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Non-regularity for Banach function algebras
by

J. F. FEINSTEIN (Nottingham) and D. W. B. SOMERSET (Aberdeen)

Abstract. Let A be a unita] Banach function algebra with character space ©4. For
x € 4, let Mz and Jy be the ideals of functions vanishing at # and in a neighbourhood of
x, respectively. It is shown that the hull of J, is connected, and that if o does not belong
to the Shilov boundary of A then the set {y € €4 : Mz D Jy} has an infinite connected
subset. Various related results are given.

1. Introduction. Let A be a Banach algebra and let Prim(A4) be the
set of primitive ideals of A. The hull-kernel topology on Prim(A) is defined
by declaring the open sets to be those of the form {P € Prim{4) : P Z I}
as I varies through the closed ideals of A. This topology is compact if A
has an identity, but not usually Hausdorff, nor even T}. Indeed it seemms, in
general, to have few useful properties, and it has not played a prominent
part in the general theory of Banach algebras. An attempt to find a more
useful topology has been made in [14].

The situation is different, however, for particular classes of Banach alge-
bras, such as C*-algebras and certain L-group algebras. Here the hull-kernel
topology does have good properties such as local compactness, the Baire
property, and (for separable C*-algebras) second countability. These prop-
erties have been considerably exploited in C*-algebra theory and abstract
harmonic analysis.

For commutative Banach algebras, the hull-kernel topology plays a sec-
ondary role. The primitive ideals of a (unital} commutative Banach alge-
bra A are precisely the kernels of characters. Thus Prim(A) is in bijective
correspondence with the character space @4, which carries the compact,
Hausdorff Gelfand topology. This is the topology usually employed in the
study of commutative Banach algebras, but the hull-kernel topology (de-
fined on ¢4 using the natural bijection) is also used from time to time.
The hull-kernel topology is a T: topolegy in this case, and is weaker than.
the Gelfand topology. Thus the two topologies coincide if and only if the
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hull-kernel topology is Hausdorff, in which case the algebra is said to be reg-
wlar. Even for non-regular algebras, however, it is known that every Gelfand
clopen subset of the character space is hull-kernel clopen. This is the cel-
ebrated Shilov Idempotent Theorem (see [9; 3.5.13] for example), one of
the deepest results in the whole theory. Another interesting result involv-
ing the hull-kernel topology is Neumann’s characterization of the elements
of a commutative Banach algebra which induce a decomposable multiplica-
tion operator—these are precisely the elements which are continuous with
respect to the hull-kernel topology (see [8]).

The purpose of this paper is to analyse the failure of regularity in a non-
regular algebra a little more closely. A first approach, as in C*-algebra theory,
might be to regard non-regularity as the failure of the Hausdorff property
for the hull-kernel topology. This would lead to the study of separated points
(i-e. points which can be separated by disjoint hull-kernel open sets from any
point not in their closure). For a separable C*-algebra, the local compactness
and the second countability of the hull-kernel topology ensure the existence
of a dense subset of separated points. For a separable commutative Banach
algebra, however, there might not be any separated points, as the case of
the disc algebra shows. Furthermore, this approach fails to take advantage
of the Gelfand topology on the character space.

What we do, therefore, is to adopt the approach used in the study of spec-
tral synthesis. Let A be a Banach function algebra on a compact Hausdorff
space X, and for z € X, let M, and J, be the ideals of functions vanishing
at z and in a neighbourhood of z, respectively. The standard notion is that
if J, is dense in M then A is strongly regulor at z. If A is not strongly
regular at z, there is still the possibility that = is the only point in the hull
of Ji, i.e. in the set {y € X : M), 2 J,}. In this case we will say that z is
an R-point. If % is not an R-point, so that the hull of .J, is non-trivial, then
the properties of the hull of J, become interesting. An investigation along
these lines, for the non-regular algebra H> + C, is conducted in [5]. One
question that arose in that work, which we are able to answer, is whether
the hull of J, is necessarily connected.

As well as the hull of J,, another set which it is natural to consider is the
set which we call Fy, defined by F, = {y € z : M, 2 J,}. If F, is a singleton,
we say that x is a point of continuity. In Proposition 2.2 we show that a point
z is a separated point in X if and only if it is both an R-point and a point of
continuity. Thus our general approach, given a non-regular Banach function
algebra, is to ask the following questions. Firstly, how badly does regularity
fall-—how many R-points and non-R-points are there, and how many points
of continuity and discontinuity? Secondly, if = is a non-R-point, or a point of
discontinuity, how large is the hull of J, or the set F,,? Are they finite or infi-
nite, countable or uncountable, connected or disconnected? As we shall see,
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the answers to these questions can vary depending on such things as whether
the Banach function algebra is natural, or whether it is a uniform algebra.

The structure of the paper is as follows. In Section 2 we introduce the
various definitions in more detail, and consider some conditions which ensure
that there are an abundance of R-points, or points of continuity. In Section
3 we consider non-R-points. The main result is that if A is a natural Banach
function algebra then the hull of J, is connected for each point z € $4.
Thus the hull of J, is either a singleton, in which case z is an R-point, or it
is uncountable. In Section 4 we consider points of discontinuity. The main
results are that if 4 is a natural Banach function algebra and z does not
belong to the Shilov boundary of A then F, has an infinite connected subset,
while if 4 is a uniform algebra and  is a point of discontinuity then Fj has
a non-empty perfect subset.

