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A variant sharp estimate for
muliilinear singular integral operators

by
GUOEN HU (Zhengzhou) and DACHUN YANG (Beijing)

Abstract. We establish a variant sharp estimate for multilinear singular integral
operators. As applications, we obtain the weighted norm inequalities on general weights
and certain LlogT I type estimates for these multilinear operators.

1. Introduction. We will work on R®, n > 1. Let mq, m2 be two positive
integers and m = my +mq. Suppose that K & C*(R™ \ {0}) is homogeneous
of degree —n and satisfies

\K(2)] < Clz|™ and |VK(z)| < Cle|™ ! for |z| #0,
S K(z)z7dx =0 for any jv] < m.
Jmi=1

Let A; be a function on R™ whose derivatives of order m; belong to the space
BMO(R?) for j = 1,2. Define the multilinear singular integral operator
Tay 4z DY

Hj:]_ P11 (Ajiz,y)

|z —y|™

(1) Tapaf@) =pv. | K@~y fly)dy,
R" _
where Pm;+1{A;; %, y) denotes the (m; + 1)th order Taylor series remainder

of A; at = about y, precisely,

(2) ij-}«l(Aj; T,y) =4 (z) — Z

| ce| <omis

1 4 &
= D45z — )%

It is well known that the operators of this type have been studied by
many authors (see [2], 4], [5] and [9]). We point out that the first result in
this direction was established by Coifman, Rochberg and Weiss in [5]. The
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26 G. Hu and D. C, Yang

result of Cohen and Gosselin [4] says that the operator T4, 4, is bounded
on LP(R™) with the operator norm no more than

2
Con [T{ 3 1D 45lm0)  forall 1<p < .
=1 Jay|=m;

The main purpose of this paper is to establish a variant sharp estimate for
these multilinear operators; and then using this sharp estimate, we will ob-
tain some weighted norm inequalities on general weights and certain Llog™ L
type estimates for these operators Ty, 4,, which can be regarded as an end-
point theory for multilinear singular integral operators. We point out that
some of our ideas in this paper come from the paper [11] of Pérez. Before
stating our results, let us give some notation first.

For any locally integrable function f, we denote by f# the sharp function
of Fefferman and Stein, that is,

1
FH(z) = sup @glf(y) — mq(f)| dy,

where @) is a cube with sides parallel to the coordinate axes and mq(f) is
the mean value of f on Q. In what follows, all the cubes considered have
edges parallel to the axes. For 0 < r < co, we define £ by
FF (@) = [ F @)V
Let M be the Hardy-Littlewood maximal operator. For k € N, we denote
by M* the operator M iterated k times, i. e., M1f(z) = M f(z) and
MEf(z) = M(M* 1 f)(z) whenk > 2

for 0 < r < oo, we set
M, f(z) = M( fI") ()]

For a Young function & : [0, co) — [0, 00) and a function f on R”, define
the & average of f over a cube @ by the Luxemburg norm:

171l :inf{)\ >0: E_é—l | @(M) dy < 1};
Q

see [1]. Let p € (0, 00). For any nou-negative locally integrable weight func-
tion w and any Lebesgue measurable function f, we set

1/p
il = ( § 17@)Pw(z)de)
Er
and if w = 1, we denote ||| ., simply by | fllp- Also, C denotes a constant

that is independent of the main parameters involved but whose value may
differ from line to line.
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Now we can state our main theorems.

THEOREM 1. Let Ty, 4, be the multilinear operator defined by (1). Then
for any 0 < r <1, there exists o positive constant C' = C,, such that for
any f € C§°(R™),

(Taa: D@ < CTT (X0 1D 4sllprio ) 1°£ (o).

F=1 |aj|=m;
Theorem 1 is interesting since it implies

THEOREM 2. Let Ta, 4, be the muliilinear operator defined by (1} and
p € (1,00). Then there exists a positive constant C = Cpp such that for any
non-negative locally integrable weight function w end any Lebesgue measur-
able function f,

2
1Ta0a0f o < CTL( D 1D 45040 ) 1l estsieoras

1 g
where [p] € NU {0} is the greatest integer no more than p.

