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A Marcinkiewicz type multiplier theorem
for H! spaces on preduct domains

by
MICHAL WOJCIECHOWSKI (Warszawa)

Abstract. It is proved that if m : R? -+ C satisfies a suitable integral condition of
Marcinkiewicz type then m is a Fourier multiplier on the H! space on the product domain
R% x ... x R%. This implies an estimate of the norm N (m, IP(R?)) of the multiplier
transformation of m on LP(R?) as p — 1. Precisely we get N(m, LP(R4)) SE-n7k
This bound is the best possible in general.

1. Introduction. If X = X (R?) is a translation invariant function space
on n~dimensional Euclidean space R?, we denote by M(X) the space of all
Fourier multipliers for X (R¢). For ¢ € M(X) the norm of its multiplier
transform Ty will be written N (¢, X). In this paper we show some sufficient
conditions for a function ¢ to be a multiplier for the Hardy spaces on product
domains. Our main result, Theorem 1, states, roughly speaking, that ¢ is
a multiplier on the H' space of a product domain if an integral condition
of Marcinkiewicz-II6rmander type holds for derivatives of ¢ of sufficiently
high order. As an important consequence we get the best possible general
estimate of the growth of the norm of ¢ as a multiplier transform on L?
space as p — 1. '

A similar, and even stronger, result was proved by R. Fefferman in [F2]
for products of two factors. In his proof a highly developed theory of multi-
parameter Hardy spaces is involved.

Qur argument in the proof of Theorem 1 uses only the classical (non-
product) theory of HP spaces and the Sobolev integral representation of
functions by means of their derivatives. The main idea is based on the ob-
servation that a function which is a “lacunary” sum of suitably rescaled
kernels of the Sobolev representaticn is a Fourier multiplier on the classical
H?! space. A tensor product of such operators is a Fourier multiplier on a
multiparameter H' space. Using then McCarthy’s principle of “tensoring
unconditionality” and the H' variant of Littlewood—Paley theory, we are
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able to prove that the above holds for a more general class of functions:
suitable sums of tensor products of rescaled kernels of the Sobolev repre-
sentation. This in turn allows us, using the Sobolev formula, to represent
(separately in every dyadic parallelepiped) an arbitrary function satisfying
the integral condition as a combination of multipliers of this special form.

The origin of this paper was the study of special classes of rational multi-
pliers which occur as entries of the multiplier matrix for the so-called canon-
ical projection of the jet representation of a general anisotropic Sobolev
space {cf. [P], [BBPW]). While boundedness of N(¢, LP(R?)) for such a
multiplier ¢ could be easily established by means of the multidimensional
Marcinkiewicz theorem (cf. [S], Chapt. IV, Th. 6’), the order of growth
of N{(¢, LP(R%)) as p tends to 1 remains unknown (except some special
cases). There is a wide gap between the estimate from above given by the
Marcinkiewicz theorem, which actually could not be better than (p—1)~3¢/2
(cf. [B], Th. 1), and the estimate from below—the worst known ¢ of the
above type gives the order of growth (p — 1)~#t1. It turns out that the at-
tempt to diminish this gap leads to the study of multipliers on Hardy spaces
on product domains, Theorem 1 could be regarded as a modification of the
Marcinkiewicz theorem: the difference is that we derive a stronger conclusion
from stronger assumptions. It is a simple consequence of Theorem 1 that in
the case of rational multipliers appearing in the investigation of anisotropic
Sobolev spaces the upper bound could be as low as (p — 1)~%. Moreover, in
many particular cases Theorem 1 allows one to improve this bound.

