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Fundamental solution, eigenvalue asymptotics
and eigenfunctions of degenerate elliptic operators
with positive potentials

by
KAZUHIRO KURATA and SATOKO SUGANO (Tokyo)

Abstract. We show a weighted version of Fefferman-Phong’s inequality and apply it
to give an estimate of fundamental solutions, eigenvalue asymptotics and exponential de-
cay of eigenfunctions for certain degenerate elliptic operators of second order with positive
potentials.

1. Introduction and main results. In [Shl] Shen studied L? bounded-
ness of the operators VL%, VI/2L-1/2 2L~1 for the Schrédinger operator
L = ~A+ V with certain positive potentials V. Here L™ is an integral op-
erator with the minimal Green function (or minimal fundamental function)
for I as its integral kernel (see e.g. [Mu], [Sm]). In [KS] we extended Shen’s
results to uniformly elliptic operators L and gave a simple proof of some
part of his results. In particular our estimates imply boundedness of several
operators on weighted L? spaces and Morrey spaces. Furthermore, in [Su]
Sugano investigated several estimates for the operators V' (—A+V)"? and
VeV (—A+V)~ by using arguments as in [Sh1] and [KS]. In [Sh2] Shen also
studied eigenvalue asymptotics and exponential decay of eigenfunctions. The
main ingredients of his work are the function m(z, V) introduced to control
the fundamental solution of L and Fefferman-Phong’s inequality associated
with this weight m{z, V).

The purpose of this paper is to show a weighted version of Fefferman—
Phong’s inequality and its applications. The first application is to give an
estimate of fundamental solutions of the following degenerate elliptic oper-
ators with positive potentials:

L= -V(A(z)V) + V(z),

where V(2) > 0, A(z) = (04(z))?;=; and ay(x) is a measurable function
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102 K. Kurata and S. Sugano

satisfying
K

(1) po(@)El? £ S ay(e)é; < p (@)l

4,g=1

{ e RY,

for some positive constant u € (0,1] and a non-negative measurable func-
tion w. The second application is to show the eigenvalue asymptotics and
exponential decay of eigenfunctions of the operator

H= -% div(A(e)V) + U(z)

on L*(wdz), where U > 0. Throughout this paper we assume that w satisfles
the so-called A4, condition of Muckenhoupt.

DEFINITION 1. We say w € Ay if there exists a constant C' such that

(I%?_I (@) dm) (T;T ;w(m)"l dm) <c

for every ball B C R™.

We show the following estimate for the fundamental solution [, (z,y; V)
of I under certain conditions on V: for every k& > ( there exists a constant
C, such that

Ch . |z — y[?
(1 (2, Viw)|z =yl w(Blz, |z — y[))’

where B{z,r}) ={y € R™ : [z —y| < r}, w(B) = {5 w(z) dz and ma, (z,U) is
defined by

Dp(z,y V) <

2

= 8 { >0 S — |
———— = JU :
Mm@ U) P T w(Bm ) B(é ,

This type of estimate was first established by Shen [Shi} for L = ~A+V
(see also [Zh]). By using this estimate, we can obtain the boundedness of
the operator VL™ on various spaces.

We also assume U(z) > 0 throughout this paper. We define the potential
class {(RH),{w) which will be considered in this paper.

DEFINITION 2. (1) For 1 < ¢ < co we say U € (RH),(w) if there exists
a constant ¢ such that

Uwﬁdmdy51}

1 1/q
(@) (w—(B'j JSB U () w(z) dac) < w—% gU(:v)w(w) dz

for every ball B € R™. If the inequality only holds for balls with radius less
than or equal to 1, then we say U € (RH )y 10¢(w).
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(2) We say U € (RH)so(w) if there exists a constant C' such that
c
sup [U(z) < —= \ U(z)w(z)dz
sup 002} < gy § V@) wle)

for every ball B C R™.

Note that Hélder’s inequality yields (RH)oe(w) C (RH)g(w) for 1 < g
< oo. It is well known that if U € (RH),(w), then U € (RH)g4e(w) for
some £ > 0 (sce Lemma 1) and satisfies the doubling condition: there exists
a constant Cpy such that

L | Vet w < Gy

w(B(z,2r) p 2, w(Blz ) | Ulwly)dy

B(m,r)
for every z € R™ and r > 0. We also note that almost all properties of
(RH)4(w) held for (RH )y 10c(w) (see [Sh2]).

DEFINITION 3. (1) We say w € D, if there exists a constant € > 0 such
that w(B(z,tr)) < CtTw(B(z,r)) for every t > L.

