,

log |h(¢)| = IQ‘;C! |

I¢ — "% log A(|¢]) at
121 \
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Hence we easily obtain

Afe, ) = 21

— | tt—al"logh(jt]) .

[¢]=1
Now, since

(1-e)Bl(t— )™ < B8 + (t — a)?) ™" < |B|(t - &) 2
for [t| > 1, @ € (-1,1), 0 < £ £ 1/2, and |4] < (1 — ||} /e, where § € R,
the lemma follows.
Let now E be a compact set in the space C”. For z € C", we set
$g(z) = sup{lp(2)|"/#? : p € Clz], degp > 1, sup|p|(E) < 1}.
The function @, called the (polynomial) extremal function associated with
E, was introduced by Siciak [Sil]. It has appeared very useful in multivari-

ate complex analysis, in particular in polynomial approximation of analytic
functions of several variables. It follows from the definition of &5 that

(1.1) Pp(z)21 nC, &gz)=1 iff z¢k,

where E is the polynomial hull of E. It is a result of Baran [Ba2, Theo-
rem 1.3] that if E is a compact subset of the space R* (treated in the whole
paper as the real part of C* so that R™ = R” + i0 ¢ C™) then

(22)  ®p(2) = sup{|h(p(2))|/487 : p € R[z], degp > 1, sup |p|(B) < 1}.

Let now X be the space R™ endowed with the Euclidean norm || - ||. Let
B"(R) := {z € R™ : |jz]| < R}, B™ .= B™(1), S™1(R) := 6B™(R) and
§m1 = §™4(1). Let Xy = (C™, ] - ||lv), where

|l +iyflv = sup |z-w+iy w = sup l{cos &)z ~ (sinB)yl|,

we§m-1

be the injective complexification of (X, || - ||). By Lundin [Lu], Bedford and
Taylor [BeT], and Baran [Bal], [Ba2], we have

Py (2) = sup |h(z-w)|,

wesm—-l

zeC™,

and by Baran [Bab),
(13) B (2) = h{li(zD)lv) < hlmax{1, |lz])} + {yl)),

where ||(z,1)|v is the norm | - ||y of (z,4) in C™*! considered as the in-
jective complexification of the Euclidean space R™*!. Hence by (1.2) and
Lemma 1.1 we get the following

PROPOSITION 1.2. If ||z| < 1 and y € R™, then
log & (2 +iy) < _sup. [y-w|(1-(=- w)?) T2 < lyll(L - flel®) 72,
weES™™ . o

In particular, if ||z||v <1 then log $pm (2) < 1. -
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Here we have made use of homogeneity of the function
') = lim Elog|h(c1.r—i~'Ez;‘/.’f!)|,
gy &

which permits us to replace £ by fe with ¢ > 0 so chosen that the assumption
18] < (1 — |e|)/e of Lemma 1.1 be satisfied.

In what follows, we shall denote by ID the unit disk {2 € C: |z| < 1}
and by T its boundary {z € C: |z| = 1}. Let us recall the definition of the
generalized Joukowski function:

X (CAD) xC™ 3 (¢, 0) = x(¢,0) = 5((e+("lRy e C™
that was intreduced in [Bal]. For a fixed ¢ € C™, let
XG(C) = x(¢, ¢).

Note that if @, b € R then x(¢, a +14b) == g(¢)a+15(¢)b, where, as previously,
g(¢) = $(¢ +¢7%), and §(¢) = £(¢ — ¢~1). We have the following formula
for Siciak’s extremal function of the unit ball in R™ (see [Bal]):

(1.4) Fon (xe(0)) = ¢ 1) 2> 1 and c ST,
where SU'~! is the unit sphere in Xy . Set
Er={2€C™:®p-(z) <R}, £ ={zeC™: dist(z,B™) < 5}
Then by (1.3) we have _
(1.5) Eg D £We(R-1)/2)
LEMMA 1.3. x(T) C B™ if and only if c € BY, the unit ball in X.
Proof. We have
ll= +2yllv = sup [[(cos 8)z — (sin By
Hence, if we put ¢ = £ + ¢y then
s%p llxe(e®)] = SI;.p [{cos @)z — (sinf)y|| <1 iff ceBP.
COROLLARY 14. If © € B™(vI =A%), v € §™()) and ¢ = z + iv,

then x.(T) C B™. Moreover, if z € ™! and v € o+ NB™, then we also
have x.(T) C B™.