The paper is organized as follows. Section 1 contains preliminaries and
the definition of multiparameter HP spaces. In Section 2 the main results
are formulated. In Section 3 we study some properties of multiparameter
HP? spaces, in particular we decompose a function from such an H? as a
sum of summands for which the Littlewood—Paley theorem holds. Section 4
contains the Sobolev integral representation of a function by its derivatives.
In Section 5 we study the multiplier properties of kernels appearing in the
representations from Section 4. The proof of the main result is given in
Section 6. In Appendix A we give the proof of Lemma 6 on commuting
families of projections. ‘

Elements of R? are denoted by 2,7,z possibly with superscripts, and
Greek characters £, n stand for elements of the dual group. Multiindices
e, B3, ... are elements of Z¢ with non-negative coordinates and the symbols
D=, 2# have the usual meaning. The meaning of || depends on the context:
|z| is the Euclidean norm for z € R? while || is the {*-norm for a multiindex
. The symbol Ri stands for elements of R® with all coordinates positive,
and Z3 for elements of Z¢ with all coordinates non-negative. The notation
a < b for some variable quantities a,b means @ < Cb for some constant
C > 0; a~bstands for a S b S a.
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We begin with the definition of HP spaces on products of Euclidean
spaces. We choose the definition most snitable for our purpose. For more

information and a deeper understanding of those spaces one can consult the
papers [CbhF2], [F1], [F2].

, Let dy,...,dy be positive integers. Let = (.. ,2F) e R: ... x
R* where 27 = (mi,...,mfij) for j = 1,...,k. For every coordinate n &

{€,..., ff;j} of R%, we denote by R, the Riesz transform on L' (R4 ) with

respect to the coordinate variable 7, i.e. the translation invariant operator
given by the formula

(R H)MED) = F(&7)

Then we denote by En the operator acting on L'{R% x ... x R%) as the

tensor product of R, acting on the coordinates 3, .. ‘,wgv with identities
on the other coordinates, i.e, ’

(Bof)(@) = Ry(f(=h,. o090 ad VL o)) (a).

In other words ﬁ,, is given by the formula

(Bf)NO = FO)
We let Ry denote the identity operator. Set
S={(o1,...,00) 105 € {D,E{,...,Eﬁj} forj=1,...,k}.

DEFINITION. The space HP(R% x ... x R%) is the set of all functions f
on R x ... x R% for which the norm

~ ~ i/p
s s iy = (3 1B - B 1)

oS

i/
171

is finite.

We obtain H?(R?) by specifying k = 1 and dy = d in the above definition.

2. Results. Let r = (ry,...,m) € R} Theset ¥, = {¢ = (£1,...,6F) €
Rh x ... x R - ry < |6 < 2, j=1,...,k} is called the r-frame in
R x ... x R%,

The main result of this paper is the foliowing
THEOREM 1. Let m € L®(R% x ... x R¥&*) satisfy
(M) Pt et | Demg) dg < ¢

Yy

for every o = (a,...,a%) € ZP x ... x ZP with |o7| < d; +.1 and every
r-frame ¥, C R% x ... x R%, Then:
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(i) The multiplier transform T, is a bounded operator on HF (Ré x
... x R%) for 1 < p < 2. Moreover, its norm N{m, HP(R® ... x R%)) is
uniformly bounded for 1 <p < 2.

(i) T is a bounded operator on LP(R% x ... x R%) with norm

: k
N{m, LP(R%* x ... x R%)) < max (p, _p_l) where 1 < p < oo.
p —_—
Part (ii) is an easy consequence of (i). Indeed, let 1 < p < 2. The identical
embedding I, : LP(R® x ... x R%) — HP(R% x ... x R%) has norm

i <o(G25)

while I~ ! ig a norm one operator. Hence the desired conclusion follows from
the factorization (Ty, : LP — LP) = I o (T : H? — HP) o I,

REMARK 1. As the example of the characteristic function of the set
R? shows, the conclusion of Theorem 1(ii) cannot be strengthened (this
multiplier is a temsor product of d different one-dimensional Riesz projec-
tions). Also the order of the derivatives for which the integral condition
(M1) has to be checked for Theorem 1 to hold is optimal, at least in the
case of dj = ... = d, = 1. This follows from Theorem 1 of [B], which
yields that there exist multipliers ¢ € |}, M(LP(R)) satisfying the orig-
inal Marcinkiewicz condition (i.e. (M;) for the first derivative) such that
N(¢,LP(R)) 2 (p — 1)~%2 On the other hand it is very likely that the
order of the derivatives considered could be diminished if we assume inte-
grability of their gth powers for some ¢ > 1. A result of this type is proved
in [F2] for ¢ = 2 and for the domain being the preduct of two factors.