Let us conclude this introduction by mentioning an interesting conse-
quence of our work. One striking difference between C*-algebras and com-
mutative Banach algebras is that whereas there are simple examples of C*-
algebras with hull-kernel topology which is non-Hausdorff, but very close to
being Hausdorff, the standard examples of non-regular Banach function al-
gebras all have highly non-Hausdorff hull-kernel topologies. For example, let
A be the C*-algebra of all sequences of two-by-two complex matrices which
converge to a diagonal matrix at infinity. Then Prim(A4) is isomorphic to
the set of natural numbers, with a double point at infinity, so there are only
two non-separated points in Prim(A). The disc algebra, however, which is
the most familiar non-regular Banach function algebra, has character space
equal to the disc, and the hull-kernel topology on this space is only a little
stronger than the cofinite topology (the weakest possible T} topology); see
[6; p. 89] for a description. Part of the motivation for this paper was the
search for a non-regular Banach function algebra with a hull-kernel topology
which was close to being Hausdorff—perhaps with only a finite or countable
number of non-separated points. Theorem 3.2 shows, however, that the set
of points which cannot be separated from a given point is connected, and
hence is either a singleton (the point itself) or uncountable. Thus if a Ba-
nach function algebra is not regular, its hull-kernel topology must be very
far from Hausdorff.

2. Separated points, R-points, and points of continuity. In this
gection we establish various basic results about separated points, R-points,
and points of continuity, and consider some conditions which ensure an
abundance of such points. '

Let X be a topological space and let 3,y € X. Thenx ~ y if x and ¥
cannot be separated by disjoint open sets in X. A point of X is a separated
point if it can be separated from every point not in its closure.
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Now suppose that A is a Banach function algebra on a compact, Haus-
dorff space X. In this setting, when discussing separated points, we will
always work with the hull-kernel topology on X. Evidently, = ~ y whenever
either M, D J, or J, & M,,. Let us say that x is an R-point if for all y € X
with y # z, J» € M, (or in other words if, working on X, the hull of J,
is just {z}). We say that = is a point of continuity if for y # z, J, € M,
(or, in terms of the notation introduced earlier, if F,, == {&}}. Recall that A
is regular on X if every point of X is an R-point, or equivalently, if every
point of X is a point of continuity. We say that the algebra A is regular if it
is regular on @ 4. The algebra A is normal on X if, for every pair of disjoint
closed sets E, F contained in X, there is an f € A with f(E) C {0} and
F(F) € {1}; A is normal if it is normal on $ 4. It is standard (see [16; 27.2]
for example) that every regular Banach function algebra is normal.

With A and X as above, we denote the Shilov boundary of A by I'4. The
algebra A can clearly be regarded as a Banach function algebra on @ 4, or on
Iy if we wish. However, we will also consider cages where X is neither equal
to the character space nor the Shilov boundary. In the case where X = &4
we say that A is natural on X.

Unless otherwise specified, we shall only consider unital Banach function
algebras.

LEMMA 2.1. Let A be o Banach function algebra on a compact Housdorff
space X, and let © € X. The following ore equivalent:

(i) = is a point of continuity,
(1) every Gelfand neighbourhood of T contains a hull-kernel neighbour-
hood of x,

(iii} every net in X which converges to = in the hull-kernel topology con-
verges to x in the Gelfand topology.

Proof. The equivalence of (ii) and (iii) is a simple matter of general
topology. Suppose then that (i) holds. Let (z,) be a net in X converging
to © in the hull-kernel topology. Suppose for a contradiction that (z,) does
not converge to z in the Gelfand topology. Then by passing to a subnet if
necessary, we may suppose that (z,) converges to y in the Gelfand topology,
for some y € X with ¢ # . Since z is a point of continuity, there exists
f € A such that f € J, and f(z) # 0. Hence eventually f(z,) = 0, since
[ € Jy and (w,) converges to v in the Gelfand topology. On the other
hand, eventually f(z.} # 0, since (z,) converges to # in the hull-kernel
topology. This contradiction shows that (z,) must converge to % in the
Gelfand topology after all. Hence (iii) holds.

Finally, suppose that (ii) holds. Let y € X with y # z. Let N be a
Gelfand neighbourhood of z such that y is not in the Gelfand closure of N.
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By assumption there exists f € A with f vanishing outside N and such that
f(z) 5 0. Hence f € Jy, so M, 2 J,. Thus (i) holds. m

It follows from Lemma 2.1(ii) that if Iy € X then every point of con-
tinuity is contained in the Shilov boundary of A. In particular, this is the
case if A is natural on X, or if A is a uniform algebra on X.

Recall that for a Banach function algebra on a compact, Hausdorf space
X, a point z € X is an independent point if for every ¢ with 0 < ¢ < 1
and every neighbourhood N of z, there exists f € A with f(z) = 1 and
|flx\~ < & (where | f|x\n is defined to be sup{|f(z)| : € X\N}). Lemma,
2.1(ii) shows that every point of continuity is an independent point.

