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Symmetric Banach *-algebras: invariance of spectrum
by

BRUCE A. BARNES (Eugene, OR)

Abstract. Let A be a Banach *-algebra which is a subalgebra of a Banach algebra
B, In this paper, assuming that A is symmetric, various conditions are given which imply
that A is inverse closed in B.

1. Introduction. Let D be a complex unital algebra. The group of
invertible elements in D is denoted Inv(D). For d € D, o(d; D) denotes the
spectrum of d relative to D, and 7(d; D) denotes the spectral radius of d
relative to D: »(d; D) = sup{|A| : X € o(d; D}}. When D is a *-algebra, Dg,
is the set of elements d € I with d = d*.

Throughout, A is always a Banach *-algebra which is a subalgebra of a
unital Banach algebra B, and A contains the unit of B (the results in this
paper are valid in the nonunital case). Recall that A is symmetric if for every
a € A, o{a*a; A) C [0, c0). In this paper, assuming that A is symmetric, we
study the relationships among the following concepts:

DErRNITION 1. (1) A is inverse closed in B if whenever ¢ € A and
a~! @ B, then a™* € A.

(2) A is *-inverse closed in B if whenever @ € Ass and a~! € B, then
a~le A

(3) A is SRP in B if r(a; A) = r(a; B) for all @ € A (SRP stands for
“spectral radius preserving”).

The property “A is inverse closed in B" is a strong property which is
obviously equivalent to “c(a; A) = o(a;B) for all a € A”. On the other
hand, the property “A is *-inverse closed in B” is a fairly weak property.
In particular, it does not imply in general that “c{a;A) = o(a; B) for all
a € Aga”; see the example in Section 4.

The two questions listed below remain unanswered. Question II is clas-
gical. Question I is more general than Question II, since a C*-algebra A is
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252 B. A. Barnes

symmetric [R, Theorem (4.8.9), p. 243], and automatically, A is "-inverse
closed in B [R, Theorem (4.8.3), p. 240].

QUESTION 1. Let A be a symmetric Banach *-algebra which is a subal-
gebra of a Banach algebra B. If A is *-inverse closed in B, then is A inverse
closed in B?

QuESTION II Let A be a C*-algebra which is a subalgebra of a Banach
algebra B. Is A inverse closed in B?

REMARKS. R1. It follows from the Shirali-Ford Theorem [BD, Thm. 5,
p. 226] that A is symmetric if and only if for all @ € Aga, o(0; A) € R. The
term hermitian is often used in place of symmetric.

R2. Assume that A is a C*-algebra. Then, as mentioned above, A is
symmetric [R, Theorem (4.8.9), p. 243]. Also, in this case:

(i) o(a; A) = o(a;B) for all normal elements a in A (normal means
a*a = aa*). This implies that A is *-inverse closed in B.
(if) Ais SRP in B.

Both (i} and (ii) follow from [R, Theorem (4.8.3), p. 240].

R3. Let A be a commutative semisimple symmetric algebra with largest
C*-norm v, and assume that A has another C*-norm F with v % 8. An
example of an algebra with these properties is given in the author’s paper
[B1, Example 2.8]. Fix a € A such that 8(a) < v(a). Then f{a*a) = 8(a)? <
v(a)? = v(a*a). Let B be the completion of (4, 3). Now v(a)? < r(a*a; A)
by [PT, (4.5)], and r(a*a; B) = 8(a*a) as B is a C*-algebra. Therefore,

r(a*a; B) = fa*a) < v(a"a) = v(a)* < r(a*e; 4),
and it follows that o{a*a; A) # o(a*a; B). In particular, this implies that A
is not *-inverse closed in B,

R4. The author proves in [B3, Theorem] that when A is symmetric and
a closed subalgebra of B, and either (i) the embedding of A into B is con-
tinuous, or (i) A is Jacobson semisimple, then A is inverse closed in B. In
particular, when A is a C*-algebra and A is closed in B, then A is inverse
closed in B.