REMARK 2. In fact it is enough to prove Theorem 1 for p = 1. This
follows from the result of 8. Y. Chang and R. Fefferman (cf. [ChF1]; see also
[Mu] and [X]) that the H? spaces on a product domain form an interpolation
scale.

REMARK 3. Our method of proof of Theorem 1 could be used to prove
the Marcinkiewicz multiplier theorem itself. The difference is that we have
to apply the Sobolev representation of a function by means of derivatives
of lower order. Since the assumption of Marcinkiewicz’s theorem is not suf-
ficient to yield the H* boundedness of the multipliers involved, we have
to deal with LP spaces directly. But the constants in the Littlewood—Paley
theorem for LP depend on p. Hence we obtain a weaker estimate on the
norm of the multiplier transform. More precisely for 2 € L%(R?) satisfy-
ing the assumption of the Marcinkiewicz theorem, we find in this way that
P € M(ILP(R?)) for 1 < p < oo with N {3, L2(R%)) < max(p, (p — 1)1)?d.
It seems to be unknown whether this estimate could be improved.
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3. Some properties of H? spaces. The next lemmas show the prop-
erties of the space HP(R* x ... x R%) which will be used in our argument.
Let T : HP(R%) — H? (R%) be a translation invariant bounded operator.
Then we denote by T' the operator acting on HP(R% x ... x R%) as the

tensor product of T acting on the coordinates =1, ...,z with the identities
on the other coordinates, i.e. ’

(TH(@) =TFE, .27 2L o)) ().

LEMMA 1. Assume that T : HP(R% ) — HP(R% ) is a bounded translation

inveriont operator for some j = 1,...,k. Then the operator T : HP (Rér x
co X RIEY 5 HP(RE x .. xR s bounded.

Proof. To simplify notation denote the coordinates (:z:i, .. ,:c“}'c) by z

and the_rema.ining coordinates by y. Let o € S. We get (remembering that
translation invariant operators commute)

1By - Bo, TFIE =\ [Roy ... R, T (m, v) P duv dy

“ iR,}.fﬁal . .ﬁaj_lﬁﬂjﬁ oo By flz,v)[Pda dy
S “T(Rﬂ - 'Rdj—1 Ra‘j+1 T Rﬂk f(: y))”?[p(mdj) dy
S ||R i 'Ro'j_1RO’j+1 " 'Rd'kf("y)”ifp(mdj) d‘y

Y

Te{o,m{,...,mgj}

IA

A

IA

R R, .. .ﬁ,j_lﬁ,,ﬂl e Ry, flz, )P dz dy

= ”fH.?;IP(R“l X X R )
since (01,...,04-1,T,0j41,...,0%) € Sforc € Sand 7 € {0,5{,...,§§j}. =
The next lemma is a well known property of HP spaces (cf. {$], Chapt.
VII, Th. 9).

LEmMMA 2. The Riesz transforms are bounded operators on HP(R%) with
uniformly bounded norm for 1 <p < 2. w.

LeMMA 3. Buery translation invariant bounded operator T : HP(R%: x
xR — LP(R% x.. . xR%) is actually bounded from HP(R% x ... xR )
into tself. Moreover, there exists C > 0 such that | T : H? — HP|| < C||T :
HP = IPj for 1< p<2. :

Proof By Lemma 2, the Riesz transforms are bounded on HP(R?).
Hence, by Lemma 1, for every coordinate 7 € Uj{‘f{, ey g;j} the operator

R, is bounded on H? (]Rdl X .. xRk }. Therefore, since translation invariant
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operators comrute,

1 £ g s ey = O N B -+ B T = D 1T Ry - B £

oced agcs
5 Z HRG'1 - 'Rakf”g S’ ”f“%'P(Rdl ®...xR%E Y
ges

The last inequality follows from the boundedness of ET, on HP(R® x ... x
R%) while the next to last one from the assumption of the lemma. =

The considerations of our paper are based on the following classical result
of Fefferman and Stein (cf. [FS], Sect. 3) on multipliers on H*(R™). We need
the version with ¢ < 2 which is taken from [TW] (Th. 4.11).