2. Pluricomplex Green function on analytic sets. Let now E be a
compact set in the space C". We set
Ve(z) =sup{u(2) :u € L(C"), u|lg <0}, zeCm,

where £(C") = {u € PSH(C™) : sup,c¢n [u(2) — log(1 + ||2]})] < oo} is the
Lelqng class of plurisubharmonic functions of minimal growth. The function
Vg is called the (plurisubharmonic) extremal function associated with E. If
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the set E is non-pluripolar, the upper semicontinuous regularization V(z) =
limsup,,_,, Vg(w) of Vg is known to be a multidimensional counterpart of
the classical Green function for C\ E, where E is the polynomially convex
hull of B, since it is a solution of the homogeneous complex Monge-Ampére
equation (dd°Vg)™ = 0 in C* \ E, which reduces in the one-dimensional case
to the Laplace equation (for details see [K]). We also note (see [Si2]) that

(21) Vel

1
= sup{degp log|p(z)|: p € Clz1,. .., 2], |lplle <1, degp > 1}

=log®r(z), =zeCV,

where $g is Siciak’s extremal function and ||p|| g := sup |p|(E).

We recall that a subset A of C" is said to be pluripolar if there exists a
plurisubharmonic function © on C* such that A C {u = —oo}. By Josefson’s
theorem [Jos|, A is pluripolar if and ouly if it is locally pluripelar, i.e. if
for each point a € A there exist an open neighbourhood IV of a and a
plurisubharmonic function u on U such that ANU C {u= —oo}.

Let now M be a (locally) analytic set in € such that the set My of
regular points of M is a complex submanifold of C* of pure dimension k,
where k < n. A function v defined on M is said to be plurisubharmonic on
M if it is plurisubharmonic on M. and locally bounded above on M. Let
N be a subset of M. Then N is said to be pluripolar in M if there exists a
plurisubharmonic function v on M such that N N M, C {u = —oc}.

We have the following (see [BaP12, Lemma 0.1])

LeMMA 2.1. Let E be a non-pluripolar compact subset of C* and let
f be an analytic map defined in an open neighbourhood of E, with values
in a locally analytic subset M of C™ of dimension min(k,n), where we set
M = C" if k > n. If ranky f := sup,cy rank, f = min(k,n) for a connected
component V of U such that V 1 E is non-pluripolar, then f(E) is a non-
pluripolor subset of M. .

In Section 3, we shall deal with real algebraic subsets of R™. (Let us
recall that in the whole paper R™ is treated as a subset of C* such that
C" = R™ +{R"™.) Therefore we shall alsc need a “real” version of Lemma 2.1,
which can be easily obtained by the standard complexification method (cf.
[BaP12, Corollary 0.2]).

COROLLARY 2.2. Let E be a non-pluripolar compact subset of R* and
let f be a real-analytic map defined in an open neighbourhood of E, with
values in a real algebraic subset M of R™ of dimension min(k,n), where we
set M = R" if k > n. Ifrankg f =k then f(E) is a non-pluripolar subset
of (the complexification M of ) M. :
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‘We shall also need the following beautiful characterization of algebraic
sets in CV due to Sadullaev [Sa].

SADULLAEV’S CRITERION 2.3. An analytic subset A of C" s algebraic
if and only if the function &g (or else the function Vg) is locally bounded
in A for some (and hence for each) non-pluripolar compact subset E of A.