PROPOSITION 2.2, Let A be a Banach function algebra on a compact
Housdorff space X. Then o point z € X is a separated point if and only if
it is both an R-point and a point of continuity.

Proof. Suppose first that z is a separated point. Let y € X with y # =.
Then there exist f,g € A with fg =0 and f(z) #0, g(y) # 0. Thus f € J,
but f & My, while g € J, but ¢ & M. Hence M, 2 J, and M, 2 J,. Since
this is true for all ¢ % «, = is an R-point and a point of continuity.

Now suppose that z is both an R-point and a point of continuity. Let
y € X with y  z. Since z is an R-point, M, 2 Jz, so there exists g € J,
such that g(y) # 0. But 2 is a point of continuity, so by Lemma 2.1(ii) the
Gelfand neighbourhood of ¢ on which g vanishes must contain a hull-kernel
neighbourhood of @. Thus there exists f € A such that fg = 0, and f(z) # 0.
Hence z o¢ y. Since this is true for all y 5 z, z is a separated point.

Recall that a Banach function algebra A on a compact Hausdorff space X
is weakly regular on X if every non-empty Gelfand open subset of X contains
a non-empty hull-kernel open set. If 4 is weakly regular and uniform on X,
then X is necessarily the Shilov boundary of A. The standard example of
a weakly regular algebra which is not regular is the “tomato-can algebra”,
which is the uniform algebra of continuous functions on a sclid cylinder
which are analytic on the base of the cylinder. This is weakly regular on its
character space, which is the solid cylinder.

For a subset U of X, let ﬁ-h.k and ﬁg denote the closures of U in the
hull-kernel and Gelfand topologies, respectively.

THeoREM 2.3. Let A be a Bonach function algebra on a compact metriz-
able space X . Then A is weakly regular on X if and only if the set of points of
continuity is Gelfand dense in X. In this case the set of points of continuity
contains a dense G of X in the Gelfand topology.

Proof. Suppose first that the set of points of continuity is dense in X in
the Gelfand topology. Then Lemma 2.1(ii) shows that A is weakly regular
on X.
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Conversely, suppose that A is weakly regular on X. Let (U;)32, be a base

—h-e .
for the Gelfand topology on X. For each i, the set U; "\U; is a hull-kernel
closed set with no hull-kernel interior, and hence no Gelfand interior. Thus

Y = U2, ﬁz—h_k\Ui is a Gelfand meagre subset of X. Let y € X\Y. Then
for any z € X with = # y, there exists a U; containing = but not y. Since

Yy & ff;h_k, there exists a function f € A which is non-zero at y but vanishes
on the Gelfand neighbourhood U of z. Hence M, ;¢ J:. This shows that y
is a point of continuity. =

It follows from Theorem 2.3 that if A is weakly regular on a metrizable
space X then the hull of J, has empty interior for each € X. It would be
interesting to know whether Theorem 2.3 can be improved to show that X
has to have a dense Gy of separated points.

THEOREM 2.4. Let A be a Banach function algebra on a compact Hous-
dorff space X, and let y ¢ X. If the hull-kernel topology 1s first countable
at y then I, has no Gelfand interior. If the hull-kernel topology is second
countable on X then the set of R-points contains a dense Gs of X in the
Gelfand topology.

Proof. Let V be a Gelfand open subset of $4 not containing y. Let
(U:)2, be a base for the hull-kernel topology at y. For each i, set V; = VNU;.
Then for each £ € V there is an 4 such that = ¢ V;. Hence 32, V; is empty.
Since V is a Baire space, it follows that at least one V; is not dense in V'
in the Gelfand topology. Thus there exists f € A such that f(y) # 0 but f
vanishes on a Gelfand open subset, W say, of V. Thus for z € W, z € F,,.
It follows that F, has empty Gelfand interior.

Now let (U;)22, be a base for the hull-kernel topology on X. Then for

each ¢, Z}G\Ui is a Gelfand closed set with no Gelfand interior. Hence Y :=
UZ1 U "\Ui is a meagre subset of X. Let y € X\Y. Then since (U;)32,
is a base for the hull-kernel topology on X, for any z € X there exists a
U; containing = but not y. Since y ¢ U’iG, there exists a function f € A
which is non-zero at z but vanishes in a Gelfand neighbourhood of y. Hence
M, 2 J,. This shows that v is an R-point. m

Lemma 2.1(ii) shows that the hull-kernel topology is first countable at

every point of continuity, provided that the space X is first countable in the
Gelfand topology.

ExaMPLE. Let X = {0,1,1/2,1/3,...}, and let A be the restriction to
X of the disc algebra. By the identity principle, the restriction map is an
isomorphism, and so 4 is a Banach function algebra on X {(where the norm is
the uniform norm of the functions on the closed unit disc). The hull-kernel
topelogy on X is simply the cofinite topology, which is second countable
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because X is countable. By Theorem 2.4, therefore, the set of R-points is

dense in X. In fact, every point except 0 is an R-peint, while 0 is the only
point of continuity.

We do not have an example of a natural, non-regular Banach function
algebra for which the hull-kernel topology is second countable, or even first
countable. It could well be that such things do not exist. A partial result in
this direction is given in Section 4.