LEMMA 4. Let m : B2 — C be a bounded measurable function and
1< g < 2. Suppose that there exists C > 0 such that for everya € Zﬁ_ with
|l < [d/g] + 1 and for every r > 0,

(1) paled—d S
{r<j&|<2r}

Then Ty, is a bounded operator on HP(R?) and N(m, HP(RY)) is uniformly
bounded for 1 < p<2. um

| D*m{&)|7dE < C.

Let @ > 1 and ¢ < (a—1)/(a+1). A sequence B = (Bey,,7.))vez of
balls in R is called {a,c)-Hadamard if |e,+1| > aleu), v < cley| for v € Z
and the image of B under some orthogonal transformation is contained in
]Ri. A sequence of parallelepipeds indexed by Z*,

(Blek,,7ny) % - X B(eE ,rn, Nnezs CRE x ... x R,

is called (a,c)-Hadamard provided for every j = 1,...,k the sequence of
balls (B(e?, 7)) vez C RY is (a, c)-Hadamard.

DEFINITION. Let B be an (a, ¢)-Hadamard sequence of parallelepipeds
in R x ... x R%. We denote by hip,{B) the space of all functions f from

HP(R® x ... x R%) such that supp f C Upes B-

REMARK 4. It follows from the theorem of Carleson (cf. [C], Th. 3) that

in the above definition one can replace HP(R% x ... x R%) by LP(R% x

. X R%). The result of Carleson says that H*(R%) coincides with the

subspace of L1{R?) generated by the functions whose Fourier transform

is supported by the image of Ri under some orthogonal transformation.

In particwlar || fllge(resx...xmén) = [|Ifllp for f € hlp,(B) with equivalence
constants independent of p € [1, 2]. We will use this equivalence below.

As an easy consequence of Lemma 4 and Remark 4 we get
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LeEMMA 5. Let B be an (a,c)-Hedamard family of balls in R™ and f €

hip, (B). Suppose that m is a bounded function such that ma is constant
for each A € B. Then

Tl < ClIF s
where C = C(B) does not depend onp € [1,2]. =

Let P be a boolean algebra of projections. We define
[|P|| = sup {“ ZaijH a; = %1, P; are disjoint projections from 'P}.
i)

Note that [P} is bounded iff there is a finite upper bound on i1Pll, PeP

(cf. [D]). We will need the following lemma due to McCarthy (cf. MC]). Tts
proof is presented in Appendix A.

LeMMA 6. Let Py, ..., Py be commuting bounded boolean algebras of pro-
jections acting on a subspace X of LP. Then the boolean algebra of projec-
tions Q generated by P1U...UP, is bounded and ||Q| < 29/2 H;.Ll 1P;1i2.

The next lemma shows that the Littlewood-Paley theorem holds for
functions from hlp, (B).

LEMMA 7. Let B = (Ap)peze be an (a,c)-Hadamard family of paral-
lelepipeds in R% x .., x R% and f ¢ hlp,(B). Let f = 3, g0 fn where

supp)?n C Ay for n € 7%, Then there ezist constants A, B > 0 (depending
only on B) such that for 1 <p < 2,

p/2
(2) AlFIE<§( 32 15P)" < BlfIE.
nezZk
Proof. By Lemmas 5 and 1, for every 7 = 1,...,%k and every choice

of signs (cg"' ))z‘GZ the multiplier transform of the function m : |J, 4, — C
given by

m{f) =c)  forée A,
is a bounded operator on hlpp(iB). Hence, by Lemma, 6, for every choice
of signs (¢n)nezs the multiplier transform of the function m : |J,, 4, — C
given by

m{) =c, foréed,
is a bounded operator on hip,(%) with norm bounded by some constant
independent of (¢n),eze and p € {1, 2]. Therefore, by Khinchin’s inequality
(here {ry)pez+ is a sequence of independent Bernoulli variables),

S ( Z \fn|2)p/2 o~ SEt| Z Pn(t) fn - Et” Z o (t) fn
nezk nezk

ngzk
o Bel| £115 = {115 m

Y
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Next we show that every function from H?(R% x ... x R%) admits a
representation as a sum of functions from hlp,('B) for suitable families of
parallelepipeds. More precisely we have:

LEMMA 8. Let @ > 1 and ¢ < (o —1)/{a+ 1). There exist I = I(a,c),
C = C(a,c), and Hadamard families By, ..., By of parallelepipeds in Rt x
... % R such that every f € HP(R® x ... x R¥%) has a representation
f=Ffi+...+ fi where f; € hlp,(B;) for J —1,...,l and

I 7llp + - -+ Al < CllFll,
where C > 0 does not depend on p € [1,2].

