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Absolutely continuous dynamics and real coboundary cocycles
in LP-spaces, 0 < p < o0

by

ANA L ALONSO (Valladolid), JIALIN HONG (Beijing) and
RAFAEL OBAYA (Valladolid)

Abstract. Conditions for the existence of measurable and integrable solutions of the
cohornology equation on a measure space are deduced. They foliow from the study of
the ergodic structure corresponding to some families of bidimensional linear difference
equations. Results valid for the non-measure-preserving case are also ohtained.

1. Introduction. Let (§2,.A,mp) be a measure space. For each 0 < p
< oo, we set

17(@2,mo) = {1 : £ =R | | 1(©) dmo < o0 }.
n

If0 < p < 1, the map f + {,|f(£)P dmg defines a quasi-norm in LP{£2,mq).
If1 < p < oo, themap f— [|fllp = (Ig if(£)|P dmp)Y/P defines a norm
which makes L?({2,mg) a Banach space. We denote by Le°(£2, mg) the set
of essentially bounded functions on {2; by the essential supremum of f €
L®( 2, my), in symbols || f|le, we mean the greatest lower bound of all the
essential upper bounds of f. It is well known that (L*2(£2,mp), || o) is also
a Banach space.

Throughout this paper T : (12,4, m0) — ({2, 4, mg) is an ergodic auto-
morphism. Bach measurable function f : 7 — R will be called a cocycle.
We define Spf = Y7o foT9 forn>1, Sof = f and Snf = Sian foT?
for m € —1, which provides the cocycle identity Sptmf = SnfoT™+ Snf.
We say that a cocycle f is a coboundary cocycle if there exists a measurable
solution A : 2 — R of the cohomology equation f = hoT — h. The function
his called a transfer function. It is easy to check that two transfer functions

2000 Mathematics Subject Clagsification: Primary 28D06.

Research of the first two authors partially supported by Junta de Castilla y Leon,
under project VAOL/97.

Research of the third author supported by the Spanish Ministry of Bducation and
Sciences.

(121}



122 A. L Alonso et al

hi and hy of the same cocycle f differ by a constant, i.e., hy = hg -+ ¢ almost
everywhere on {2. For 0 < p < 00, we say that f is an LP-coboundary if it is
a coboundary and the transfer function b belongs to LP(2,mg).

We now consider the case where (2 is a compact metric space and T :
£2 -~ 2 is a minimal homeomorphism. Gottschalk and Hedlund [7] prove
that a continuous cocycle f is a coboundary with transfer function h € C'(f2)
if and only if sup,cy [|Snf|lce < 00, The study of LP-solutions, for 1 < p <
oo, can be formulated as a particular case of the following more general
problem: solve the functional equation (Id —T)z = y for a linear contraction
T on a Banach space X. The usual method to deal with this problem is to
study the convergence of the averages z, = (1/n) 3 ro,; EL; Ty, With
this point of view, Browder [5] proves that if X is a reflexive Banach space
then y € Rg(Id —T') if and only if sup,,»; || 27, TVy|| < co. This result was
extended by Lin and Sine in {10] for the adjoint operator 7* : X* — X*
of the linear contraction T on X, which permits us to apply the above
arguments in L'-spaces (see also Assani [2]). The paper of Krengel and Lin
(8] contains a continuous version of the previous results.

In the present paper we obtain necessary and sufficient conditions for
the existence of LP-solutions of the cohomology equation given by a cocycle
fon £2, with 0 < p < oc. Such conditions are based on the boundedness of
the ergodic averages of the sequence {5, f}.en. To this end we introduce a
family of bidimensional linear difference equations which define a projective
flow whose equations are defined precisely by the cohomology equation. In
this situation the existence of a measurable transfer function is equivalent to
the existence of a density function for an invariant measure on the projective
bundle which is absolutely continuous with respect to the product measure.
Moreover, the orders of integrability of both functions are related. These
facts enable us to apply the results of Novo and Obaya {12, 13].

We show that if ® C {2 is a measurable subset with mg(@) > 0 and
{n&}ren is an increasing sequence of positive integers with

Tk

sup(1/ng) D | 185 £[F dmo < oo,
keN e

then f is an LP-coboundary, which in particular extends the previously
known results to the range 0 < p < 1. We also obtain the corresponding
version of this same statement for the non-measure-preserving case, assum-
ing that myg is not invariant but equivalent to an invariant measure (and
hence the map LP({2,mg) — LP(2,my), f — foT, is not necessarily a con-
traction even if it is continuous). From Assani and Wos [3] and Sato [14], we
deduce that a cocycle is a coboundary if and only if the corresponding projec-
tive flow satisfies the pointwise ergodic theorem with respect to the product
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measure. The pointwise ergodic theorem is also studied by Martin-Reyes
and de la Torre [11].