3. Non-R-points. In this section we consider what happens when there
is a non-R-point z. We show that the hull of J; is connected, provided one
is working on the character space. Thus there must be uncountably many
points of discontinuity, and also uncountably many points which cannot be
separated from z in the hull-kernel topology by disjoint open sets. We also
show that, although there might not be a net in X converging to each point of
the hull of J, in the hull-kernel topology, if 4 is a separable Banach function
algebra then the set of points = which do have this property contains a dense
G subset of X. '

PROPOSITION 3.1. Let A be o natural, unital Banach function algebra.
Suppose thot (zo) is a net in $4 such that every hull-kernel cluster point
of (o) is a hull-kernel limit point, and such that that there is an x € $4
to which (z4) converges in the Gelfand topology. Then the set of hull-kernel
limit poinis of {x4) is Gelfend connected.

Proof. Let L be the set of hull-kernel limit points of (z,). Note that
L is hull-kernel closed, and hence also Gelfand closed. Suppose, for a con-
tradiction, that L is a disjcint union of two non-empty Gelfand closed sets,
M and N say. Let § and T be disjoint Gelfand open subsets of &4 contain-
ing M and N, respectively. For each o, let K, be the hull-kernel closure of
the set {zs : 8 > a}. Then L = [, K, [7; Theorem 2.7], and each K, is
Gelfand elosed, so a simple topological argument shows that there is an aqg
such that for all & > ap, Ka € SUT. If we suppose that 2 € M C S then
there is a v > ap such that for all @ = v, £ € §. The quotient Banach alge-
bra A/I(K,) has the disconnected maximal ideal space K. By the Shilov
Idempotent Theorem there exists f € A such that f is zero on K, NS, but
[ equals one on K, N T But then f(z,) = 0 for all @ > . Since the zero
set of f is hull-kernel closed, this contradicts the hull-kernel convergence of
(zy) to points in N. Hence L is connected. m

THEOREM 3.2. Let A be o natural, unital Banach function algebra. Let
€ Pa. Then

(i) the hull of J; is Gelfand connected,
(ii) the set {y € B4 : 2 ~ y} is Gelfand connected.
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Proof. (i) Let E be the hull of J;;. Suppose that y € E with y 7 z. Then
every hull-kernel neighbourhood of ¥ has non-empty intersection with every
Gelfand neighbourhood of z. Thus there is a net (z,) in &4 comnverging to
z in the Gelfand topology, and to y in the hull-kernel topology, By passing
to a universal subnet we may assume that every hull-kernel cluster point of
(z4) is a limit point. Thus the set L of hull-kernel limit points of (x.) is
Gelfand connected, by Proposition 3.1. But if z € L then z cannot have a
hull-kernel neighbourhood disjoint from a Gelfand neighbourhood of x, so
we must have M, 2 J,. Thus L is a Gelfand connected subset of E, and
y € L. Hence every point of F is in the same Gelfand connected component
of E as z, s0 F is Gelfand connected.

(i) Let H be the set {z € 4 : z ~ z}. Let y € $4\{2} with y ~ z.
Let (zo) be a net in $4 converging to both y and z in the hull-kernel
topology. By passing to a universal subnet we may suppose that (z,) is
Gelfand convergent, and that every hull-kernel cluster point of (z,) is a
limit point. Thus the set L of hull-kernel limit points of (z4) is connected,
by Proposition 3.1. But for each z € L, z ~ z. Thus L is a Gelfand connected
subset of H, and y € L. As above it follows that H is Gelfand connected. m

Theorem 3.2(i} answers one of the questions posed by Gorkin and Mortini
[5]-

One immediate consequence of Theorem 3.2 is the following.

COrOLLARY 3.3. Let A be a unital Banach function algebra. Then $4
has no isolated points of discontinuity.

We now give examples to show that for a non-natural Banach function
algebra the hull of J, does not have to be connected, and there may be
. isolated points of discentinuity.

ExaMPLES. Let A be the disc algebra on the countable space X described
in the Example after Theorem 2.4. Then the hull of J; is neither connected
nor uncountable. The only poeint of continuity is 0, so every other point of
X is an isolated point of discontinuity.

It is possible for a uniform algebra to have a solitary point of discontinu-
ity. For example, let A be the uniform algebra obtained by restricting H®
(the algebra of bounded functions on the disc which are analytic on the open
disc) to the fibre of its maximal ideal space agsociated with a point on the
unit circle (see [6; p. 187 ff.]}. Then A is regular on its Shilov boundary I's,
but A'is not normal. Now consider A as a uniform algebra on X = I's U {y},
where y is any point of $4\I's. Then y is the solitary point of digcontinuity

for A on X (although there must be many non-R-points—see the results in
Section 4).
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This example also shows that it is possible for the hull of Jp to have
exactly two points, because if z is any element of Fy\{y} then the hull of
Jo is precisely the set {z,y}. An easy modification produces an example
of a uniform algebra on its Shilov boundary with a J, having a twe-point
hull. Simply form a new compact space Y by gluing an interval to X with
endpoints at z and y above, and take the uniform algebra of all continuous
functions on Y whose restriction to X is in A.