3. Van der Corput—Schaake type inequalities. Let M C R™ be an
algebraic set with dimM =m, 1 <m < n, suchthat M = {z € R* : P(z) =
0} for a polynomial P € R[zy, ..., %n]. (For background of the theory of real
algebraic sets, see e.g. [BeRi].) Let M be the complexification of M. Let ¢
be an analytic map defined in an cpen connected neighbourhood U of B™
in R™, with values in M, such that ranky ¢ = m. Then by Corollary 2.2 the
set N := ¢(B™) is a non-pluripolar compact subset of 4. By the Bernstein—
Walsh—Siciak theorem (see [Sil]) there exists Ry > 1 such that ¢ extends to

an analytic map ¢ in an open neighbourhood of the set £5, = {z € C™ :

Van < log Ry}, with values in €. Then, since ¢(€ Ry} C M, by Sadullaev’s
Criterion 2.3 we get

(3.1) Co = sup Vn (B(Er,)) < 0.
Define
o =sup{R>1:x{{l <[{| < R} x BY) C &R},
where x is the generalized Joukowski function, and set
Ch = Cp/log R}
with the constant Cy defined by (3.1)._ ‘We have’
LEMMA 3.1, If 1 < |¢| < R} and ¢ € BT then

V(g o xe(¢)) < Crlogl¢l.

Proof. By the definition of R}, the function 5 0 %, is analytic in an
open neighbourhood of the ring {1 < |{| < R{}. Let now v € £{C*), v <0
on N. Then the function

v(¢) == uodoxe() — Mlogl(|
is subharmonic in an open neighbourhood of {1 < |¢| < R3}. By Lemma 1.3,
v(¢) < 0 for {¢| = 1. Moreover, by the definition of the function Vg, v(¢) <
V(¢ o x.(¢)) < Cilog Ry if |} = RY. Hence by the maximum principle we
get v({) <0 for 1 < [¢| < R}, whence we derive the assertion of the lemma.

Lemma 3.1 together with (1.4) and (2.1) yields the following important

COROLLARY 3.2. Viy((2)) < C1Vem (2) for z € Ens.
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We are now ready to prove a version of the classical van der Corput—
Schaake inequality [CS1], [CS2] that is a precise form of the Bernstein in-
equality [Bern|, on “good” pieces of algebraic sets. For v € R™ and ¢ € B™,
we set

T(t,v) = D,o(t).

If M is smooth at ¢(t} then T(t,v) is a vector of the tangent space Ty(;)M.
For t € B™, we define
Vi={yeB™:t+iy € BT}
PrROPOSITION 3.3. If t € B™ and v € V; then for any polynomial P €
Rz, ..., %] we have
| D (1,0) P(2)] < C1(deg P)(| PIIF — P*(2))'7?,
where © = ¢(t) and || P||n = sup|P|(NY).

Proof. Let ¢ > 0 be so small that R(g) := & + v1+¢&? < Rf. Set
¢ =t + iv. By Lemma 3.1 we have

V(¢ ox(R())} = Vy(d(vV1+e2t +icv)) < Clog Re).

Hence if P € R[zy,...,2n], degP 2 1, |Plly <1 and 0 <& <1 then by
(1.2) and (2.1) we get

; 5 Tog [h(aP o 6 o xe(Rle))] < Ci Log(R(=))

(3.3) =

Now, if £ is sufficiently small, we can write
(VT T el t + icv) = (/1 + £28) + ie Dy(v/1 + 2 £) + O(e?)
and ' '
(84)  Podoxe(R(s)) = PH(V1+et))
+ieD1, (o0 P(H(V1 + 62 at)) + O(e%),

where To(z,v) = Dy¢(v/1+e2 ) — T{(z,v) as € — 04. By (3.3) and (3.4),
and by Lemma 1.1, we get

Dz P(z) < Ci(deg P)(1 - o2 P?(x))Y/?

with 0 < a < 1, whence by letting & — 1 we obtain the required inequality
in case || P|ly < 1. The general case easily reduces to the above one.

By Proposition 3.3 and by Corollary 1.4 we get
COROLLARY 3.4. If t € B™ (), 0 < a <1 and z = ¢{t), then for any

-y e sml

1 :az (deg P)(I1P)I3 — P*(=))'/2.

|DT(t,v)P(x)| <

WQ
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IFteB™, vesS™ !, v.t=0 and ¢(t) =z, then
IDre P()] < Ci(deg P)(IP|% ~ P2(=))"/%.