THEOREM 8. Let T4, 4, be the multilinear operator defined by (1).
Then there emists a positive constant C depending only om n and
H§=1(E|aji:mj |.D% Ajllemo) such that for each A > 0,

2

o € B" : [T anf(@)] > AH < C | Lf«%“i' (1 +log" (Lf\“)l)) da.

Rﬂ

As in [11], Theorem 3 follows from Theorem 1; so we only need to prove
Theorems 1 and 2, whose proofs will be given, respectively, in Sections 3
and 4. In Section 2, we will investigate the boundedness on Hardy spaces
and weak Lebesgue spaces of some relative multilinear operators, which will
be used in the proofs of our main theorems and have independent interest;

see [3].

Finally, we point out that there is still an interesting open problem to
see if our results are best possible.

Acknowledgements. The authors would like to express their deep
thanks to the referee for his/her very careful reading and many valuable
comments,

2. Some multilinear operators on L*(R"). We begin with a prelim-
inary lemma.

LEMMA 1 (see [4]). Let b be o function on R™ with derivatives of order
k in LY(R™) for some q > n. Then
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1 L/q
|Pe(b2,9)| < Chmlz—y* > (~— | }Dﬁb(z)‘fdz) ,
g Q@9 50

where Q(z, y) is the cube centered af © and having side length 5y/n |z — yl.

Let K, m1, my and m be as in Section 1, and let B; have derivatives
of order m; in L% (R™) for some ¢; > n, j = 1,2. Define the multilinear
operator I'p, g, by

H§m1 P, (Bj; %, y)
iz — y|™

(2) Try,5. f (@) =pv. | K(z—y)

fy) dy-

The operators of this type were studied by Cohen and Gosselin [3].
In fact, they established the L?(R™)-boundedness of some operators for
p € (1,00) whose kernels satisfly weaker smoothness assumptions than the
operators in (2). In the following, we will first investigate the boundedness
of Tp,,B, on the Hardy spaces H¥(R") when p € (0,1). Using this bound-
edness, we will then prove that T, p, is of weak type (1,¢), which will be
used in the proof of Theorem 1.

PROPOSITION 1. Let 0 < p < 1, let B; have derivatives of order my in
L% (R™) for somen<g;<oo, j=1,2, 1/r=1/q1+1/q2+1/p and r(n+1)
> n. Then the operator Tp, 5, defined by (2) is bounded from HP(R"™) to
L7 (R™) with the operator norm no more than C' H?=1(E|ﬁj |1 D% B, ig,).

=4
Proof. By the atomic decomposition of the Hardy space H?(R") (see
[7, Chap. 3]), it suffices to show that for any (p, 00,0) atom a,
”TBLBza'”T‘ <C
with C' independent of the atom a. Let @ be a (p, 0o, 0) atom, that is,

(1) @ is supported on a cube @,
(2) llellee < [QI722,
(8) (o a(@) dz = 0.
Set Q* = 84/n Q, the cube having the same center as Q and 8,/7 times the

side length of Q. Denote by xy and I, respectively, the center and the side
length of . Write

HTBI.,B2G'“': = S |TBl.Bza(m)|T dz + S |TBlnga($)|r dx =14 IL
Qn- Rn\Qs

Choose 1 < po, go < oo such that 1/go = 1/po+1/¢1 +1/gs. The (LPo, Lo0)-
boundedness of T, 5, (see [3]) tells us that
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r/4q0
I< ( S }TBL,Bza‘(m)lqo dm) |Q*|1_r/q°
Q*

2 r
<CII( X 10%Bily,) lallplQR e

J=1 | Bj|=m,

2
SCH( Z HDﬁij“qj) !QI“T/P%QI?/PU‘QP“—T/QU

J=1 |g;|=m;