Notation and preliminaries are stated in Section 2; we formulate and
prove the results in Section 3.

2. Preliminaries. In what follows we consider a one-dimensional cocycle
f: 2 — R We introduce the family of linear difference equations

e xta=n =t ) a = b ), e,

where £ -n = T™() for £ € 2, n € Z and x = (u,v)T.

Let P1(R) be the space of real lines through the origin in R?, identi-
fied with R/(n%). Assume that {x(n)}nez satisfies (2.1) and take p(n) =
cot~* (v(n)/u(n)). This provides the relation

(2.2) p(n + 1) = cot ™ (f(§ - n) + coto(n)).
We denote by @(n, £, wy) the solution of (2.2) with initial data ©(0, &, wo) =
o Then F(£,¢) = (£-1,0(1,£, ¢)) and in general F™(§, ) = (€, 9(n, £, )
defines the equation of the discrete skew-product flow induced by (2.1) on
Ku. We also denote by x(n,£,¢) the solution of (2.1) with x(O,g,Lpl) =
(sin ¢, cos ). The symbol I will represent the Lebesgue measure on PHR)
and m1 = mg ® [ the completed product measure on Kp.

For each p € R we consider the change of variables defined on PHR) by
the relation cot = cotp + g. Since

M 1+ cot? ¢ 1
—_— — - - ?
B 2 1+ {cotp+ )2 sin® p+ (cosp + osing)?

we have
(2.3) \
PR

. . . 2
Tt makes sense to introduce the function G(€, ) =sin® -+ gcos P Fit3] sin @)
and, in general, G, (€, ) = sin? ¢+ (cos ¢+ S; f(€) sinp)* for j > 1; this _a1~
lows us to characterize the F-invariant measures absolutely continuous with
respect to my. Observe that

(24) G (6, p) < 21+ (S5F(E))

for every (£, ) € K. From relation (2.4) we deduce that
[ (G et 2am < | | QA+ (SFENDCT (¢ ) dpdmo
Kn ’ 2 PR

= {20 + (S;1(€)?)P® dmy

n

1
, — 4
sin® ¢ -+ (cos @ + gsinp)

p=1
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for each p > 0. Thus, if f € LP(2,mg) then G; € LP/?( Ky, m;) and G;l €
L1+p/2(Km, ml).
The results collected in this section are due to Novo and Obaya [12, 13].

PROPOSITION 2.1. Let P & L*{Kg,my) be a positive function. The fol-
lowing statements are equivalent:

(1) the measure dp = Pdmy is F-invariant;
(2) P satisfies the functional equation Po F = P .G almost everywhere.

Let p be an absolutely continuous F-invariant measure with dy = Pdm,.
We define D = {(¢,) € Kg | P(€,¢) > 0} and Q = (1/P)xp. Then Q is a
nop-negative solution of the functional equation Qo F =@ - G-t

We introduce the family {gn }rnen of measures on Kp defined by tn(4) =
(1/n) L 7=y M1 (F7(A)) for every measurable subset A C Kg. Set

-}. - _,,,.__,1__=l - -1
P69 =L me e T n g S @)

1 1

n sin® ¢ + (cos g + S, f(€) sing)?

J

for each n € N. Then

il 4) = =S (I (4)) = | Palt, ) dmy
i=1 A

for every measurable subset A C Kp; that is, the measure uy, is absolutely
continuous with respect to my with density function P,.
Let 0 < p < oo be a fixed real constant. We define

AEr) = LG 6T = TGl
j= i=

™
_1 Z(sinz w4 (cosp + §; F{€) sinp)?)?
(et
for each n £ N. The existence of absolutely continuous F-invariant mea-
sures and the integrability exponents of their density functions can be char-
acterized in terms of the behavior of the families {P,}nen and {Qn}nen
respectively, as the following theorems summarize.

THEOREM 2.2. The following facts are equivalent:

(1) (Km, F) edmits an invariant measure absolutely continuous with re-
spect 1o may;

(i) there is an F-invariant subset D C Ky with m1(D) = 1 such that the
lirit P(§, @) = limp 00 P (€, ) exists and is positive for every (€, ) € D.
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Moreover, under these conditions the measure du = Pdmy is F-invar-
jant and normalized.

THEOREM 2.3. The following facts are equivalent:

(i) (Kg, F) admits an absolutely continuous F-invariant measure du =
Pdmy with P € Ll”*'p(Km,ml);

(ii) there is an F-invariant subset D C Kg with m1(D) = 1 such that the
Limit Q(€,¢) = limin— oo @n (€, ©) exists and is positive for every (£, @) e D.