(2) We say w € (RD), if there exists a constant ¢ > 0 such that
w(B(z,tr)) = Ct*w(B(z,r)) for every t > 1.

We now state the main results of this paper. Let Iz, V) be the
fundamental solution to the operator L = —V{A(z)V) + V(z) with Alzx)
satisfying (1) and V(z} > 0.

THEOREM 1. Assume w € Ag N {(RD), N Dy with2 < v < and Viwe
(RH),(w) for some q > v/2. Then for each k > 0 there exists o constant
Cy such that

Cr |z — yl*
< Vi < - .
02) @6 Y) S oo Ve~ 9)F 9B (a2~ 41)

THEOREM 2. Let § = muy (-, V/w)?L™?. Under the same assumptions as
in Theorem 1, there exists a constant C > 0 such that

1S f(x)| < CMuw(f/w)(@),

where M, is the Hardy-Littlewood mazimal function with respect to the
measure w(z)de, i.e., (Myf) (@) = sUPrep w(B)™ {5 |f(z)w(z) do. Hence
we also have

IS Fll2n(waey < CllF/wllLe(awde)
for every 1 < p < 0.

Theorem 2 is an extension of a result of J. Zhong [Zh, Lemma 8.2]. in
which only the non-degenerate case A(z) = I and non-negative polynomials
V were considered.
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THREOREM 3. Under the same assumptions as in Theorem 1, there exists
a constant O > 0 such that

[T ()] < C{Mu (|19 ) )},
where 1/¢' +1/g =1 and T* 1is the conjugate operator to T = VIL™L.

REMARK 1, It is known that w € Ap implies w € Dy,,. Hence Theorems 1
and 2 hold for w € Ay N (RD), with 2 < v and V/w € (RH)4(w) for some
q > n.

COROLLARY 1. (a) Let V/w € (RH)oo(w) and T = VL™, Then, under
the same assumptions as in Theorem 1, we have

ITF| 2o (0dsy € ClF Lo (oda)
for every 1 < p < oo, where o(z) = w{z)'P.
(b) Suppese Viw € (RH)qo(w) with ¢ > /2. Then

”Tf”LF(c'd:r) < CHf”LP(a'dfn)
for every 1 < p < q, where a(x) = w(z) P,

Next, we consider the operator
1
H = % div(A(z)V) + Ulz)

on L*(wdz), where U > 0,U € (RH),(w) for some q > ~/2, Here we assume
that A(z) satisfies (1) with a weight w € Ay N Dy with v > 2. Then the
operator H can be realized as a self-adjoint operator on L?(wdz) by the
Friedrichs extension (see e.g. [Da, Theorem 1.2.8]). For A > 0, we denote by
N (A, H) the number of eigenvalues to H less than or equal to A. Then we
have the following estimate for N{\, H).

THEOREM 4. Assume w € Ay N.D, N(RD), withy>v>2 and U > 0,

U1 € (RH)g10c{w) with g > v/2. Assume also that there exist constants
d;, 7 =1,2, such that

(3) 0<d1§10(3($,1))_<,d2 < 00

for every x € R™. Then there exist positive constants C;, 7 =1,2,3,4, such
that for A > 1,

C’l)\"/zw({m $ My (2, U 4+ 1) < C’g\/X})
SN HY < G Pw({e : my (2, U + 1) < C4VAD.
Theorem 4 easily implies the following.

COROLLARY 2. Under the same assumptions as in Theorem 4, there exist
positive constants O, j = 1,2,3,4, such that for X > 1,

icm
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(w(z)dz x dp)({|p*™* + Crmay(z, U + 1) < A}) < CaN (X, H),
CaN(\ H) < (wlz)dz x dp)({|p™™" + Camu(z, U +1)* < A}).

This generalizes Theorem 0.9 of [Sh2] which deals with the non-degene-
rate case A(x) = I. Next, we show the exponential decay of eigenfunctions
u € L?(wdz) with eigenvalue A > 1 of H, that is, Hu = Au in L*(wdz). To
state the result, we define the Agmon type distance d{z,y) associated with
the potential U and a weight w:

d(z,y) = inf {Smw('v(t), U+ Ny @] dt:v(0) ==, (1) = y}-
0

Let By = {x € R" : my(z,U +1) < v} and define dy{z) = inf{d(z, ) :
Yy e E)\}.

THUEOREM 5. Under the same assumption as in Theorem 4, let u €
L?(wdz) sotisfy Hu = M in L?(wdz) for some A > 1. Then for sufficientlly
small € > 0 there exist constanis C, C. such that

11{,(:1:)[ < OE)\TME_SG!C"{&:) H'L"HLz(wdm] (m = Rn).