2 T
<clI( X 19%B,,)"

=1 |Bsl=m

Now we estimate II. Let 4y € Q* \ 44/n Q. The vanishing moment of a
gives

\Ts,,5,2(z)]
2 2
< Clz—yol ™™ | | 11 P Bisz,w) = [ ] P (Bj;w,yo)}la(y)l dy
Q =1 =1
K(z—y) K(z-—uy) 2
+C - P (Bj;z,y)a(y)| dy.
oo ~ Tomplm | 1P (P

Note that for z € R* \ Q* and y € @, |z — y| & |z — yo|- With the aid of the
formula (see {4, p. 448])

1 o
Py(Bjiz,y) — Pu(Biz,m0) = 3 ~ Pl (D Bi; o, ¥) (2 - yo)®
leef<le

for 1 = 1,2, we have

T, 8,0(z)| S C Y |z —yo| ™™t

fer| <mmg
% § [P, (B1i 2, 4) Prng o (D Bas 0, ¥)a(y)| dy

Q
+C Y Ja =yl Py (Baya,00)]

|| <y

% { |Bmy—ja| (D*B1i v, 9)a(y)| dy

Q

2

+ Clg|Q™?|z ~ yol ™™ § T 1Py (B2, )| dy.

Qi=1
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Lemma 1 now tells us that for §j =1, 2,
P, (B ) SC S 1D Byllg, |z — g™~
|ﬁﬂ=mi
and
|Por,—tal (D" B0l € 37 1D Byl — ol ™11/,
|8 [=my

Thus, for z € R™ % @*,
JTBi,Bza(Z)E
2
<c]] ( > ”Dﬂij“%‘)
J=1|Bs|=my;
% ( Z |:L._yo;—n——m2+|a|—n/q1l5n/p+n+mg—|ag—n/q2
[cef<ma

+ Z [m_yﬂ|—n—ﬂ’a1+|f-‘t|“—ﬂ/qz15P/ﬂ+n+m1—]a|—n/m)

|af<<rmy

2
+CII( 3 1D%Billg)lo ~ ol ntmntasti/anon/men
d=L " |;|=m;
2

s¢ H( Z EDﬁjB.’i”qj)lw'“‘yoi—nmllg'l'l_"/P‘”(1/91+1/Q2).

i=1 " B;|=m;

Recall that r(n + 1) > n. Therefore,

{ |T5,,5.0(z)|" dz
}Rn \Q«

2
H( Z |D% ’”‘“)Zﬂrwm S |z ~ yo| "V dzy

i=1 |B4l=my RmAQH
2
H ( Z lDﬁij”qj)’

i=1 @ l=my

which together with the estimate for I yields the desired result.
This finishes the proof of Proposition 1.

Now we can establish the weak (1, ¢) boundedness of the operator Tg, B,

PROPOSITION 2. Let B; have derivatives of ordermy in L% (R™) for some
G > 2, j =142, 9= qnq/(q1 + g + qq2). Then the operator Tg, p, de-
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fined by (2) is bounded from L*(R™) to weak LA(R™) with the operator norm
no maore than 1—[3 1(2% j=m, | D?i Bj|l,). That is, there ewists o positive
constant C such that for each f € L*(R™) and ) > 0,

2
o € B 1T, 5 f (@) > M < O] (52 1D Byllg, ) (A2 F1)7.
F=1 " [Bjl=m;