Moreover, under these conditions, (1/Q)M* € LY*P(Kg,m1) and if we

take A = (SKM(I/Q)I/P dmy)™*, then the measure dy = M1/Q)YPdmy is
normalized and F-invariant.

We say that a function @ is fiber-quadratic if there exist measurable
functions a, b, ¢ : 2 — R and a T-invariant subset {2y C {2 with ma(f2) = 1
such that

Q(E, ) = a(€) cos® p + b(£) sin® @ + 2c(€) sinp cos ¢

for every (€,¢) € £2y x PH{R). We take X(£) = (a(£),b(%), e(ENT; it is casy
to check that QF(E, ) = Q(&,¢)G™1(¢, ) in Ky if and only if

1 0 0
(2.5) X(TE)=| £2¢) 1 28 ) X&)
—-f&) o 1

An F-invariant measure p with dy = (1/Q)dm; is said to be a linear F-
invariant measure if Q is a fiber-quadratic solution of @ o F = Q-G
Linear invariant measures are directly associated with the ergodic structure
of the projective fow.

We finally recall that if /' admits an absolutely contimuous invariant
measure dv = Pdmy with P € LYP(Kp,my) then it admits a linear invari-
ant measure with the same order of integrability. A qualitative study of the
projective flow in the case of singular dynamics can be found in Alonso and
Obaya [1].

3. Real coboundary cocycles. We point out a direct relation between
the solutions of the cohomology equation and the coefficients of the density
function of a linear invariant measure.

PROPOSITION 3.1. Let 0 < p < 00. The following statements are eguivo-
lent:

(i) the cohomology equation f = hoT - h has a solution h € LP(§2,mq);
(i) F admits an absolutely continuous invariant measure dy = Pdma
with density function P € LMP/2(Kg,mi). :
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Proof. We first show that (i) implies (ii). If A is a measurable solution
of the cohomology equation, Le. Ao T - h == f, then the function

Q& ¢) = cos® o+ (L + A*(¢)) sin® p — 2h(¢) sinp cos
= 14 A2(€)sin® ¢ ~ 2h(£) singcos @
satisfies @ o F = @ - G™1. Then dv = Pdm,, with P = 1/Q, is a linear

F-invariant measure. ,
Let us introduce the matrix S(¢) = (1+h (€ “h (€) )

7€) £ 1 £ ¥2(€) satisfy m(£) - ’YQ(E) =1 and ’Yl
which yields

Its eigenvalues 0 <
€) +1(8) = 2+ R3(9),

71(€) € Q(&, ) < 12(&) <2+ A (8),
vi{€) S P&, ) < 1alf) < 2+ A (8).

Therefore, we obtain a constant C7 > 1 such that

[ P o) dma < | 2+ RHOPPP(E. ¢) dp dmg
Ky e

< Gy (1 +nP(8)) dmo < o0,
2

which shows that P € L'*P/2(Kpg).

Now we consider the converse implication. Assume that F' admits a linear
invariant measure dy = Pdm; with P € LYTP/2(Kg,ms). Set Q(€,¢) =
1/P(&, ) = a(€) cos? p + b(£) sin® ¢ + 2¢(£) sin g cos . Note that a(T(£)) =
a(¢) and hence, by ergodicity, we have a{€) = a almost everywhere with
respect o mg. The function h(£) = ~c(£€)/a is a measurable solution of the
cohomology equation.

It follows from Theorem 2.3 that there exists an F-invariant subset D C
Ky with my (D) > 0 where the limit

n

i =3 20,6, 0) + 03 (5,6 )7

n—oo N, e
is a positive number for every (£,¢) € D.

For almost every { € 2 we can find an element p = w(¢) € PH(R)
such that (£, (), (£, (&) + 7r/2) € D and introduce the fundamental ma-
trix V(n,£) = (x(n,&,0(€)),x(n, &, 0(&) + 7/2)). We define uin, &) = 1
and v{n,§) = h(T“(g)) for every n € Z and £ € 2. Then x(n,&) =
(u(m, &}, v(n, €))7 satisfies (2.1) and

x(n,8) = V(n, &)V (0,6)(1, (€))7
We denote by ||||s the Schur norm, defined by ||[v; ;]|is = (anl |v3 J|)1/2.
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A straightforward calculation shows that
[x(n, )12 < IV (m, IV (0, €)1, (€T3
< (LR (Ix(n, & p(ENI + [x(n, &, 0(€) +7/2)%)
and, congequently,

lim sup — ZihTf )l”<11msup Z!Xj, P < .

n—oe
.7 J

Birkhofl’s ergodic theorem allows us to conclude that h € LP(f2, mp), which
completes the proof of the theorem. m

We now state the main result of this paper concerning coboundary co-
cycles.