COROLLARY 3. Let u € L2(wdz) be an eigenfunction of H with eigen-
value A > 1. If my(x, U + 1) — oo, then there exist constants C, CY such
that

u(@)] < Cae 2@ |ul 2 guaey  ond |u(@)] € Che™ U]l zauan).

We use the following notation throughout this paper: B(z,r) = B.(x) =
{yeB" :jz —y] < r} for z € R® and r > 0; f ~ g means that there exist
positive constants Cy and Cy such that Oy f < g £ Cof; V = (V1,..., Va),

2. Preliminaries. We collect some properties of the class (RH)q(w)-

LemMa 1. () If U € (RH)g(w), then U € Ago(w)-

(il) If Us, Uz € (RH)q(w), then U = ally + U € (RH)y(w) for every
a, B3> 0.

() If Uy, Uy € (RH)ag{w), then U = UrUsz € (RH)o(w).

(iv) If U € (RH)oo(w), then W = U® € (RH)oo(w) for every o > 0.

(v) If U € (RH)y(w), then U € (RH)g+e(w) for some € > 0.

Proof. For (i) see [CoF]. (ii) is easy. To show (iii), first by using Hélder’s
inequality and the assumption U; € (RH)z4(w}, j = 1,2, we have
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w(B w(B) 3
<C (ﬁé)ﬂ ji Uw d:c) (-1;%,—5 E:, Usw a!:c)

for any ball B. It is known ({CoF]) that U € Age(w) if and ouly if
5
w(B) } w(B)

Hence by Jensen’s inequality we obtain Uy Us € (RH),(w). To show (iv), it
suffices to consider the case a € (0,1). Then

Uwdz < Cexp (—l—— S (log Uyw dm) .
B

o 1 ®
Slép W = (sgp U* < (wa(B) iU’m dm)
- 1 o °

Hence we obtain (iv).

The property (v) is well known {[Ge]), but we give its proof based on the
weight theory for the sake of completeness (cf. [SW]). It suffices to show that
U € (RH)y(w) implies U? € Ay (w), because the weight theory says that for
every W € Ao (w) there exists a constant § > 0 such that W € (RH)14.5(w).
Hence we obtain U € (RH),a46y(w). To show U? € Ao (w) we use the

characterization of A, (w) that appeared in the proof of (iii). Note the
following identity:

It follows that U € (RH),(w) implies

(o) o (i) <

B
and hence U7 € A (w). m
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The following lemma makes the quantity ma,(z, U) well defined and 0 <
Mz, U) < 00 for U € (RH)y(w) with g > /2.
LEMMA 2. Assume w € Dy withy >0 and U € (RH)q(w) with g > ¥/2.
Then
2

T P\ R
(B (2)) Brs(w) Uy)w(y)dy < Co (ﬁ) w(Ba@) BRS(M Uly)w(y) dy

for some positive constant Cy and for every z € R? and 0 < r < R < o0,
where oo = 2 —y/g > 0.

Proof. We write B, = B, () for simplicity. By using Holder’s inequality
and (2), we have
r

2 1/q 9
w r w(Br) R »
w(B,) QTU(y) (y)dySC(R) (w(Br)) w(Bz) BSHU(?J) (v) dy

for every 0 < ¢ < R < oco. Since w € D, it follows that w(Bg)/w(Br) <
C(R/r)". Hence we arrive at the conclusion. =

LEMMA 3. Under the same assumpiions as in Lemma 2, if
r2w(B(=)™ | Ulywly)dy ~1,
B (2)
then 1 ~ ma, (2, U) L.

Proof. We use the notation

&(z,r) = (B (@) Brs(m) U(y)w(y) dy-

By assumption there exist positive constants (4, Cq such that

,,,.2
S EAC) Brﬂ(m)U(yJw(y) dy < Ca.

We may assume 0 < C; < 1 < Cp and that the constant Cp in Lemma 2
satisfies Cg > 1. Then Lemma 2 and the definition of M., (x, U) imply

< (Co/C1)Y%r.

Ci

A

1
o T R
(G{)Cg) T & w(m, U)

Indeed, let R = (C’gOg)”lf ®pr Then R < r and it follows from Lemma 2
that .
&(x, R} < Co(R/r)*P(z,r) = ~O—~sl5(:c,r) < 1.
2
Hence my,(z,U)"t > (006'2)_1/"‘7“. On the other hand, for every R

>
(Oo/Cl)lfar, we have B > r and Gy < &(z,7) < Co(r/R)*®(x,R) <
Cy$(z, R) by Lemma 2. Hence Ml )1 < (C"O/Gl)l/oz,r. .
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LeuMa 4. Under the same assumptions as in Lemma 2, we have the
following properties.