Proof. We will follow the same lines as the proof of Theorem 3.37 in [7].
Without loss of generality, we may assume that H =1 (155 1mmy; 107 Billg; )
=1.Let f € L'(R™) and ||f|; = 1. Choose 1 < p1,5; < co such that 1/s; =
1/p1+1/q1+ 1/g2, and 0 < pg, 52 < 1 such that 1/sp = 1/pa + 1/q1 + 1/¢2
and (n 4+ 1)s2 > n (recall that g1;¢2 > 2n). For each fixed A > 0, apply the
Calderén~Zygmund decomposition to express f = g+ b with

llgliEr < CAIP=) and ||| 2 e < OAP2—D)
(see [7, p. 112]). Write

{z € R" : |Ts,,8,f(z)| > M} < {z €R™ : [Ts,,5,9(z)| > A/2}]
+{z € R : [Tg, m,b(c)] > A/2}
The (LP:, L**)-boundedness of Ty, p, gives
{z € R" : [Ta, m0(@)| > M/2}| < CA"|[Ta,,z,g]5 < CA~ g2

8 —
< oa—eapali-Da/p — oy e,
On the other hand, by Proposition 1,

{z € R* : T, B,b(x)] > A/2}| < CAT*{[T,,5,bli5; < CAT|b]|H-s

8z —

< Oa—#2)\9(Pa—1)s2/p2 . 1y —q,
This finishes the proof of Proposition 2.

Let K € CY(R" \ {0}) be homogeneous of degree zero and for some
positive constant C, :
|E(w)| < Clz™™, iVI?(:E)] < C’?mi_”_l, |z| > O,
and
| K@azrdz=0, |y/=k,
|:c|=l
where k& € N. Define the muliilinear operator

3) To @) =pov. | Bio -2 2Y 1) gy,
]R’R

|z —yl*

Parallel to Proposition 2, we can prove
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PROPOSITION 3. Let B have derivatives of order k in L9(R™) for some
g > n, § = q/(g+1). Then the operator T defined by (3) is bounded
from LY(R") to weak LI(R™) with the operator morm no more than

C3\pims IDPBllg.

3. Proof of Theorem 1. To prove Theorem 1, we need some lemmas.

LEMMA 2. Let T' be a bounded operator from L*(R™) to weak L*(R™)
with the operator norm no more than B for some u > 0. Then for any fived
0 < r < u, there ezists o positive constant C, such that for any measurable
set E and f € L1(B"),

ViTs@)l dy < C.BTIBI T 5]
E

This lemma. can be proved in a similar way to the proof of Kolmogorov’s
inequality (see [8, p. 485]); we omit the details for brevity.

LemMA 3. Let f1, fz be two Lebesgue measurable functions on R™. Then
Sfor any measurable set £ C R™,

@5 gy < (| @) gz} (1@ g
; (je50e)" (o )

Lemma 3 is an easy corollary of the Holder inequality and the trivial
inequality 2ab < a® 4 b for any a,b € R. We omit the details.

FProof of Theorem 1. By homogeneity, we may assume that

> D% Afemo = > [D*4sllemo = 1.

foeg [=my |aa|=mq

For fixed € R™, let Q = Q(z¢,d) be a cube centered at zq and having side
length d such that = € Q{zy, d). Set @* = 10y/n @, and Q** = 20v/n Q. For
f € Cg°(R"), we decompose f as

Fw) = FW)xe-() + FWxre\g+ ) = fily) + fo(y).

It is enough to prove that there exists a positive constant €, such that
1/r
(@ (i ) Bl a) " <0s)

and for some constant ¢g,

(5) sup [Ta,, 4, f2(y) — cq} < CM¥f(z),
YEQ

where C'. and C' are independent of z, @ and .
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Let ¢g € C5°(R™) have supp ¢ C 404/n @ and be identically one on
@"*. Denote by mq-(b) the mean value of the locally integrable function b
on Q*. Let yg be a point on the boundary of . Set

1

A8 =P, (450 = T Zmo-(DUAY w130 ) $als)
lal=m;

The observation of Cohen and Gosselin in [4, pp. 452-453] shows that for

y € @ and z € Q*,

Pm,-—i-l( ],y,z) m1+1(AJ U, 2z )
Thus for y € @,

H?:}_ Prn, (A?; Y, %)