4. Main result. Let E be a subset of C* and let X (E) be the Zariski
closure of E, i.e. X (E} is the smallest algebraic subset of C* that contains
E. By the Zariski dimension of E we shall mean the dimension of X (F).
Consider the space P(E) = {p|g : p € Clz1, ..., 2], degp < k}. It is clear
that Py{E) = Pr(X(E)). Define 6 = 0x(E) := dim Py (E). One can prove
(cf. {BaPl1, (1.7)])

PROPOSITION 4.1. An irreducible closed analytic subset E of C" of pure
dimension m is algebraic if and only if 6x(E) = O(k™) for k large enough.

We recall that in the whole paper R® = {(Rz1,...,R2n) : (21,-..,20)
€ C"}. In what follows, we will be assuming that K is a compact subset
of R™.

DEFINITION 4.2. K is said to have an analytic parametrization of dimen-
sion m, 1 < m < n, if there exist ¢ > 1, » € N and real-analytic maps
¢i = (@i1,..., Pjn) : B™(0) — K, j=1,...,r, such that for each § we have
rank ¢; = m and

"
K =[] ¢;(B™).
i=1

REMARK. If ¢ : B™ — K = ¢(B™) is any analytic parametrization of K,
le."¢ is an analytic map defined in an open neighbourhoed U7 of B™, with
values in R™, then in general ¢ does not fit the requirements of Definition 4.2.
The point is that it may happen that K & ¢(U). However, in such a case we
can compose ¢ with an appropriately chosen spherical coordinate system
by : R® — B™ (cf. eg. [K, p. 22]} so that ¢ o h,, does satisfy all the
requirements of Definition 4.2. If e.g. m = 2, we can define

(S t) COs S(COS t, sin t)
h2 , = - —=t, —

in order to get hy : R? — B? with
1 1 1 1
(3]s
®) T al)
and rank hy :=sup, , rank(, s he = 2.

REMARK. In Definition 4.2, instead of considering an analytic parametri-
zation defined in a neighbourhood of the unit ball B™, we could be working
with an analytic parametrization defined in an open neighbourhood of the
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m-dimensional cube I™ = [—1,1]™. For, taking the map
T/ . v
I tR™ 3 (8,0 ty) — (sm 5 tl,...,smﬂzmtm)

we have rank!l,, = m and

1 1 1™
l Rm :lmIBm_—__— —_—— e ='m-'
Hence if ¢ : U — R™, where U is an open connected neighbourhood of 1™,
is an analytic map with rank¢ = m such that ¢(U) = ¢(I™) C K, then
poly :B™ — K, rank¢ol,, =m and

G olm(B™) = ¢ol,(B™) =¢(I™) C K.
ExampPLE 4.3. Let M be an m-dimensional real-analytic manifold. We
recall that a subset K of M is said to be semienalytic if for each point

z € M there exist an open neighbourhood U7 of x in M and a finite number
of real-analytic functions f;;, gi; in U such that

EnU=J{fy=0, g; >0}
ig

A subset K C M is said to be subanalytic if for each point x € M there exists
an open neighbourhood U of z in M such that K N U is the projection of a
relatively compact semianalytic subset of M x N, where N is a real-analytic
manifold (see [DES]). For another (equivalent) definition of a subanalytic set,
see [Hir]. By the famous Hironaka Rectilinearization Theorem [Hir, Theo-
rem 7.1] one can prove (see [PaPll, Corollary 6.2]) the following

CoRrOLLARY, If K is a compact, subanalytic subset of M of pure dimen-
sion m, then there exist a finite number of real-anolytic maps ¢y : R™ — M
such that | J,, ¢x(I™) = K.

Hence, if we take M to be an m-dimensional real-analytic submanifold
of R™ then, in view of the above two remarks, every compact subanalytic
subset of M, of pure dimension m, admits an analytic parametrization in
the sense of Definition 4.2.

Other examples of sets with an analytic parametrization are furnished
by the following ‘

EXAMPLE 4.4. Let K; be a compact subset of R™ that admits a (global)
analytic parametrization ¢/ = (#},...,4}.) of dimension m;, defined in
an open neighbourhood of the cube I™7, for 4 = 1,2, respectively. Then
¢ = (¢1,...,¢% 4% ..., 02,) is an analytic parametrization of dimension
ma+mg of Ky x Ky C RM+n2, defined in an open neighbourhood of I™+m2.