(i) For any constant C > 0, we have may,(z,U) ~ my(y, U) if |z —y| <
C/my (z,U).
(ii) There exist positive constants C1, Cz, ko such that
My, U) < C1(1 + mu(z, U)lw - y) me (2, U),
My (2, T)
T (e D)o — gyl
Proof. Recall that U (z)w(z)dz is a doubling measure for U € (RH),(w}

with ¢ > 1. Since the proof is similar to that in [Shl, Lemma 1.4] by using
Lemmas 2 and 3, we omit the details. =

mw(ya U) > O

3. A weighted Fefferman—Phong inequality. [n this section we show
a weighted version of Fefferman—Phong’s inequality. We also recall some
estimates for the fundamental solution of Ly = —V(A{z)V). First we note
the following Poincaré type inequality.

LEMMA 5. Let w € Ay. Then there exists a constant C > 0 such that
Vool @) —u@)Pule)u(y) dz dy
By{zqo} Br(za)
< Cr2w(Br () S |Va(z)|?w(z) dz
Br(mﬂ)
foru € CY(B,(zq)}
Proof. For simplicity, we write B, = B,.(2¢) in the proof. The assertion

is an easy consequence of the following well known Poincaré inequality:
under the assumption w € As, we have

(4) § lu(@) — (s, Pw(z)ds < Cr® | wiz)|Vu(z)|? dz,
B By
where (u)s, = w(B,)"!{p u(z)w(z)dz. For the proof of {4) see [FKS|.

Actually, for every y € By, we have

} lu(z) - u(y)Pw(e) de
B,

<2 | (ju@) - @)z, + lu@) — (W, )w(z) d

<0 | w(@)|Vu(e)|ds + 20(B,)lu(y) - ()5, .
B
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Hence by multiplying with w(y), integrating on y € B, and using the in-
equality (4) again, we arrive at the desired estimate. m

Next we show a weighted version of Fefferman-Phong’s inequality. See
[Sh1] for its original version {see also [Fe] and [Sm]).

LEMMA 6. Assume w € Ay N D, with ¥y > 0 and U € (RH),(w} with
q > v/2. Then

(5) ) lule) P (e, U o(a) do
R
< ¢ [ (IVu(@)Pw(@) + [u(@)*U (z)w(z)) dz.
]Rﬂ.

Proof Let 29 € R” and rg = my (2o, U) ™", Since U is an Ao (w)-

weight, there exists a constant € > 0 such that

w({:ﬂ € Bpo{zo) : Ulz) > m Brtns(m) U(y)w(y) dy})

=

7‘0(“'30))'

Mli—t

Put
U = w(Bpy(0))™? S U(y)w(y) dy
By (o)

and A = {y € By, (mg) U(z) > U} Then, by the definition of g, we have
U =r;? and w(A) = 3w(By,) with By, = By, (zq). Hence we obtain

6 | § min(s/rd, U(u))ul@)*w(z)w(y) dedy

BTU BT‘D

> | jue)Pu)( {(e/rduly) dy) do

By A
25 o m)Bgm |ul{z){2e0 () daz.
On the other hand, we will show
M ] min(e/rd, U @) Pulz)e(v) do dy

Bug Brg
5C’w(Bm)(§ w(@)|Vu@)Pde + | ju(@)2U(@)w(z) d:r).

Br B,

Indeed, since |u(z) [2 < 2(julz) — u(@)|® + |uly)[?), we have
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{ { min(e/rd, U))ulz)Pu(z)wly) de dy

Brg Brg

<2 S S ‘;z‘l”(m) . u(y)|2w(m)w(y) da dy
Brg Bry °

+20(Bry) | July) PU W) (y) dy.
B

0

By Lemma 5, we arrive at the inequality (7). Therefore, by (6) and (7) we
obtain

C
U (1Vul? + [u)U (z))w(z) dz > = | lof?w da.
B"u 0 Brg

By Lemma 4(i), we have my, (z,U) ~ 1/ for z € B,,. Hence

S w2, U (| Vul® + Ju|>Twde > C S |te{2) P (2, U) "2 0(2) de.

B"D B rg

Integrating this over g € R™ and changing the order of integration, we
obtain the desired estimate (5). Here we use

|
|z—z0|<1/my (®0,U) le—zo| <1 /M {m,U)

dag ~ (2 U)™". m

LEMMA 7. Assume w € As N (RD), with v > 2. Let I'(z,y) be the
Fundamental solution of Ly. Then
_ )2
(0<) M@,y < O—Z I
w(B(z, [z — y[))
Proof. By the estimate in [FJK], we know
< 2 ds
0) Mz,y)<C | 2
( ) ( y) N Ewiyl w(B("ElS)) g

The assumption w & (RD), with v > 2 implies that
T 2 ds r?