T4 i) = pv. | K(y—2) fi(z)dz

I’ ly =
-y (p.v.g K(y—2)(y— =)™
|B2|=mq R
Q.
o Etn_ﬁ;_%_l_zaT,%leﬁﬂAS(z)h(z) dz)
-y (p_v.gK(y—zMy*z)ﬁ‘
|B1]=m: A
Q,
« B 50 4900 oy )
_ NP1t
+ 2 pv. | Kly - )%—i!T
(frl=ms, Ba=ma © E"

x D% A2 (2)DP2 A (2) f1(2) dz)
=T 4, fiW)+ T 4, Fay) + Th 4, fuly) + Thy a,f1(¥)-
By Lemma 1 and the identity

DAY= T Py (3 (4500

=ptv
1 o v
- >, —ma-(De45)() );y,yo)D $a(y),
lal=m;
we deduce that for y € Q and |3;] = my,

(6) D A% (y)] < C + C|DP As(y) — mq-(DﬁaA -
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For fixed 0 < r < 1, choose 2n < ¢ < co such that 0 < r < ¢/(¢+ 2).

Observe that supp AT C 404/n Q. Therefore,

ST IDfAZ < ClQIMY,  j=1,2.
185 l=m;

Proposition 2 together with Lemma 2 then gives

1/r
( S |TA1,A2fl(y | dy)
Q
2

<cle ™ II (3 1D AR ) QMR £y

=1 |Bsl=m;
< C1QI™H full < CM f(x).

On the other hand, by Proposition 3, Lemma 2 and the estimate (6), we
have

(EI

1/7
| Al,Azfl(y)ITdy)

I/\ .0(_":

C > ST DR ARY QT IQIV - e £, DR AR,

|B1]=m1 |Bz|=ma

<C Y QI UA(D s — mo-(DP Ag))ls + C1QI fl

|Bz]|=ma

<C Z ||f1||L10g+ L,Q*HDﬁzA? - mQ*(Dﬁ2A2)HexPL,Q* + CM f(z)

|B2]==ma

< OM® f(x),

where we have invoked the generalized Hélder inequality (see [10, p. 168] or
[1]), the fact that

1D A3 — mqe (D% A2)|expr 0 < CllDP 4s]|Buo
and Pérez’s estimate (see [11, p. 181])

) 1 £l 20g 2y*, 00 < CM*f(z), kel

Similarly, we have

1 I v 2
(“@"‘g Tay a ) ) < CM*f(z).
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Asg for TE{, A, f1, note that for any multi-index 8y and 8; with |G| = ma
and |Ba| = ma, K(z)zP1+P2|z|~™ is a standard Calderén Zygmund kernel.

Hence, by the Calderén—Zygmund theory, we know that the operator T
defined by

Thiz) =p.v. S Klz—1) (o —y)oreee

g

e ), 18] =, 18] = ma

is of weak type (1,1). Thus via Lemma 2, Lemma 3 and the ineguality (7)
imply

1/r
(5 Vil )

Q
<c Y@t | 1DPA2(y) D AZ (v) f(y)l dy
|B1|=my, |B2]|=ma Q@+

<C > Q- 1Hfl

|81|=ma1, |B2|]=mz

+C Y |Q|‘1Hf1(Dﬁ’A2—m@(Dﬁ“Az))Hl

| B2 |=ma2

+C Y QI ADP AL — moe (DFAD) |l + CM f(z)

[Arl=ma1

2
<C 3 “ JI (0% A; — mg- (D 45))

[B1l=maq,|B2]=ma  F=1

x ”f”L(logL)’,Q* + CMZf(m)

DﬁaA — g (D% A, ))H

(exp L)1/2,Q~

2
<oTI( X 1D 4gllmmo ) M3f(2) + OM f(z)

g=1  ogl=my
< eM® f(z).
Now we turn to estimating T4, 4,f2. Let

A =4) - Y mo (DA

loe|=my;