Here is another consequence of Theorem 3.2,

COROLLARY 3.4. Let A be a Banach function algebra with 4 = [0,1].
IF A is weakly regular then A is normal.

Proof. By Theorem 2.3, the set of points of continuity contains a dense
Gs of [0,1] in the Gelfand topology. Suppose that z € [0,1] with z not an
R-point. Then the hull of J; is a connected subset of [0, 1] by Theorem 3.2(i),
and hence is an interval. Thus it contains points of continuity other than =
itself, contradicting the definition of a point of continuity. Thus every point
of [0,1] is an R-point, so 4 is regular, and hence normal. =

If the condition on the character space is dropped, there are non-regular,
weakly regular uniform algebras on [0, 1]. For example, let A be the non-
trivial uniform algebra on the Cantor set described in [17; 9.3]. The character
space of A is the whole of the Riemann sphere (see [17; 9.2, 9.3]), so [16;
27.3] shows that A is not normal on the Cantor set. Let B be the algebra
of continuous functions on [0,1] whose restrictions to the Cantor set lie in
A. Then B is a non-normal uniform algebra on [0,1]. Each point of [0, 1]
not in the Cantor set is a separated point, so B is weakly regular on [0, 1].
The character space of B is not equal to [0, 1] since it contains a copy of the
Riemann sphere.

Now let A be a Banach function algebra on a compact Hausdorff space
X, and let € X. Then for y in the hull of J; there is a net converging
to both # and y in the hull-kernel topology. It is not necessarily the case,
however, that a net can be found converging to an arbitrary pair of points
in the hull of J,. Consider the following example.

ExaMmpLe. Let A be the disc algebra on the disc X. Let 2 be a fixed
point in X, and let B = {(f,g) € A® A: f(z) = g(z)}. Then the character
space of B consists of two copies of the disc glued at the point . The ideal
J is the zero ideal, so the hull of J; is the whole of 5. But if y and =
belong to different copies of the disc then there is no net in $p converging
simultaneously to both y and # in the hull-kernel topology.

To show that there are z's for which the hull of J, is contained in a
hull-kernel limit set, we require the notion of a primal ideal. Recall that
an ideal I in a commutative ring R is primal if whenever a1,...,0, € R



62 J. F. Feinstein and D. W. B. Somerset

with aj...an = 0, then a; € I for at least one i € {1,...,n} (see [13] for
example). It is a straightforward piece of general topology to show that if A
is a Banach function algebra and I is a closed primal ideal of A, then there
is a net in ¥4 converging to every point in the hull of I in the hull-kernel
topology (see [1; 3.2]).

We shall show that if A is a separable Banach function algebra then,
in the sense of Baire category, most of the ideals J, are primal. First we
observe that every closed primal ideal contains a Jy.

LEMMA 3.5. Let A be a Banach function algebra on o compact Hausdorff
space X. Let P be ¢ closed primal ideal of A. Then there exists © € X such
that P D J,.

Proof. Suppose for a contradiction that P 2 J, for each z € X. Thus
for each € X there exists f € A such that f vanishes in a neighbourhood
of z, but f & P. By a compactness argument, there exist a finite number of
functions fi,..., f, such that fi...f, =0, with f; € P (1 €4 < n). This
contradicts the assumption that P is‘primal. Hence P contains J, for some
reX.n

LeMMA 3.6. Let A be @ Banach function algebra on a compact Hausdorff

space X. For f € A the function © — ||f + J,|| is upper semicontinuous
on X.

Proof Let f € A, z € X, and let £ > 0 be given. Then there exists
g € Jo such that ||f —g|| < ||f + Jz|| + ¢ But g € Jy for all y in a
neighbourhood N of x, so ||f -+ Jy|| < ||f —gll < | f + Jo|| + e forally e N,
Thus the norm function & — ||f + J»|| is upper semicontinuous on X. w

For an upper semicontinuous function f on a Baire space X, the set of
points of continuity of f contains a dense G's of X (see [3; B18] for exarmple).
Suppose now that A is a separable Banach function algebra on a compact
Hausdortt space X, and let {f;}$2; be a countable dense subset of A. Then
X is a Baire space, so there is a dense G5 ¥ of X consisting of points
at which all the norm functions = — ||f; + J.|| are continuous. But is is
straightforward to check that the continuity of these norm functions, at a
particular point, for a dense subset of A forces the continuity of all the
norm functions at that point. Thus if A is separable there is a dense Gy

of X consisting of points at which every norm function & + I f + Tl is
continuous.