8 QL A o —

(&) § w(B(z,s)) s ~—  w(B(zr))

In fact, since w € (RD), with v > 2, we obtain

T 52 ds MDSO r’s®  ds
s w(Bl2,s)) s ) wB(z,rs)) s
LT r2str s 2
o A R
<0V B+ = CalEn)

The observation (8) can also be found in {CSW, p. 316).
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4. An estimate of fundamental solutions. First we note the follow-
ing subsoclution estimate.

LEMMA 8. Assume w € Ay. Let v be a non-negative subsolution of Lo on
Bar = Bag(y). Then for all o € (0,1) there ezists a constant C, such that

sup  v(z) € Ce

2€ By} = w(Br)) | v(z)w(e) de.

Br(y)

Proof. We write B, = B,(y) for simplicity. The result in [FKS] yields
the following estimate:

1/2
sup v(z) _<_C'C,( ! S v(z)iw(z) dm) .

z€Ban 'w(BR) Br
We conclude by using the reverse Holder type estimate:

1 1/2 {
(_—w(BR) E§R v(z)w(z) dcc) < C’m B‘Eﬂv(w)w(m) dx.

This inequality can be shown by using the argument as in [Gu] (see also
[CFG], [Kul,2]). =

LEMMA 9. Assume w € Ag N D, with v > 0 and V/w € (RH)y(w) with
g > /2. Let u be a solution of Lu =0 on Byg{zg). Then for every k > 0
there exists a constant Cy such that

sup ju(z)]
zEBR (o)

1/2

< e ( 1
= (1+me(mo,V/w))k ’w(BZR(wO)) Ban(zo)

Proof. We write Br = Br(=zg) for simplicity. Since
%V(A(m)vw) =V + S ay{e) ViuViu 2 0,
ij=1

v = |u|? is a subsolution to Lov = 0. Hence Lemma 8 shows that

IR d:v)l/z.

Bar/a

(9) sup ju| < C (——W Bonya)

By Caccioppoli’s inequality, we have

. _
(10) | wlval*de+ | Viul dz < 2 | wiuf de.
Bsr/2 : Ban/2 Bag
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Hence (10) and Lemma 6 yield

[ 72, Vi) () Pu(a) da < % [ wluf do.
Br Bag
By Lemma 4(ii),
iy (z, Viw) Z Criy (o, V/w) /(1 + Rmy, (g, V/w)) e/ ket 1)
for every x € Bgr. Thus

C
| (@) Pw(z)dz < T R (2, V) P | ful?w do,

Br Bap

By repeating this argument and using (9) and w € D, we arrive at the
desired estimate. w

Proof of Theorem 1. By the maximum principle (see e.g. [CW]), we have
0 < Nyl V) < Iz, y).

Let zg # ¢y € R™ and put R = [z ~ y|. Since u(z) =
Lu = 0 on Brsa(ro), Lemma 9 shows that

Ty(z,y; V) satisfies

sup  |u(z)|
@w€Brsa{zo)

1/2
fulz)Pw(z) dw) .

Note that I'%(z,y) < CI'%zq,y) for = € Bgya{o) by Harnack’s inequality
(see [FKS, Lemma 2.3.5]). Hence by Lemma 7, we have

C 1
< (1 + me(mo, V/w))’“ (’LU(BR/2(30)) BR/E(-'L‘O)

R2

|u(z) [Pw(z) d:c) v L0
. TU(B(w(hR))‘

(e, |
B
w(Br2(%0)) Baya(wo)
Therefore we obtain
Fw(mﬁay; V) = u('T'O) < sup lu(mN
wEB 4 (o)
< Ch _ R?
T (1 + R (o, V/w))e  w(B(zo, R))’
Since R = |z — ¢, we get the desired estimate. w

Once we obtain Theorem 1, we can prove Theorerns 2 and 3 in a similar
way to [KS].