It is easy to see that Pm,4a(A;;y,2) = m,+1(Ag,y, z). Let 31 € 4Q \ 2@

such that [T, 4, f2(y1)| < co. Write
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lTﬂl,Aa fZ(y) - TAz,Az fa (yl)!

c | v — 27| By 1 (A1 9, 2) f2(2)]
e

X LPm2+1(-Zz;y= 2) — Prgr1(Aa; 11, 2)ldz

O § lyn = 27| Py g1 (A2i w1, 2) fo(2)]
]R“‘

% | Pr1(A1; 9, 2) — Pm1+1(E1;y1,Z)| dz

-z K{p -~
ly — 2™ |- z{m

-|—CS H!Pm;,—l-l Jay:z)‘ I-f? )!dZ

=T, 4, Fo(0) + T a, F20) + T 4, 2 ().

Note that for b € BMO(R") and k € N, {mg-(b) — marg- (b)| < Ck[/b||BMo-

Let n < ¢ < 0. By Lemma 1, we obtain
| Pro;41( A3y, 2)]
<P, (Agiw, 2)| + Cly— 2™ Y [DPiAs(2) — mg- (D% 4)]

|85 |=my

<0 my 1 D5 Az DPA; .

+Cly—z™ Y [DPA;(2) — ma-(DPA4))l.

|85 |=mm;

Therefore, for each y € Q and z € 28Q* \ 2¥-1Q* (k € N),

(8)  |Pm;+1(Asiy,2)]
SChly—2™ Y (1+4]D% A;(2) — maug- (D% A5))).

|B5|=m;
This in turn leads to

2
T 1P 1. (A, 21

=1

< Ok — 2™ [ (1 + YD 1D A (E) — mag- (D 47)]).

g=1 185 |=my

Multilinear singular integral operators 37

From this, by Lemma 3, the generalized Hélder inequality and (7), we see
that

T 4, F2(y)
scd2k2(2’“dr“‘1 § 1)z
k=1 2k Qe

+Cd Y Y R | D% Ay(2) — magrge (DP2A)| - |£(2)| dz
|82|=mz k=1 2k Q-

+Cd §k2(2’“d>‘”‘1 § 1D 41(2) — moeg-(DP* A1)| - | f(2)] dz

|81 =mq k=1 2k

+Cd Z Z ik"’(gkd)—ml

|81|=m1 | B2 |=ma k=1

2

x { TIID% Aj(2) = mang- (D% A)| - 1 £(2)| dz
2kQ f=1

< C(Z zz)Mf( )

[

+ OZ ok ”.f||Llog+L 2k

k=1
x (X 1041 = mage (D Ar)lewp z,2%0-
[B1]|=m1
+ Yy ;|Dﬁ=A2wmsz*(DﬂzAg)HexpL,m*)
| Bz }=mmy

+tc % Z—Hﬂwm ~ tang- (DP A

|B1|=m [Ba|=mg k=1

(exp L)1/2 ngu
X [ Fll£giog £)2 25 @~

R [USEREHE

ksl

chf(m)+o(

< OMP f(z).
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The estimates for the terms T5 4, f2 and T, 4, f> are very much similar;
so we only deal with T 4, fo. Applying the formula (see [4, p. 448])

1
Pu(biy,2) ~ Pelbiyn, 2) = Pea(by,m) + Y JDab(z)('y —y1)”
x| =k—1

1
+ Z a“!“Pk—m](Dab; v, 2y — 1)
0<|e|<h—1
for any b € BMO and k € N, we may write that for y € @,
TzItll,Agf2(y)
< | Prs (A2 w,y1)| {12 — 277 Py 41 (A1 9, 2) fa(2) | de

RBn
+ 2 dla‘ S |y1 —_ Zlnn—m.lpml-{-l(‘;{l;y?z)l
0<|o|<ms R

X isz+1—|a|(Da2[2;ylaZ)| -|fa(z)| dz

+d™ 3§y = 2T P (Aus s 2)]| fa(2) DP2 Ay (2)| dz
|B|=my R

=U4+V+W.
By Lemma 1, we easily see that for y € @,
|Pra (A2 9,1)| < Cly — 12|™.
Thus by the inequality (8),

U<cd™ Yy i k(2kd)—nm:

|B|=my k=1
x | |DPA1(2) — marge (DPA)| - | f(2)| d2
2k
+Cd™ Y k(2R ™ | f(2)| d2
k=1 2+Q
< CM*f(z).