PROPOSITION 3.7. Let A be a separable Banach function algebra on a

compact Hausdorff space X. Then the set of z € X for which J is primal
contains o dense Gy in X. :
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Proof. By the remarks above, there is a dense G5 Y C X such that
for each y € Y every norm function is continuous at y. Let y €Y. We show
that J, is primal. Sup;_)_ose that fy,..., f, are a finite number of elements
of A which are not in J,. By continuity of the norm functions at y, there
is a neighbourhood N of y in X such that f; ¢ J, for # € N. For each
i€ {l,...,n}, let N; = {& € N : fi(z) # 0}. Then N; is a dense open
subset of N, so [.; N; is non-empty. Let z belong to this intersection.
Then fi(z) # 0 for 1 <3 < n, 50 fi...fn # 0. This shows that J, is
primal. m

4. Points of discontinuity. In this section we consider what happens
when there is a point y of discontinuity. The general aim is to show that F,
has to be big, and hence that there have to be many non-R-points. The main
results are that if A is a natural unital Banach function algebra and y ¢ I'y
then F, has an infinite, connected subset, while if A is any uniform algebra
then Fy has a perfect subset. Thus in both cases there are uncountably
many non-R-points. A simple example was given after Corollary 3.3 of a
non-natural Banach function algebra with a solitary non-R-point, but we
are unable to say whether this phenomenon can occur for a natural Banach
function algebra, or for a Banach function algebra on its Shilov boundary.

DerFINITION. Let A be a Banach function algebra on a compact, Haus-
dorff space X. Then 4 is local on X if the following condition holds: a
function on X belongs to 4 if it agrees in a neighbourhood of each point
of X with an element of A. The algebra A4 is 2-local on X if the following
condition holds: a function on X belongs to A if there are elements g; and
g2 in A so that every point of X has neighbourhood on which f agrees with
either g or gp. If X is the character space of A above, then A is gaid to be
local or 2-local, respectively.

Every normal Banach function algebra is local, and every local Banach
function algebra is, of course, 2-local. Most commonly met uniform algebras
are local, For ingtance, if X is a compact subset of the plane then the uni-
form algebras A(X) and R(X) are local. All approximately normal uniform
algebras (hence all uniform algebras with character space equal to [0,1])
are 2-local [18; 2.4, 3.1]. It follows from [4; Theorem 11] that the algebra B
after Corollary 3.4 is not 2-local on [0, 1]. For any compact plane set X, the
Banach function algebras on X introduced by Dales and Davie in [2] are
local on X.

Tn the first result of this section we do not require a norm on our alge-
bra. In fact, the result is valid for multiplicative sub-semigroups of C{X)
(where C(X) denotes the algebra of continuous, complex-valued functions
on a compact Hausdorff space X).
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ProOPOSITION 4.1. Let X be a compact Hausdorff space ond let A be o
subalgebra of C{X). Suppose that A is 2-local on X. Let y € X, and recall
that Fy = {x € X : J, C M,}. Then F, is connected.

Proof. Suppose, for a contradiction, that F, is not connected. Since F,
is closed, we may write F, = E; U E; where E1 and Fy are non-empty,
disjoint, closed subsets of Fy,. Suppose that y € Ez. Choose a closed neigh-
bourhood N of By such that N N F, = E,, and let K be the boundary of
N. Then K is a compact subset of X\F,. Thus, for each t € K we can
find an f € J; with f(y) = 1. By compactness, multiplying finitely many of
these functions together, we can find a function g € A which vanishes on a
neighbourhood of K and such that g(y) = 1 (if K is empty, simply take g
to be zero on N, and 1 elsewhere}. Define h(t) to be 0 for ¢ € N, and set
h(t) = g(¢) for other values of t. Then h € A since A4 is 2-local. But then
h € J, and A{y) = 1, contradicting the cheice of z. The result follows.

COROLLARY 4.2. Let A be a 2-local Banach function algebra on [0,1]. If
the hull-kernel topology on [0,1] is first countable then A is regular on [0,1].
If &4 = [0,1] and the set of points at which the hull-kernel topology is first
countable is dense in [0, 1], then A is normal.

Proof. Let y be a point of first countability for the hull-kernel topology.
Then F, is a connected set with no interior, by Proposition 4.1 and Theorem
2.4, and hence is a singleton. Thus F, = {y}, so y is a point of continuity.
Thus if the hull-kernel topology is first countable, every point is a point of
continuity, so A is regular on [0, 1]. The proof of the second statement is as
in Corollary 3.4. =

Corollary 4.2 shows that non-regular Dales-Davie algebras on [0, 1] must
have hull-kernel topology which is not first countable.

We now use Preposition 4.1 to show that if A is a natural unital Banach
function algebra and y & I'4 then F, has an infinite, connected subset.

Let B be a uniform algebra on its character space $g. Then there is
a smallest local uniform algebra € on &5 containing B, which is obtained
from B as follows. Set L¥(B) = B, and for each ordinal ¢ define L7+1(B)
inductively to be the uniform closure of the functions belonging locally to
L7(B). If o is a limit ordinal, let L7 be the uniform closure of (J{L°" :
0 < ¢’ < ¢}. The process must terminate {with C(®p), if not before), so
eventually L° = L7+, For this ordinal o, set ¢' = L°. Then evidently C is
the smallest local uniform algebra on #5 containing B. Examples are given
in {12] showing that, with ¢z metrizable, the process can terminate at any
given stage before the first uncountable ordinal.

LEMMA 4.3. Let {Ax}rea be an increasing family of uniform algebras,
oll with the same character space X. Let B be the uniform closure of their
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undon in C(X). Suppose that Ty, =Y for all A, whereY is a Gelfand closed
subset of X. Then ®p =X and 'g =Y.