Lemma 8 is an easy consequence of Lemma 1 and the following

LEMMA 9. For everya > 1 and 0 < ¢ < (a—1)/(a+ 1) there exist
! = l(a,¢,d) and (a,c)-Hadamard sequences B, ..., By of balls in RY such
that By U. ..UB, is a covering of R®\{0} and there emsts a smooth partition
of unity (¥5)pem,u...ums, subordinate to this covering, with the property that
the function F; = ZBE% Wi i3 a bounded multiplier on HP(RY) for j =
1,..., k.

Proof. Pick b > 1 and ¢ € C°(R?) satisfying supp o C {£ : [{| < b} and
o(£) = 1 for |¢| < 1. Then for v € Z put g, (£) = o(b*€) — o(b*1*£). Then
ez 00(€) =1 for £ # 0. Let (A5)%.; be a smooth partition of unity on the
unit sphere §~* = {[¢| = 1} subordinate to some finite covering of §4~* by
sets of diameter less than b— 1. Let B, ; be the smallest ball which contains
the support of the function 1,,;(£) = 0. (&)X (E/E]) W € Z, 5 =1,...,38).
Then if b is sufficiently close to 1 and an integer  is large enough, for every
i=0,1,...,r—1and j=1,...,s, the sequence of balls B;; = (Buri,j)uez
is {a, ¢)-Hadamard and, by Lemma 4, the function F;; = Y 7z Yuryi,j 8 2
bounded multiplier on HP(R?). =

4. Integral representation. The next three lemmas describe the inte-
gral representation which we are going to use in the proof of Theorem 1.

LEMMA 10. Let m € CP(R® x ... x R%*) and [ == (Iy,...,1x) € ZE.
Put Ay ={a € Z% x ... x Z% : || =l for j =1,...,k}. There exists a
constant K depending only on the numbers l; and d; such that

1 _ o
=K Y. 51D m()H‘éJ ) i
aEA;

‘We get Lemma 10 by iterating the following well known Sobolev repre-
sentation of a function by its derivatives (cf. [M], §1.1.10, Th. 2):
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LemMMmA 11. Let m € C(R?) and | € Z,. There ezists a constant
K =K(l,d) such that

3 m K D%m (f""ﬂa
3 (€)= %S =12 an

Next we state an (obvious) modification of Lemma 10 for functions with
compact support. For j = 1,...,k let ¢/ : R% — R denote a smooth
function satisfying supp @’ C B(0,2) and ¢7(¢7) = 1 for & € RY with
|€7] < 1. We put (67) = ¢/(s™¢7) for s > 0 and ¢,(€) = [[5_, ¢L, (¢7) for
’.“'m(?"h...,rk)EER‘i. ’

LEMMA 12. Let m € CP(R% x ... x R¥*) satisfy
suppm C A = B(el,r1) x ... x B(e¥ rp).

There erists a constant K = K(Iy,...,lg,dy,...,ds) such that for £ € A,

Ky = S m(n)ng_gjldjqﬁ%ﬁ( — ) dn.

aeA;

5. Multiplier properties of the representation kernels. In the next
two lemmas we investigate the kernel appearing in the integral representa-
tion from Lemma 12. We show that the lacunary sum of suitably rescaled
such kernels is a Fourier multiplier on HP. '

LEMMA 13. Let a > 1 and ¢ < 3(a—1)/(a+1). Let B = (B(e,, ™) )vez
be an (a, ¢)-Hadamard sequence of balls inRE. Let B € I satisfy |B] > d+1
and set

Fa(e) = Y ra-m & e"fd dor (E— ).

vEL |£
Then Fg is o bounded multiplier on HP (R?).