R5. D. Goldstein recently proved in [G, Theorem 3] that when A is a
C*-algebra and ||a||a < |jallg for all a € A, then A is inverse closed in 5.

R6. When the algebra A is commutative the answer to both questions
is yes. There are a number of ways of seeing this. Corollary 4 of this paper
provides one proof. In the case where A is a commutative C*-algehra, that
A is inverse closed in B follows from [R, Theorem (4.8.3)(i), p. 240).

2. Preliminary results. In this brief section, we prove two results
without the assumption that A is symmetric. In fact, the next result does
not involve an involution at all. :
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PROPOSITION 2. Let A~ denote the closure of A in B. The following two
statements are equivalent:

(1) A is SRP in B;
{2) A is inverse closed in A™.

Proof. That (2) implies (1) is immediate. Now assume that 4 is SRP
in B Suppose that « € 4 and ™! € A~. Choose {a;} C A such that
la=* — axllz — 0. Then ||1 — aay|lz — 0. F1xmsuchthat 11— aanls < 1.
Then r(1 — aam; A) = r(1 — ag;m; B) < 1. Therefore aa,, € Inv(A) by basic
spectral theory. Choose ¢ € A with aamc = 1. Then ot = apnc € A, This
proves that (1) implies (2).

For A a complex number, we use the notation A* to denote the complex
conjugate of A Also, when E C T, E* = {}*: A & E}.

PROPOSITION 3. In this result, A is a *-algebra which is o subalgebra
of an algebra B; there are no topological assumptions. The following two
statements are equivalent:

(1) A is *-inverse closed in B;

(2) for alla € A, 0(a; A) = o(a; B)Uo{a*; B)*.

Proof. Assume that 4 is *-inverse closed in B3. First note that o(a; A) =
o(a*; AY* for all @ € A [R, Lemma (4.1.1)!. Also, o(a; B) G o(a; A), and
ola*; B)* C o{a*; A)* = o(a; A). Therefore, o(a; A} 2 o{a; B) Uo(a™; B)*.
To verify the opposite inclusion, suppose that A € o(a; B) Uo(a*; B)*. Thus
A—a and {A— a)* are in Inv(B). Since A is *-inverse closed in B, it follows
that (A ~ a)(A — a)* and (A — a)*(A — a) are in Inv(A). This implies that
X — a € Inv(A), and so, A € o(a; A). This proves that (1)=-(2).

That (2)=>(1) is immediate.

3. Results when A is symmetric

COROLLARY 4 (of Proposition 3). Assume that A is symmetric and *-

inverse closed in B. Then
olo; Ay =c(a;B) foralla € Aga.

Also, this equality of spectrum holds for all normal elements (a™a = aa*)
in A,

Proof Fora=a* ¢ A, o(a; B) C o(a; A) € R. Applying Proposition 3,
we have o(a; A) = o(a; B) Ua(a; B)* = o(a; B).

The equality of spectra for normal elements follows as in the proof of
part (1) of Theorem 2.2 in [B2].

Tt is a basic fact (see [P2, Cor. 2.5.8, p. 253]) that

ASRP in B = 80(a;A) Co(a;B) Cola; 4) for all a € A.
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NOTE 5. Assume that A is symmetric. If a,b € Aga, then

(1) r{ab; A) < r(a; A)r(b; A)  [PT, (5.3), p. 24].
It is easy to extend this property to normal elements. For assume a and b are
normal elements of A. By [PT, Thm. 5,2, p. 23], r(ab; A)? < r(b*a*ab; A).
Also
r(b"a*ab; A) = r{a”abb™; A)
< r{aa; Ajr(b6%; 4)  (by (1))
<r(a*; A)r(a; Ayr(b; A)r(b*;A)  (by normality)
= r(a; A)?r(b; A%

THEOREM 6. Assume that A is symmetric and continuously embedded
in B. Assume that a € Asa, and {ax} C Asa has the properties {|lax—allsa — 0
and o (ax; A) = o(ay; B) for all k. Then o(a; A) = o(a; B).