Proof It is easy to see that &5 = X, and it is also clear that I's 2 Y,
since I'p is a boundary for each A,. Let z € X be a strong boundary point
for B. Let N be any Gelfand neighbourhood of . Then there exists f € B
such that |f{z)| > 3/4 while | f|x\n < 1/4 (cf. [16; 7.18]). Hence for some A
there exists g € A, such that |g(x)| > 1/2 while |g|x\n < 1/2. This shows
that ¥ = I'sy, meets N, and hence that z € Y since N was an arbitrary
neighbourhood of . Thus I's C Y, since the set of strong boundary points
is dense in I'g [16; 7.24]. Hence [g =Y. m

LEMMA 4.4. Let A be a unital Banach function algebra and let C be the
smallest local uniform subalgebre of C($4) containing A. Then &4 = P
and I's = I'c.

Proof. First, let B be the uniform closure of A in C{®4). It is straighfor-
ward that &4 = $g. We now argue as in Lemma 4.3. Since I'p is a boundary
for A, we have I'g 2 I's. On the other hand, suppose that z € &4 is a strong
boundary point for B. Let N be any Gelfand neighbourhood of . Then there
exists f € B such that |f(z)| > 3/4 while |fle,\~ < 1/4 (cf. [16; 7.18]).
Hence there exists g € A such that |g(z)] > 1/2 while |g|s,\n < 1/2. This
shows that I's meets N, and hence that x & I'4 since N was an arbitrary
neighbourhood of . Thus I'y = I's.

Now let C be the smallest local uniform subalgebra of C (& 4) containing
B. Then Stolzenberg showed that ®0(py = Pro+i(p)y for each ordinal o
(cf. [15]), and he also mentioned in a remark that I'ro(py = I're+ip) for
each ordinal o (this follows, as with the maximal ideal space result, by
considering the intermediate uniform algebras generated by L7 (B) together
with a single function f which is locally in L7{B)). Thus it follows from
Lemma 4.3 that $o = &5 and I'e = I's, and hence that &g = $4 and
ITo=IT4.m

We are now ready for the main result of this section.

THROREM 4.5. Let A be o unital Banach function algebra and let y €
F4\I'a. Then F, has an infinite connected subsel.

Proof Let C be the smallest local uniform subalgebra of C($4) con-
taining B. Then we saw in Lemma 4.4 that Po = P, and that I'o = 4.
Hence y & I, so Lemma 2.1(ii} shows that y is not a point of continuity
for C'. Thus the set Fy o ={z € P :J: & M,} (where J; and M), are here
defined relative to the algebra () has more than one point, and is connected
by Proposition 4.1. Since F, 2 Fy ¢, the result follows. =

For uniform algebras a weaker but more general statement is true.
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THEOREM 4.6. Let A be a uniform algebra on o compact Housdorff space
X and let v € X. Then either y is o point of continuity or ¥, has o non-
empty perfect subset.

Proof Suppose, for a contradiction, that F, has no non-empty perfect
subsets, and that there exists x € Fy\{y}. Choose f € A with f(z) = 0
and f(y) = 1. By [10], f(F,) is a countable, compact set. Thus it is easy to
choose two disjoint closed rectangles Ry and Rj in the complex plane such
that 0 € R1, 1 € Rs, and such that f(Fy) is contained in the interior, U,
of 3 U Ry. By Runge’s theorem [11; 13.9] we can choose a sequence (py)
of polynomials such that p, — 0 uniformly on R;, but p, — 1 uniformly
on Rz, as n — o0. Also, X\f~1(U) is a compact subset of X\ F,, so by
compactness (as in Proposition 4.1} we can find a function g in A which
vanishes on a neighbourhood of X\ f~1(I7), but such that g(y) = 1. Set
hn = gpu(f). Then h, € A, and the sequence (h,) converges uniformly on
X to a function which vanishes on a neighbourhood of « but which is 1 at y.
This contradicts the choice of z. Thus Fy,\{y} must be empty, as claimed. =

The non-trivial uniform algebra A on the Cantor set, mentioned after
Corollary 3.4, is not regular on the Cantor set, because it is an integral
domain. Thus for a point y of discontinuity, the set Fj, is not connected.
This example is, however, 2-local on its character space (which is in fact
equal to the Riemann sphere) so the set Fy, would be connected if we were
working on the character space.

The next corollary is used in [4].

COROLLARY 4.7. Let A be a uniform algebra on a compact Housdorff
space X. Suppose that A is not regular on X. Then the set of non-R-points
has a non-empty perfect subset.

Proof. Since 4 is not regular on X, there exists y € X such that the
set {x € X\{y} : J. € M,} is non-empty. But all points of this set are
non-R-points, and, by Theorem 4.6, this set contains a non-empty perfect
set. The result follows. m

We saw in Section 3 that a Banach function algebra can have a soli-
tary non-R-point. We do not know, however, whether this can happen for a
natural Banach function algebra, nor for a Banach function algebra on its
Shilov boundary. Proposition 4.1 shows that such an example would have
to be non-2-local. The next theorem shows that the difficult case is when
every point is an independent point.