It is clear that every map ¢; of an analytic parametrization of K extends
analytically to an open neighbourhood of B™ () in C™. In what follows, we
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will be keeping the same symbol ¢; to denote this extension. The main result
of this paper reads as follows.

THEOREM 4.5. Let K be a compact subset of R™ with an analytic paro-
metrization {¢;}]., of dimension m, 1 < m < n, with parameters r € N
and p > 1. Then the following conditions are eguivalent:

(i) The Zariski dimension of K is m.
(ii) There exist positive constants Oy and by such that

Vie(9j(2)) < Cod  for dist(z,B™) <6<y, z€C™, j=1,...,7,
(iii) There exist positive constants Oy and 3 such that for every polyno-
mial P € Clzy,...,z,} of degree ot most d,
|P{¢;(2))| < Cs||P|lx for dist(z,B™) < d3/d, 2z C™, j=1,...,7
(iv) (Bernstein Inequality} There exists o constant Cy > 0 such that for
each polynomial P € Clzy, ..., zy],
1D, (8,0 P(z)] < Ca{deg P)||P|x,
Jorz € K; = ¢;(B™), te ¢ Hz)NB™ and v € S™ 1, j=1,...,r. Here
73'(15, ’U) = Dv(ﬁj(t)
(iv') (van der Corput-Schaake Inequality) There ezists a constant Cj > 0
such that for each polynomial P € Rz, ..., zp),
| D180 ()] < Ci(deg P)(|PII% — P (z))*?,
for z € K; = ¢;(B™), where t € qu"l(m) NB™, endv e S™ 1, j=1,...,7.
Proof. (i)=>(il). Let X(K) be the Zariski closure of K in C". Assume
that dim X (K) = m. Let {¢;}]_, be an analytic parametrization of K with
parameter ¢ > 1. Then every ¢; extends to a holomorphic map, which will
be still denoted by ¢;, defined in an open, connected neighbourhood U of
Ery = {2 € C™ : Vgn < log Ry} with Ry = h(p). Moreover, since the ball B™

is a non-pluripolar subset of C™, by Corollary 2.2, for each j, K; = ¢;(B™)

is non-pluripolar in X(K) O ¢;(U). Hence by Sadullaev’s Criterion 2.3 we
have

Co := max |[Vicllg, (e,) < o0
Observe that

\/E gh(\/’é) C ERU .
Set

_ : '
Cy = Tog iy and Rj=sup{R>1:€gC Velnm}

Further, define - : :
‘ . -11 :
50 ::mm{\./a ’E(Q(Rl)_l)}

2
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and

Cy = C1(o — (1+83) V).
Suppose now that dist(z,B™) < § < §y. Then by Corollary 3.2 and by the
choice of By,

Vi (¢i(2)) £ CLVam (2/+/@)
for z € Eg,, whence by (1.5), the same inequality holds for z € £{(e(B1)-1)/2),
Applying Proposition 1.2 we derive the inequality

Vi (2 + 2)/v/2) < I|2ll(e ~ (1 + 80)%) 717
for |||l < §g and x € B™, which gives the required estimate in (ii).

We shall now prove (i)=>(iv'). Indeed, if K is a subset of R" of Zariski’s
dimension m, with an analytic parametrization {¢;}}_,, where ¢; are ana-
lytic in a neighbourhood of B™(g) for some g > 1, with values in R”, then by
Corollary 3.4, for @ = 2/(1 + g) and for any polynomial P € R[z1,...,Zxa],
we get

D736, P(2)] < I1P||% — P*(2))*2,

Gy
mﬁ(deg PY(
where & = ¢;(t), j € {1,...,r} and w € ™1,

The implication (ii)=>(iii) easily follows from (2.1). To prove (iii}=(iv)
apply Cauchy’s Integral Formula to the function g(s) := P o ¢;(t + sv)
defined in an open neighbourhood of 0 € C. The implication (iv'}=>(iv) is
evident. :

Hence, in order to complete the proof of Theorem 4.3 it suffices to show
that (iv)=>(i). To this end, let K be a compact subset of R" such that
K = ¢(B™), where ¢ = (¢1,...,¢n) is an analytic map defined in an open
neighbourhood U of the unit ball B™ in R™ with ranky ¢ = m. Let & =
dim Py (K). Let (&1, ..., 8, } be a basis of P, (X) and let {¢{®,...,¢{P} ¢
K be a system of eztremal points of K with respect to the basis {€;}, of
order dy. This means that