Proof. Let ¢ > 1. We get

(4) S |D*Fa(£)| d = 1n]tsﬁ(dmlﬁl) S
Be, 4y} [€)L4ry

ind‘”“ ©) |

Notice now that |D*(£7/1€|%)|7 is a homogeneous function of degree ¢{|3| —
|@| -~ d) which is greater than —d for |a| < d and 1 < ¢ < d/(d~ 1). Hence
the integral is finite. Since we also have |DV¢g,, | S 7y hl, using the formula
for the derivative of a product we get an estimate of the right hand side
of (4) by r2t=1ED aBl=lel- ~d)+d _ pd=dalol This shows that inequality (1)
holds for m = Fg, 1 <g<df(d— l), every @ € Z% with |a| < [d/g]+1 and
r > 0. Hence the lemma follows by Lemma 2. m
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Combining Lemma 1 with Lemma 13 we get

LEMMA 14. Let B = (B(el,,™n,) X ... X B(ey,,Tny ) Inezr belan (a, cg-
Hadamard sequence of parallelepipeds in Rdl x...xR¥*, Leta = (al,..., o)
€73 % ... x Z% satisfy |o?| = d; +1 and

k d._{aji(fj_e%j)aj j g
Fa(8) = Z Tnj Wfﬁwni (¢ “enj)-
nezk j=1 |£ 3
Then F, is a bounded multiplier on HP(RH x ... x R%*). =
Fora = (ol,.. ,a’“)eZd‘l Z+,nm(nl,...,nk)eRdlx...dek
and r = (ri,...,m) € RE let

k .
o2 &) =[]r¥ 1“"—5-—i2d—¢2r,(£3 7).

| N

6. Proof of Theorem 1. The next lemma, crucial to our considerations,
provides the link between “general” muitipliers and the multipliers of tensor
product form.

LeMMA 15. Let ¢ < 3{a— 1)/(a+ 1) and let B = (An)pezr be an
{(a,c)-Hadamard family of parallelepipeds in R x ... x R¥%, say A, d—
B(eL T, ) %... xB(ek ,rn,) forn € ZF. Letn = (T]n).n‘ezk c R x... xR
satisfy N € An forn € ZF and let o satisfy the assumption of Lemma 14.
Then the operator ST : hlp,,(B) — hlp,(B) given for f = onezk fn bY

(5) Sif =3 Srfa= 2 Bpat o
nezk neik
has norm bounded wniformly with respect to n and p € [1,2].
Proof Let B’ = (A!),czx where AL, = B(el ,2rn, ) X...x Bley, ,2rn, )

forn € ZF. Since ¢ < 2(a~1)/(a+ 1), the sequence B’ is (a, 2c)-Hadamard.
Put e, = (&} ) £ Al for n € Z¥ and notice that for g with suppg C

nyrtet

A, and n, € An we have supp(ge* inn—ens )N < A! . Therefore

P
1saflE=| S & . *fa

ngik

: P
= Z @emf’nel(en_nm')) * fn“
p

neZk

, ) »
= z (S.Beﬂ ¥ (fnez(ﬂnwe'n-)))81(3"—71,,,-)H .
P

nez*
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Applying now twice Lemma 7 we get

152615 S §( 3 1@z, 5, » (aeitrentyeilnnn )7

nezk

S( Z D5 -, * (fn e"‘("?n—en,))l )p/z

neLk

“ E €n,tn fne {n=en,- )”

nEZk

Setting e = (en)nez+ and applying Lemma 14 we get
1SEfIE < 5;( Z fnei(ﬂn—en,-))“P < “ Z Foeifm—eny)
nEZk P neZik

Hence, using Lemma 7 twice we get

52518 S§( X et < § (3 11B) S 1

nezk nezk

|p
P

Then the lemma follows by Lemma 3. m

LeMMA 16. Let 1 < p < 0. Assume that for every n = (m5)jer where
Tn € An forn € I, the operator 87 = (SI*),er + LP(2,1%) - LP(12,12) has
norm bounded by Cl > 0. Let u = (pn)ner € P M(An) be o sequence of
measures with total variations uniformly bounded by Cy. Then the operator
Sy IP(82,1%) — LP(£2,1%) given by

Suf = ( § 5™ fn dun(nn))

An nel

has norm bounded by C1Cs.