THEOREM 4.8. Let A be a Banach function algebra on o compact Haus-

dorff space X and let y be a non-independent point of X. Then Fy has a
non-emply perfect subset.
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Proof. Let B be the uniform closure of A in C(X). Then it is easy to
see that y is not a point of continuity for B on X, so the set F, g = {z €
X :Je € My} (where J, and M, are here defined relative to the algebra B)
has an infinite perfect subset by Theorem 4.6. Since F, 2 Fy, B, the result
follows. w

Recall that a Banach function algebra A on a compact Hausdorff space
X is approvimately regular on X if whenever Y is a closed subset of X, and
gz € X\Y, then for any £ > 0 there exists f € A such that f(z) = 1 and
|flv < e. This is clearly equivalent to every point of X being an independent
point. It is also clear that if A is a uniform algebra and A is approximately
regular on X then X must be the Shilor boundary of A.

The disc algebra is appreximately regular on the circle, but the tomato-
can algebra is not approximately regular on its character space.

LeMMA 4.9. Let A be a uniform algebra on o compact Housdorff space
X. Let © € X be an independent point, and let y € X. Then = cannot be
an isolated point in Iy, unless © =y and y s a point of continuity.

Proof. Suppose, for a contradiction, that x is an isclated point of F}, and
that F,\{z} is non-empty. Since z is an independent point there is a function
f' € A taking the valae 1 at z and nearly zero on F,\{z}. Hence f =1 — f’
is zero at » and nearly 1 on F,\{z}. We now argue as in Theorem 4.6.

It is easy to choose two disjoint, closed rectangles R; and Rj in the
complex plane such that 0 € Ry, 1 € R,, and such that f(F),) is contained
in the interior, I/, of By U Ry. By Runge’s theorem [11; 13.9] we can choose
a sequence (pn) of polynomials such that p, — 0 uniformly on R;, but
pp ~ 1 uniformly on Ry. Also, X\f~Y(U) is a compact subset of X\ F,
so by compactness (as in Proposition 4.1) we can find a function g in A
which is 0 on a neighbourhood of X\ f~1(U), but such that g{y) = 1. Set
hn = gpy(f). Then hy, € A, and the sequence (hr) converges uniformly on
X to a function A which is 0 on a peighbourhood of & but which is 1 on a
neighbourhood of F,\{z}.

The function A shows that x = y, for otherwise we have a function
vanishing in a neighbourhood of = but non-zero at y, which contradicts the
fact that z € F. =

As an immediate consequence of Lemma 4.9, we have the following.

THEOREM 4.10. Let A be o uniform algebra. If A is approzimately reg-
ular on X = I's, and y € T'a, then F,\{y} has no isolated points. Hence A
has no isolated non-R-points.

‘We conclude with an example showing that a uniform algebra on its
Shilov boundary can have an isolated non-R-point. We do not know if this
is possible for a uniform algebra on its character space.
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EXAMPLE. Let X be the closed unit disc and ¥ =T U {0,1/2,1/3,...}.
Let A be the uniform algebra of all functions in C{X) whose restriction to
Y ig in the restriction to Y of the disc algebra. It is easy to see that X is the
Shilov boundary of A, and that the only non-R-points for A are the points
of T and the point 0. Thus 0 is an isolated non-R-point for A. In fact, for
y €Y, Fy = {0,y}UT. All other points of X are points of continuity for A.
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Dirichlet series and uniform ergodic theorems for
linear operators in Banach spaces

by
TAKESHI YOSHIMOTO (Kawagoe)

Abstract. We study the convergence properties of Dirichlet series for a bounded
linear operator T in a Banach space X. For an increasing sequence p = {jn} of positive
numbers and a sequence f = {fx} of functions analytic in neighborhoeds of the spectrum
o (T, the Dirichlet series for {fn(7)} is defined by

Dlf,mz)(Ty= Y e #r*fu(T), zeC.

n=0

Moreover, we introduce o family of summation methods called Dirichiet methods and
study the ergodic properties of Dirichlet averages for 7" in the uniform operator topology.

1. Introduction. In this paper we attempt to study the Dirichlet series
in the ergodic theory setting for a bounded linear operator T in a Banach
space X with a view to making up for a gap in the structural properties
of the resclvent R(\;T") of T In particular, the abscissa of uniform conver-
gence of such Dirichlet series is investigated in an operator-theoretical sense.
Moreover, we introduce a new summation method of what is called Dirich-
let’s type generalizing the Abel methed and show that when [|T"|/n — 0,
the uniform (C, 1) ergodicity of T'is equivalent to the uniform ergodicity of
Dirichlet’s type.

Let X be a complex Banach space and let B[X] denote the Banach
algebra of bounded linear operators from X to itself. For a given T € B[X],
the resolvent set of T, denoted by o(T), is the set of A € C for which
(AT =T)=! exists as an operator in B[X] with domain X. The spectrum of T'
is the complement of o(T") and is denoted by o(T"). g(T) is an open subset of
C and o(T') is a nonempty bounded closed subset of C. So the spectral radius
+(T") of T is well defined: in fact y(T") = sup |o(T)| = limMpn 00 | T™||*/™. The
function R(A; T) defined by R(X\;T) = (M — T)~* for A € o(T) is called the
resolvent of T. Tt is well known ([3], [10]) that R(X;T) is analytic in o(T)
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