Proof. Assume that (A —a)™* € B. Choose ¢ > 0 such that o(a;B)
is disjoint from {u € C: | — A| < £}. By the upper semicontinuity of the
spectrum, there exists N such that

olap; A) = (a; B) C{peC:|lu— X >} fork>N.
Fix k > N. If p € o((A — ax)™1; A), then A — u=t € ofar; 4), 50 [p~!] > ¢,
l| < £7. Therefore,
r{(A—ax)A) <et
Now for £ > N,
r(1—(A—a}d—ax) 5 4) =r((e— ar) (A — azx) "L 4)
<r(a—ap; A)r(A—ap)~14)  (by Note 5)

1

<llea—ag)lag™t =0 ask — oo.

This implies by standard spectral theory that (A —a)(\ —ax)~! is invertible
in A for sufficiently large k. Thus, A — a € Inv(A). This proves o(a; 4) =
o{a; B).

COROLLARY 7. Assume that A is symmetric and continuously embed-

ded in B. Assume that D is a *-subalgebra of A {(not necessarily a Banach
algebra) with the properties that:

(i) Dsa s dense in Aga:
(ii) D 4s *-inverse closed in B.

Then for all a € Ag,, o{a; A) = o{a; B).
Proof. For d € Dy, since o(d; B) C o(d; A) C R, we have o(d; B) =

o(d; B)*. Then applying Proposition 3, we have o(d; D) = o(d; B)Uo(d; B)*
== cr(@; B). Now D C A, so automatically, o(d; 4) C o(d; D). This proves
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that o(d; B) = o(d; A) for all d € Dg,. By (i) and Theorem 6, o(a; A) =
o{a; B) for all a € Ag,.

PROPOSITION 8. Assume that A is symmetric.

(1) Ife,a* € A and o™, (a*)"* € B, then a1, (a*)"1 € 4™
(2) If A is SRP in B, then A is *-inverse closed in B, and o(a; B) =
o(a; A) for all a = a* € A.

Proof. Assume as in (1) that a=',(a*)~! € B. Since A is symmetric,
forallm > 1, (n" +e*a)~ € A. Then |[(n~! +a*a)"'a* —a~{jz — 0; and
la(n™ 4 a*a)™* — (a*)7*||z — 0. This proves (1).

Now assume that A is SRP in B. Let a € Ay, so a(a; 4) C R. Then
using the basic fact above, we have

o(a; A) = 8o(a; A) C o(a; B) C o(a; A).

Therefore o(a; B) = o(g; A). It follows immediately from this that A is
*-inverse closed in B.

In the next theorem and its corollary, we give fairly minimal conditions
that imply A is inverse closed in B in the case where A is a symmetric
*-subalgebra of a *-algebra B.

THEOREM 9. Let B be a unital Banach *-algebra, and suppose that A is
a unital *-subalgebra of B, Assume that A is a syminetric Banach *-algebra.
Also assume

r(a"a; A) = r(a*a; B) for alla € A.
Then A is inverse closed in B.

Proof Assume that o € A is normal. Since A is symmetric, by [PT,
Thm. 5.3, p. 23] we have r(a; A)* < r{a*a; A). Also note that o(a; B) =
a{a*; B)*, so r(a; B) = r(a*; B). Therefore,

r{a; A < r(a*a; A) = r(a*e; B) < r{a; B)r(a*; B) < r(a; B)*.

Thus, r{a; A) = r(a; B) for all normal elements of A.

Now assume that @ = a* € A. Let C be a maximal commutative *-sub-
algebra of A with a € C, and let D be a maximal commutative *-subalgebra
of B with G G D. It follows that when ¢ € C and d € D, o(¢; C) = o{c; A)
and o{d; D) = o(d; B). For any ¢ € C, c is a normal element of 4, so

r{e;C) = r(c; A) =r(c; B) = r(¢; D).