Similarly, we have

2

v+wscdzk2(zkd)—n-l'§ H(1+ > |Dﬂlf1‘1(z)|)|f(z)|dz

k=1 2kQ* =1 |ﬁj|=m1
< OM*f(=).
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Combining the estimates for Thy, a4z f2: T 4, fa and T, fs establishes
the estimate (4), and completes the proof of Theorem 1.

4. Proof of Theorem 2. Let K € CY(R" \ {0}) be homogeneous of
degree zero and satisfy, for some positive constant C,
K(@)| < Clal™, |VE(@@)| <Clzl™, 2] >0,
and
S K(z)z"de =0, !v|=Ek,
|mi=1
where k is a positive integer. Define the multilinear operator

Pk"{*l (Al T, y)

(9) Taf(z) =p.v. S f{'(:c—y) P—

]Rﬂ

For a positive integer [ and BMO(R™) functions b1,...,b;, we define the
commutator of T4 with b1,...,5 by

fly)dy.

Prya(452,y)

1
Tapy,..n f(&) =p.v. S K(z - y) H(bj(m) - b;(y))
R §=1

Repeating the proof of Theorem 1 and combining some techniques of Pérez
used in [11], we can prove the following theorem. We omit the details.

TuEOREM 1. Let A have derivatives of order k in BMO(R™), T4 be the
operator defined by (9) and 0 < 7 < 1. Then there exists a positive constant
C = G, independent of f such that

(Taf)¥(2) <C Y | DPAllemoM?f(2).
|8l=k

Furthermore, let 0 <r <e <1 andl €N, by,...,ln € BMO(R®). Then for
any f € Cg°(R™), the sharp estimate

!
(Tager,...0)¥(2) < C S | DPAllemio [T l0slmmo ™2 £ ()

Bl=k i=1
+ CHbI”BMO (Ms (TAf) (:’L‘) + iMe (TA;bl,m,bj -f) (:Z:))
j=1

holds and the constant C depends only on n, r and €.

Proof of Theorem 2. Let A,(R™) be the weight function class of Muck-
enhoupt and Aeo(R™) = U,»; Ap(R™) (see /8]). Set K*(z) = K(—z). Let



40 G. Hu and D. C. Yang

T, 4, be the dual operator of Ta,,4,, that is,

H?::sl ij+1(Ajiyam)
lz —y|™

Ty af (@) =pv. | K*(z ~y) F(y) dy.

Rﬂ
It is easy to see that K* enjoys the same size condition and smoothness
property as those of K. Thus we may view T} ,, as

Tl o1 Py t1(dssy,2)

Ti, 4, f(z) =pv. | K(z~y) =g

gl
By the observation of Pérez in [10], it suffices to show that for fixed 1 < p <
co and u € A (R"),

fy)dy.

2
T sl S CTL (30 107 45 lmv10 ) M4° s

J=l oy =m;
where C is independent of f. Write
Tay,a. () — Th, a, flx)

= p.v. S K(.’L‘ - y)Pm1+1(Al;$5'y)

Rn
P P m 1Y
% ( +1(A2;2,y) +Pm2+1(A2 Y x))f(y) dy
|z — |
+p.v. S K(z — ) Prys1{As;z,y)
Rﬂ

X APy +1{A1;5,Y) + Py (A v, o))z — 9™ f(y) dy

H?=1(ij+l(-“1j; 2, Y) + Py g1 (4530, ) f
|z —y|™

—p.v. § Kz -1y
.