Proof of Theorem 2. Let f € C3°. By Theorem 1, we have

M (2, V/w)? Cylz — y?
00 @S e Ve - e i @

icm
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Put v = 1/my(z, V/w). Then, by the doubling property of w(z), the right
hand side of (11} is dominated by

- C (2972
Z S ??j,i ’ (1+Qj_l)kw(B(:c,er))[f(y)ldy

j==o0 {2-tr<ja—y|<27r}

< COMy, (f fw)(z),
if we take k> 3. m

Proof of Theorem 8. Let r = 1/my, (2, V/w). Then

T F) < | Tu(y o VIV £ ()] dy

R~
S Crla “yfz
3 [TF M, Vv — yo(B, |z - )

e (2/r)?
0 +2 Yew(Bz,2-1n))

Vlf )l dy

V)l dy

< Ch
j=—o0 {29 -tr<|a—yl<2r}

3 (2r)? 1 Viy) qw /¢
SGkJ:Zm (14 29-1)k [w(B(z,zj—lr)) | (w(@) (y)dy}

B(z,29-1r)

1 . 1/q¢
x[—————ﬂ—w(mm,%_lr)) I 1w w(y)dy]

B(e,27-1r)
q¢ l/q ZJT)Q
< ML) Y TR
J=—c0
* [W(B(fv,?f‘lf)) B(m,zsj-1,)(WCy)) @ dy}

Note that Vdz is a doubling measure because V/w € Ago (w)-
For the case § > 1, since w € (RD),, we obtain

(27r)? S

B ) i,

B{z,2i~1r)

| Viy)dy =400y,

2F (i~ 1o —~{j-1)»
<2MGTC2 w{B(z,r)) Blar)

where kg = 2 — v + logy Co. For the case j < 0, by Lemma 2 we obtain
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(2r)?
R e V{y) dy
Bz, ), Y
r /a2 P2 X 1\2/
< — - J—1y2—v/q
so(3n)  wmEmy ) V@w=ce

B(z,r)
Hence if we take & > ko + 1 we conclude that
IT*f(2)] < CIMu(F1¥)(@)] .
Proof of Corollary 1. Since V(z)/w(z) < Cmy(z, V/w)? by the definition
of m.,(z, V/w), Theorem 2 yields
o

w

< oH i
Lr{wda) Wi 12 (wde)
Part (a) follows from this. Let 1/p+ 1/p' = 1. For ¢’ < p' it is known
that M,, is bounded on L#'/4 (wdz). Hence T* is bounded on LP (wdx) for
1 < p < q. By duality we obtain the boundedness of 7" on L? (w'~? dz). This
gives {(b). =

5. Eigenvalue asymptotics and decay of eigenfunctions. In this
section we show Theorems 4 and 5. We denote by Q(z,7) the cube with
sidelength r and center z € R™.

Proof of Theorem 4. We follow the argument of [Sh2].

STEP 1. First, we show the lower bound. Let By = {z: my{z,U + 1) <
VA} for A > 1 and divide B™ into disjoint cubes {Q;} with sidelength 1 [VA
whose sides are parallel to the coordinate axes. Let m be the number of

cubes ¢ such that QN Ey # 0 and let Qp = @y, = Q(azk,l/«/x) be such
that @, N By # 0. Then

w(Ey} = Z’w(Qz NE,) < Ew(Qk) < CdamA™/2,
i k=1

Here we have used
w(Q(z, 1/vX)) < C(A/VAY w(Q(z, 1))

since w € (RD), and sup, w(Q(z,1)) < dp by assumption. Next we show
that there exists an m-dimensional subspace H of L*(wdz) such that
I

(12) Z Saij(;n)viuvjudm +SUu2w dy < C’)\Sugw de  (ueH).

i,j=1

Now (12) and the min-max principle imply that
N(OXH) 2 m > O3 u(By).
2
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Choose a function 7 € C5°(Q(0,1)) such that n{z) =1 on z € Q(0,1/2)
and put 7;a(2) = MW/ 4(VA(@ — ), 1 = 1,...,m. Let H be the subspace
spanned by {nx A }7% ;. Since Q are disjoint, H is an m-dimensional subspace
of L2 (wdz). Let L = sup({|Vn(z)| + |7(z)|) and 7% = 1/ma, (2x, U +1). Then

n

Z SCHijk,AVj??k,A de < p~ LAY 2w(Q(zk, 1/vV2)],

i,d=1
and
XUnﬁ,Awdm < L2X\/? S Uwdz
Qx
2
< LU{A"”w(Q(mk,l/\/X))]Jé%% { . Uwdz
’ Qlan,1/vX)
2
< Lz,\[v/zw(@(m,1/&))](\/%)*”-2;@—&’9@ ( | )Uw da
’ Q{zr,mk

< LEAN2w(Q (g, 1L/VN)).

Here we have used Lemma 3 and 1/ VA < Ory, because Qp, N B # . Hence
it follows from the doubling property of w that

n

{13) Z S @i Vi, AV 1k, dz + S Un,%,)\w dx

- < CLZ)\[A”/Qw (Q (mk, 5%))]

On the other hand, it is easy to see that

(14) {niawds > A”/zw(Q(mk,%>).