Thus, ¢ is SRP in D. By Proposition 8, C' is *-inverse closed in D. If
a~! € B, then a~* € D, and therefore, a~* € A. This argument proves that
A is *-inverse cloged in B,
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Finally, for a general element ¢ € A with a™* € B, we have (¢*)"' € B
(since B is a *-algebra). Therefore, setting d = (aa*)™! = (a*)7'a™", we
have d € A (since A is *-inverse closed in B), so ¢! = a*d € A.

COROLLARY 10. Let A and B be as in the statement of Theorem 9.
Assume aiso that A has continuous involution and thot A i5 condinuously
embedded in B. Then A is inverse closed in B if

r(a*a; A) =r(a*e; B)  for all a in a dense subset D C A.

Proof We verify that r{a*a; A) = r(a*e; B) for all @ € A. For suppose
that for some o € A, r(a*a; A) > r(a*a; B). Choose 8, r(a*a; A) > B >
r(a*a; B). Let U be the open set U = {A € C: |\} < B}, so that o(a*a; B) C
U. Now choose a sequence {ax} C D such that ||jax — al/4 — 0. Since the
involution is continuous on A, ||afax — a*alla — 0, so as 4 is continuously
embedded in B, |lajax — a*al|z — 0. By the upper semicontinuity of the
spectrum, there exists m such that o (e}, am; B) C U, and we can choose m
so large that

rlam, tm — a*a; 4) < |lar,am — a*alla < %(r(a*a; A) - B).
Now using [PT, 5,6, 2°, p. 24], we have
r(a*a; A) < r(af,am; A) +r{al,an, — a*a; A)
<B+ %(r(a*a; A —B).
Thus r{a*a; A) < 8, a contradiction.
The next theorem is one of the main results of this paper. It provides

an answer to Question I in the case where the involution of A is continuous
with respect to the B-norm.

THEOREM 11. Assume that A is symmetric and that there exists M > 0
such that ||e*|lp < M|la||z for all a € A.

(1) Ifac Aanda™ € B, thena™ and (a*)"1 € A™.
(2) For alia € A, o(a*; B) = ¢(a; B)".

(3)-If A is *-inverse closed in B, or A is SRP in B, then A is inverse
closed in B.

Proof. Asin (1), assume that a € 4 and ¢™* &€ B. Suppose that ca* is
not invertible in B. For k& > 1, let
b= (k7" + aa®) /[ (67" + aa") s
Then by = b} € A, and by a standard argument ||aa*b; ||z ~ 0.

Then [le*bellz = [la™taa*bellz < |la=||zllaa*beliz — 0. Therefore,
|oxalls < Mlla*bx]| 5 — 0. Then [ibs|lm = ||lbxaa~{5 < [bral|slla=2| 5 -0,
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a contradiction. It follows that aac® is invertible in B. This implies that
(a*)~' € B. Then Proposition 8(1) shows that a~1, (a*)~! € A~.

(2) follows immediately from (1).

Now assume that A is *-inverse closed in B. Applying Proposition 3, we
have for all o € A, o(a; A) = o(e; B) U o(a*; BY* = c(a; B), where the last
equality follows from part (2) of the theorem. If 4 is SRP in B, then A is
*-inverse closed in B by Proposition 8(2).

COROLLARY 12. If A iz o C*-algebra and there exisis M > 0 such that
la*llz < Mlla||ls for all a € A, then A is inverse closed in B.

Corollary 12 is an immediate consequence of Theorem 11. It can also be
proved using a result of D. Goldstein, as follows: Since A is a C*-algebra,
using [R, Theorem (4.8.3}, p. 240], we have |la||% < |la*|5llalls foralla € A.
By the hypothesis of the corollary, |laf|3 < Mjla||% for all a € A. Then
Goldstein’s result [G, Thm. 3] applies, so A is inverse closed in B.

4. An example. Let X be a Banach space with a bounded inner product
(z,7). Define A to be the following Banach *-algebra:

A={T € B(X):3T" € B(X) with (Tz,y) = (2, T*y) all &,y € X}
The complete algebra norm on A is
I1T}.a = max(|[T]], [T])-
Set B = B(X), so A is a subalgebra of B.
CLAIM. A is *-inverse closed in B.