VilK) = [V, (D = suplIV (om0 {36} € K
where V(21,...,2s,) = det [8i(x;)] is the generalized Vandermonde deter-
minant. Then by an argument of Siciak we show (see [BaPll, (1.5)]) that
Vi(K) > 0. Choose t; € qb‘l(C}k)) NB™, j=1,...,60, and define
(41) r=sup{R>0:

B™ (t;, R) NB™(t;, R) = @ for i # j, 4,5 € {1,...,de}},
where B™ (a, R) denotes the closed ball in R™ of radius R, centred at a.
Then we have
r<1,
(2) Uik, B™(t5,7) CB™(0, 14 7).
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Hence
(4.2) vol (B™(0,1+7)} = M1 (1 7)™ > Mpbpr™

with some positive constants M and Ms independent of k. Observe that one
can find two indices ¢ and 7, 1 # j, such that |¢; —t;| = 2r, since otherwise r
would not satisfy (4.1). Then by {4.2), |t; — ;]| < M3/5;‘;/m with a constant
M5 > 0 which does not depend on k. We may assume that i = 1 and j = 2.
Since Vi(K) > 0, the formula

V(ma Cék)n Py Cg:))

Qr(z) == )
k(z V(C:l(.k)?"'?C§f))

where
CIONC R
Viz, Cék), . ,Cgr)) = det : : :
@) &) . EE)
defines a polynomial Qx & Pr{K) such that |Qx( {k))} =1and Qk(Cék’)) =
and by the Bernstein Inequality (iv) we get
(43)  1=1Qw(™) — Qr(e)] = 1Qu((t1)) - Qu(e(t2))
< Mklty —to] < MMsk/52/™,

Suppose now that the Zariski closure of K is of dimension > m. Then by
Proposition 4.1 we would have

a(¢)

lim su d—k = 00
which contradicts (4.3) for k large enough. The proof of the theorem is
complete.

REMARK. Since every compact real-analytic manifold admits an analytic
parametrization in the sense of Definition 4.2, the equivalence (i)<(iv) of
the above theorem yields the main result of [BLMT.
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On Bardny’s theorems of Carathéodory and Helly type
by

EHRHARD BEHRENDS (Berlin)

Abstract. The paper begins with a self-confained and short development of Barany's
theorems of Carathéodory and Helly type in finite-dimensional spaces together with some
new variants. In the second half the possible generalizations of these results to arbitrary
Banach spaces ate investigated. The Carathéodory-Barany theorem has a counterpart in
arbitrary dimensions under suitable uniform compactness or uniform boundedness con-
ditions. The proper generalization of the Helly-Bérdny theorem reads as follows: if Cp,
n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach
space X such that there exists a positive o with (pep (C)e = @ for £ < g9, then there
are On € Cn with [, (Cn)e = ¢ for all £ < £q; here (C)- denotes the collection of all =
with distance at most ¢ to C.

1. Introduction. The simplest version of Bariny’s Carathéodory theo-
rem is often illustrated as follows: imagine in the plane three triangles, the
first with red, the second with blue and the third with green vertices; if all
contain a point z, then it is possible to choose a red, a blue and a green
vertex such that z is in the convex hull of these three points. The surprising
feature is that even in this innocent two-dimensional setting there seems to
be no really simple proof of this combinatorial fact.

The d-dimensional Carethéodory-Bdrdny theorem reads as follows: if A,,
i=0,...,d, are subsets of R¢ for which the convex hull co(A,) of A; contains
a common point z, then one may choose z; € A; for i =0,...,d such that =z
is in. co({®o, ..., ®q}). By 2 duality argument one can deduce the following
Helly-Bdrdny theorem: if C;, i = 0,...,d, are finite families of compact
convex subsets of R? such that ((gee, € = @ for every 4, then it is possible
to find C; € C; with ), Cy= . '

These theorems—which obviously contain the classical Carathéodory
and Helly theorems as special cases—were published in 1982 in [3]. Since
then a number of refinements and applications have been studied (see the
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