Thus by (13) and (14) we obtain the desired estimate.

STEp 2. Next, we show the upper bound. It suffices to show the exis-
tence of a subspace H satisfying the following conditions: there exist positive
congtants C;, § = 1,2, 3, such that

dimH < CLA?w(Ey),
V(| Vu? + Uu?)wdz > Corfutwdz, wveM, A=Cs
We need the following lemma which follows from Lemma. 4.

LemMa 10 ([H8, Theorem 1.4.10]). Let U € (RH)qglo(?(*w) with ¢ > v/2.
Then there ezist o sequence {z;} C R* and non-negative functions P €
Cg°(R™) satisfying the following conditions:



icm

116 K, Kurata and S. Sugano

(EL) R = Ulo-.;]_ B, B = B(m;,mw(m;, U+ 1)_1);
(b) 1 € C°(By), 172, ¢i(z) =1 (z € B™);

(c) 189¢1(z) < Cmy(z,U + )8 for every 8] < 2;
(d) 202 xa (@) £ C.

Here the constant C does not depend on 1.
First, for each [ we have

S|V(u¢5;)|2w dz < 25 |Vul2pwdz + C S (M (z, U + 1)) 2w de.
B,

It follows from Lemma 10{d) that

oo

S VUV (ugn) P+ (U + 1) (udh) w) dz

=1

< OC’Z S (Vul¢fw + my(z, U + 1)*uPw + (U + Duldiw) do
=1 B;

< C’S |Vl ®w de + C'S My (2, U+ 1202w de + C’S (U -+ Duw de.

Therefore, Lemma 6 implies
oo

(15) D VIV (ug) P+ (U + 1)(ur)*w) de

=1
< Cl(IVul® + (U + Du?)w da.

Now, we consider two cases. If By N E§ # 0, then by the definition
'of E) we have sup,cp, myw{z,U + 1) = AY2. Hence, Lemma 4(i) implies
infoem, muw(z, U + 1) > CAY2, Using this and Lemma 6 we obtain

16) [ (IV(ugn]® + (U + 1) (ugy)*)w d
B;
>C S Moo (2, U -+ 1) (ugpVwdz > C'A S (udy)?w de.

Next, suppose B; = B(x;,71) C Ex, where 1; = my (2, U + 1)71. Let
Q1 = Q(z1,2r;) denote the cube with sidelength 2r; and center x;. Then
By € ¢ Divide ¢ into disjoint subcubes {Qfg } with sidelength comparable
to A™L/2, Note that r, > A~1/2 since 2; € By. Let H be the subspace
generated by {gb;(:t:)x@/[s () : By C By} If SQ,B uppw dz = 0 for each Q'f,
that is, w € M, then (4) yields 1
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1n  Afwe)Pwde =2 | (up)Ywds
g Qf
<O (VA | |V (udn) P de
B Q?
< S |V () |*w dz + S (U + 1) {ug))*w dz.
@ Qi
Thus, (16) and (17) imply
(18)  §IV(ug)Pwdz+ § (U +1)(up)®wdz > O (ug)*w d=
@ Q
for every u € HL. From (15) and (18), there exists a constant Co > 0 such
that for every A > Cy we obtain
C)\Suzw dr < CS (|[Vuf? + UuP)wdz

for u € H“. Let m; be the number of Qf associated with B; € Ey. Then
there exists a positive constant C such that my < OXY/2w(By). Indeed,
assumptions (3) and w € D, imply

w(By) 2 Clnymuw(QF) > Cln)ma(1/VA) w(Q (1, 1)) = Crur~"/.
Hence by Lemma 10(d) we obtain

dimH <C Y X Pw(B) < CXPu(Ey).
BICE,

Thus we have proved the upper bound. =

Proof of Theorem 5. Since we reason as in [Sh2], we just mention the key
estimates of the proof. For an eigenfunction u € L?(wdz) with eigenvalue

A > 1, we obtain the subsclution estimate: there exists a constant C such
that

1/2
@) < (55 oty w)

for Ar* < 1. Secondly, we obtain the estimate

|40 ufl g2 (wazy < C'l|ul| L2 (we)

for small € > 0 and some constants C, &’. Now, by the assumption (7) and
w € D, we have Cr7 < w(B(z,r)) for some positive constant C'. Combining
these estimates, we conclude that

()] < Cmu(,U +1)"2e740> lu] 120 a2).
Once we obtain this estimate we can prove Theorem 5 in the same way as
in Theorem .20 of [Sh2]. =
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Corollary 3 follows from Theorem 5 as in [Sh2].