For suppose that T' = T* € A, and that 7" has an inverse S in B. For all
z,y € X,
(Sz,y) = (§z, TSy) = (T'Sz, Sy) = (2, 5Y)-
Therefore, § = 5* € A.
Now let @ be the rectangle in the complex plane,

Q={r=z+iy:0<e<]; -1 <y <2}
Set X = A(Q) = {all functions f which are continuous on ¢ and holomor-
phic on the interior of Q} equipped with the sup-norm. Define the bounded

inner product on X by
1

(f.9) = f(2)e(z)"de  (f,g€ X).

0
For h € A{Q) = X, let M, be the multiplication operator,

Mu(g)=hg (g€ X).
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Then o(Mj; B) = a(h; A(Q)) = {h(z) : z € Q}. Clearly, when h(z) is in R
for 0 < & < 1, then (My(f),9) = (f, Mxn(g)) for all f,g in X. In particular,
when h(z) == z, M, = M} is in A. Note that:

(1) o(M.; B) = Q, and Q # Q%
(2) o(M; A) = QUQ* # Q = o(M.; B).

[The first equality in (2) follows from Proposition 3.]
This example shows that the hypothesis in Corollary 4 that A4 is sym-
metric cannot be omitted.

5. Applications to operators. In this section we apply the results of
this paper to a *-algebra of operators which is studied in the author’s paper
[B2]. Let {2, d) be a metric space, and assume that y is a positive o-finite
regular Borel measure on 2. For x € £2 and € > 0, let By(z;e) = {y € £2:
d(z,y) <e}. As in [B2, (4.1)], we assume that there exist D > 0 and 5 > 0
such that p(B.{z;m)) < Dm? for all positive integers m and all & € {2, For
a kernel (measurable function on {2 x £2) K(xz,y), define with 7 = 1,2,

n;i(K) = essesgpﬂ K (2, 9) duly)™?, | K|); = max(n;(K),n;(K*)),

where K*(z,y) = K(y,z)*. Let A; be the Banach *-algebra of all kernels
K such that [|K|j; < oo, with involution K — K*, and multiplication

(K * D) (z,y) = | K(z,2)J (2,y) du(z).
For K € 4; and 1 < p € o0, define an integral operator

Trep(£)(2) = VK (z,0)f(v) dp(y)  (f € LP).

It is easy to check that Tk, and Tk oo are in B(L') and B(L%°), respec-
tively. Therefore, Ty, € B(L®) for all 1 < p < oo by the Riesz—Thorin
Convexity Theorem [DS, Thm. 11, p. 525). Thus for all such p, K + T, is
a continuous embedding of Ay into B(L?). We denote the spectrum of Ti,,
relative to B(L?) by o(Txp).

For 0 < § <1, define w(z,y) = (1 + d(z,y))°. Let A, 2 be the *-sub-
algebra of A consisting of all X such that [|K]|; < oo and K (z,y)w(z,y)
€ Ajy. The following results are proved in [B2]:

L r(K; Ayp) =r(K; A1) for all K € A, 5 [B2, Lemma 4.6).

ILFor K = K* € Ay 3, 0(K; Ay ) = o(Tx ). Thus, A, 2 is symmetric
[B2, Theorem 4.7).

III For all K in a certain closed subalgebra. of Ay, 2, and for 1 < p < co:
(i) o(K; Ay,3) = 0(Tk,) when K is normal;
(i) o (K Aw2) = 0(Tk p) U o(Tk 1)* for all K [B2, Theorem 4.8].
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Using results in this paper we prove that (i) and (ii) hold when K € Ay 0.
In addition, the proof of this more general result is simpler than the proof
of Theorem 4.8 in [B2] since the complicated result, [B2, Theorem 4.5], is
not needed.

NoTe 13. Let K S Aw,g, and deﬁne KN(.’L‘, 'y) = K(y, .’L’) Assume that
1< p<ooand l/p+1/g = 1. With respect to the usual bilinear form
(f,g) =\ fgdp, f e L? g e L9 we have

(1) (Tkp(f), 9} = (f; T~ ,q(g))-
It follows from this equality that o(Tk ) = o (T« 4)*.