= T"f(z) + T2 f () + T™ £ ().
For each. fixed multi-index o with |a| < my, let K, (z) = K (z)|z| ez and

Prsi(Ar;z, )P, —la|(D*Ag; 2,y
TI = Doy, K _ 1T 2Ly ma+1—|al 3 diy
af(m) p.v RSn alz y) |£T: — yim—]od
Note that for |o] = ma, TL is just the commutator of the operator Ta,

defined by (9) with D*A;. A straightforward computation shows that for
any function b,

(y) dy

) py) dy.

(—1)lel+t
Pip1(bi@,y) + Pea(bry, ) = Y o P (Db 7, y) (w — )
0< || <k )
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So we have
T f=)l < > 1TEf(a)l.
0< || <my
Theorem 1 now states that for each 0 < r < 1 and « with 0 < |a] < ms,

@NE <CTI( X 1D% Asllmuo ) M2 (),

j==1 |a5|=mj
which together with the Cérdoba—Fefferman inequality in [6] gives
1
Yo TSl = 3 M@ € S WTEHE
|o| <me || <mg o] <ma

2

<OIT( 3 1D ;00222

J=1 ID!jI:TﬂJ'

|P:u )

For fixed 1 < p < oo and u € A (R™), choose 0 < r < & < 1 such that
u € Ayse (R™). It follows from Theorem 1’ that

> T2t

lx|=ma

<0 Y TN Ipe

|ee|=1mp

2
< CIMe(Tau Nl + CTL( 3 1D% Asllaneo ) 1M Fllp

J=1  |oyl=m;

2
S OITas flpw + CTL (30 1D Ajllmnto) 142

J=1 " jaj|=my
2
<GTI( X 107 Aslmse0) 1M Fllp

=1 |aj|=m;

Therefore,
2
17 lpw <CTL( 30 1D Asllenso) Il
=1 jaglmy
Repeating the estimate for 77, we can obtain

2
17 + 7% e < CTT (2 1D A5 8300 /Il

j=1 |eaj|=m;
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On the other hand, Theorem 1 and the Cérdoba-Fefferman inequality in [6]
tell us that

2
ITasasloe <CTI (X 1D A5lBm0 ) 1 £ lpa

J=l agl|=m;

and so

2
173, 4 F o S CTT (32 1D 45llmio ) 1 -

=1 Jajl=m;

This finishes the proof of Theorem 1.
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Limit laws for products of free
and independent random variables

by

HARI BERCOVICI (Bloomington, IN) and
VITTORINQ PATA (Brescia)

Abstract. We determine the distributional behavior of products of free {in the sense
of Voiculescu) identically distributed random variables. Analogies and differences with the
classical theory of independent random variables are then discussed.

1. Imtroduction. The concept of free independence introduced by D.
Voiculescu has developed into a powerful noncommutative analogue of the
clagsical notion of independence in probability theory. The book [8] pro-
vides an introduction to the area, showing in particular that some results
about free random variables parallel in a rather striking fashion classical
facts of probability theory. One instance of this parallelism occurs in our
earlier work (2], where we studied the limiting behavior of sums of free,
identically distributed infinitesimal random variables. More precisely, let
{Xi; : 4 21, 1 £34 < n;} be an array of classical independent random
variables, and {Y;; : ¢ > 1, 1 < j < n;} an array of free random variables.
Assume that limi—,eo 7; == oc and the variables X;y,..., X, Y, ..., Yin,
are identically distributed for every i. The main result of [2] states that the
variables y_0) Xi; have a limit in distribution as i — co if and only if the
variables 7%, ¥i; do. Moreover, the classical and free limits are related in
a rather explicit manner.

Qur purpose in this paper is to develop a similar result for products of
positive random variables, Here the parallelism between freeness and inde-
pendence is not as perfect. An instance of this phenomenon was already seen
in [5], where it was shown that there exist two free multiplicative “Poisson”

laws with no commutative analogues.
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