Acknowledgements. We wish to thank the referee for his careful read-
ing of the manuscript and his valuable comments on several mistakes in the
early version of the manuscript. The proof of Lemma 7 was simplified by
the referee.

References

[CSW] 8.Chanille,J. Strimberg and R. Wheeden, Norm inequalitics for potential
type operators, Rev. Mat. Iberoamericana 3 (1987), 311-336.

[CW] 8. Chanillo and R. L. Wheeden, Ezistence and estimates of Green's function
for degenerate elliptic equations, Ann. Scuola Norm. Sup. Pisa 15 (1988), 309~
340.

[CFG] F.Chiarenza, E. Fabesand N. Garofalo, Harnack's inequality for Schrédin-
ger operators and the continuily of solutions, Proc. Amer. Math. Soc. 98 (1886),
415425,

[CF] F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Lithewood mozimal
function, Rend. Mat. 7 {1987), 273-279.

[CoF] R.Coifman and C. Fefferman, Weighted norm inequalities for mozimal func-
tions and singular integrals, Studia Math. 51 {1974}, 241-250.

[Da] E.B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1989.

[FIK] E.Fabes, D. Jerison and C. Kenig, The Wiener test for degenerate elliptic
equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, 151-182.

[FKS} E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of
degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982),
T7-118.

[Fe] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983),
129-206.

[GR] J. Garcfa-CuervaandJ.L.Rubio de Francia, Weighted Norm Ineguolities
and Related Topics, North-Hoelland Math. Stud. 116, North-Holland, 1985.

[Ge] F. Gehring, The LP-integrability of the partial derivatives of a quasi-conformal
mapping, Acta Math. 130 (1973), 265-277.

{Gu] C.Gutiérrez, Harnack’s inequality for degenerate Schrddinger operators, Trans.
Amer. Math. Soc. 312 (1989), 403-410.

[H5] L. Hérmander, The Analysis of Linear Partial Differentiol Operators I,
Springer, 1983.

[Kul] X.Kurata, Continuity and Harnack’s ineguality for solutions of elliptic partial
differential equations of second order, Indiana Univ, Math. J, 43 (1994), 411-440.

[Ku2] -, On doubling properties for non-negative weak solutions of elliptic and parabol-
ic PDE, Israel J. Math., to appear. .

[KS] K.Kurataand 8. Sugano, A remark on estimates for uniformly elliptic oper-
ators on weighted L” spaces and Morrey spacs, Math. Nachr., to appear.

Mu] M. Murata, On construction of Martin bounderies for second order elliptic
equations, Publ. Res. Inst. Math. Sci. 26 (1990), 585-627.

[Shl] Z. Shen, LP estimates for Schridinger operators with certain potentials, Ann.
Inst. Fourier (Grenoble) 45 (1995), 513-546.

icm

Degenerate elliptic operators 119

[Sh2) Z. 8hen, Eigenvalue asymptotics and exponential decay of eigenfunctions for
Schrédinger operators with magnetic fields, Trans. Amer. Math. Soc. 348 (19986),
4465-4488.

[Sm] H. F. Smith, Parametriz construction for a class of subelliptic differential op-
erators, Duke Math. J. 63 (1991), 343-354.

[sW] J. O. Strémberg and R. L. Wheeden, Fractional integrals on weighted HF
and LP spaces, Trans, Amer. Math. Soc. 287 (1985}, 293-321.

[Su] S.Sugano, Estimates for the operators Ve (-A+ V)”'8 and VEV(-A + V)“ﬁ
with certain nonnegative potentials V, Tokyo J. Math. 21 (1998), 441-452.

[Ta] K. Tachizawa, Asymptotic distribution of eigenvalues of Schrddinger operators
with nonclassical potentials, T8hoku Math. J. 42 (1990), 381-406.

[Zh] J.Zhong, Harmonic analysis for some Schridinger type operators, Ph.D. thesis,
Princeton Univ., 1993,

Satoko Sugano

Department of Mathematics
Gaknshuin University

Mejiro 1-5-1, Toshima-ku

Tokyo, 171, Japan

E-mail: satoko.sugano@gakushuin.ac.jp

Kazuhiro Kurata

Department of Mathematics

Tokyo Metropolitan University
Minami-Ohsawa 1-1, Hachioji-shi
Tokyo, 192-03 Japan

E-mail: kurata@comp.metro-u.ac.jp

Received Decernber 81, 1997 (4029)
Revised version October 19, 1999 and November 20, 1999