Proof. (1) follows from a straightforward application of Fubini’s Theo-
rem. Now (1) shows that Tk~ 4 is the usual adjoint operator of Tk ;. There-
fore, o(Tk,p) = 0(Tk~ q). Since K™ (z,y}* = K*(x,y), it easily follows that
o(Tk,p) = o (Tkq)"

The algebra A, o is symmetric, but it need not be unital. The results of
this paper extend to the nonunital case (by adjoining a unit).

THEOREM 14. Let K € Ay, 2.

(1) a(K; A1) = o(Tk,2) = o (K; Awp).

(2) The algebra {Tkp : K € Ay2} ts SRP in B(LP) for allp,1 < p < oo.

(3) If K is normal, then o(K; Ay ) = 0(Txp) for allp, 1 < p < co.

(4) For generel K, 1 < p < 00,

o(K; Ayp) = (T p) Uc(Trep)* = 0(Tkp) Uo(Tkq)-

Proof. As noted above in (I) and (II), A, 2 is symmetric and for all
K = K* € Ay, r(K; Awa) = 7(K; A1) = r(Tk,2) [the spectral radius of
Ty, in B(L?)]. Therefore, (1) follows from Theorem 9.

From (1) we see that r(K; Ay2) = r(Tkz2) for all K € Ay 2. Note that
we always have r(K'; Ay 2) = r(Tk p) for all p. Now let p and q be conjugate
indices, 1/p + 1/q = 1 (where, as usual, 1/oc = 0). Choose ¢, 0 < ¢ < 1,
such that 1/2 = £(1/p} + (1 —t)(1/g). Then by the Riesz—Thorin Convexity
Theorem, for all n > 1,

H(Tre,2)™ || < (Toe) ™I (Tre) " 17
Taking the nth root and the limit as n — oo, we have
r(K; Awa) = 1(Tk2) € 1(Tie,p)'r(Tieg)' ™ < r{Thep) (G Auw2) ™"

Thus, 7(K; Awz) < 7(Tk,p), and so r{K; Ay,2) = r{Tkp). This proves (2).

Having proved that {Txp : K € Ay} is SRP in B(L?), (3) follows by
applying Proposition 8 and Corollary 4. Also, that o(K; Aw,2) = o(Tkp) U
(T p)* follows from Propositions 8 and 3. Finally, the last equality in (4)
holds since o(Tk,q) = o(Tk»p)* as shown in Note 13.
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COROLLARY 15. Assume K € Ay, ||K||z < oo, and K (z,y)d(z,y)° € 4,
for some 0 < 6 < 1. Then for ellp, 1 < p < oo,

Bo(K; A1) C o(Tk,p) C o(K; Aq).

Proof Since wiz,y) = (1 +d(z,9))* < 1+ d{z,y)’, it follows that
Kz, y)yw(z,y) € A1. Also, |K||2 < oo, and so K € Ay 3. Then the result
holds by applying parts (1) and (2) of Theorem 14.

ExaMPLE 16. Let 2 =N = {1,2,3,...}, and let d(n,m) = |n —m)] for all
n,m in N. Let g be counting measure. An infinite matrix {K(n,m)}n m>1
is in Ay if

oo oo
1Kl = mex (sup K (n,m)l,sup 3 1K (n,m)] ) < oo.
™ m=1 ™ n=1

In this case, automatically |[K||1 > | K||2-

COROLLARY 17. Let K(n,m) € Ay {as above). Assume in addition that
K(n,m)ln—m|® € A for some 0 < § < 1.

(1) O’(K; Al) = U(TK’Q).
(2) If K(n,m) = K{m,n)* for all n,m, then for allp, 1 < p < oo,

oc(Tkyp) =c(K; A1) C R
(3) In the general case, for all p, 1 < p < o0,
do(K; A1) C o(Tkp) C o(K; Ar).

Corollary 17 is a consequence of Theorem 14 and Corollary 15.
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