Proof. The formula p +—+ 5, defines a linear operator from the space
(D M(Ap))ees to the space of all linear operators on LP(£2,1?). This operator
is bounded since, by the assumption of the lemma, it is bounded on the
extremal points of the unit ball of (P M (Ap))e=. m

Proof of Theorem 1. By Lemma 8 it is enough to check the boundedness
for functions f € hlp,(*8) for some (a ¢)-Hadamard family of parallelepipeds
B=(A n)nézk witha > land ¢ < 3la—1)/(a+1). Let A, = B(el ,ra,) %

% B(ek ,ry,) and A, = B(el 2rm) X...x B(ek ,2ry,) for n € ZF. Let
qﬁn € C(R?) satisfy:

(6) supp ¢n C A7,
(7) Pnja, =1,

ﬂﬂ
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and
k o
(8) D% ()] < C ] 72"
j=1

fora=(a,...,0") € Z% x... x Z% with |of| < d;j+ 1. Let f = 3 eps fn
where supp fx C Ap. Put m, = ¢p,m for n € ZF . Clearly, by (7),
(9) Tonfr =T, fn ,
and, by (8) and (M, ), for every n € Z* and o = (a!,...,a%) € Vi S e
with o] =d;j +1,
rletl=d | plefl=de { | D%m, (n)l dn < C.

4%
Hence setting
(10) ug =il Doy (n) dn

we get |u&|| < € for n € Z*. Then, defining A = {a € 73 % ..x Zd’: :
lof| = d; +1 for § =1,...,k} and applying Lemma 12 we get, for te A,

1) ma@=K Y rw . ra | DOm(E, (6) dn
aEA

=K Y (5, (€ dusn).
acA

Therefore, using subsequently (9), (11), the triangle inequality, Lemma 7,
(5), Lemma 16, Lemma 15 and again Lemma 7, we get

1 o o
ITfls = | 2 Tmnanp - ‘ K3 — 3 (85, #a dul(n)
ne#k aEA neZk

<K | 30 185 * fudu2m)
acA

nekk

S Z (S( Z 1§$$nﬂ'n * fro dpiy (1)

nezk

2)?/2)1/33
=S (1] § 82 faduzn)
acA

2yp/2\ Urp
nekk Al ) )
p/2y\1/p
sy (I( 2 lsrsar)™)
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By Lemma 3 this ends the proof. =
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Appendix A

Proof of Lemma 6. Let us recall a variant of Khinchin's inequality (cf.
[5], App. D) which will be used below. Let rj, denote the kth Rademacher
function (k = 1,2,...). For every sequence (a5k)jkez, of complex numbers,

(A1) —;—( Z ‘Gj}qig)l/sttEs Z Tj(t)'rk(S)ﬂjk|
j,k€Z+ j,kEZ+
S( Z |U:jk|2)1/2.
SKEL,

We show how to prove the assertion for d = 2. The general case is simi-
lar. Denote the two boolean algebras of projections by P and R. Clearly
computing [|Q[ it suffices to consider operators of the form 3 g.h<n ik Fi R
with a;, = £1, P; € P and Ry, € R for j,k < n, satisfying B

n n
(A2) D P=Idx, Y Ri=Idx
j=1 k=1

(any operator which we use to compute ||@|} is in the convex hull of such
operators). For every choice of signs ¢y, ..., ¢, the operator 3 ; €i P (which
coincides with its inverse) has bound [{P|, and the same holds for R. Thus

@3 PR 2 Cfdk“kafR’“f”].

Fik<n
<| X anbibis] < 1P IRI-|| 3 cideanpimef])
i k<n Gk
We have
S eneinud],
=EE| Y opPRuf|,
<IIPI-IRI - B 3ors(re(daPiRuf]|, by (A3)
= IPI- IR [BeBa| 3o rs(Ome(s)asePiRus] |
<P 1R (3 lasBimes ) |, by (A1)
=120 IR0 [ (S 1Bms?)
= 2P| IR BB L rsOirea)PiRes]|| by (AD)
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