THEOREM 3.2, Let 0 < p < co and f & LP(£2,mp). Assume that there
exists o measurable subset @ C 2 with mp(@) > 0 and a sequence {ng}ren
of positive integers with

1 &
= 1 — i .
7 = lim nkZHSJfl dmg < co
§=10
Then f is an LP-coboundary,

We deduce some preliminary results from the hypotheses of Theorem
3.2 which will be used later in its proof. S8et ¢ = min(1/2, p/2). It is easy to
verify that

§1Su7(©17dmo < [ 18uf @R dmo) ™" < (§ 3@ (@) dma) "
n n

2 7=1
<2 (] 1) o)

Therefore, limpy—.co{1/n}§, [Snf(€)|2dmy = 0. For each m € N we define
O = U L T9(O). Since S; F(T(£)) = S5 f(€) — F(€), we also have

1 .
Tmzsup{az S |55 £(€)|* dmo
i=1 &y

LEMMA 3.3. There erists a function P € L*{Kp,m1) and a sequence

{ni}ien of positive integers such that
i) Pxe,, € L +4/2( Kg,my) for every m € N,

(ii) {me@m}geN converges to Pxe, in the o(I*Y/2(Kp,mi),
LM219( Ky, my ))-topology for every m € N.

(1ii) {(1/m)Pn, }iew converges pointwise to zero almost everywhere.

el <o
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Proof. On account of the definition of the family {P,}en, we have

[

plta/? (1 s 1 -1 I4g/2
SR = (S DG w) < - (G769
Jj=1

=1

IA

. D2+ (SO G e )

Consequently, for every k,m € N we obtain €7 > 1 such that

(3.1) [ Par(¢ v)xe,. (€) dmu
Kr

= % Z S 1+ 1857 xe.. (£)G5H (£, 0) dip dmg
i=1 Ky

* =16,

Since {Pn,Xe,, | ¥ € N} is a bounded subset of L*9/2(Ky, my) for ev-
ery m € N, following a diagonal Cantor process we can find a sequence
{nihien of positive integers and functions P, € L'79/2(Kk,my) such that
{(3/mu)Pr; xe,, }icn converges pointwise to zero and { Py, xe,, hien converges
to P, in the o(L19/2, L12/9) topology for every m € N. This shows that
{(1/m) Py, }ien converges to zero almost everywhere in Kg. Moreover, it is
obvious that B, ,le, = Py and the above process defines a measurable
function P on Kp with Plg,, = P} for every m € N, On the other hand, it
follows from the above convergence and relation (2.3) that

} P& p)xen(€)dm = lim | Fo,(p,€)x6, () dmy = mo(Orm),
Kg Kr

which shows that P € L*(Kg,m1) and completes the proof of the state-
ment.

LeMma 3.4. The sequence {Ps 11xe,, hien of functions converges to
Pxe,, in the o(L* (K, m1), (KR, m1))-topology for every m & N.

Proof. We can write

le-{-l(E"P) - Pm(g,(p)l <

1 2 -1
— 1Pm (& )+ mam-m(f:‘ﬁ)-

Ni:)te t.ha.t G;ﬁl(f, 0) =1 and G}"l(E,cp) < 1+ cot? ¢ for every (£,¢) € Kp
with sin ¢ 3 0. Moreover, using Lemma 3.3 we deduce that {Pny41— By, ten
converges pointwise to zero almost everywhere. Take A € L™ (Kr,m1). For
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each measurable subset A C Ky one has
§ [{Pais1(é,0) = Pry(€:9))xo,. (E)R(E 9)] dm,

A
af(a+2)
< (] Inte @)1 dm, )
A
2/(a+2)
X (S |Prs1(€,0) — Poy (€, 0)|T0/2 dml)
A

< [[hllcoma (4)4 520 (2 + 77)

according to (3.1). This shows that the sequence {(Pn,4+1 — Pr,)X0,.h}iex
is uniformly integrable. Under these conditions we deduce from Vitali’s the-
orem that

Jim § (Paga (€, 0) = Pu(E 9)xon (L& o) dmy =0,
i
which proves that {Py,+1Xe,, }ien also converges to Pyg,, in the o{ L}, L°°)-
topology for every m € N,

LemMa 3.5. The sequence {((Pn,Xo,.) 0 F) - G }ian of functions con-
verges to ((Pxa,,) o F)G™! in the o(L*{Kg, m1), L™ (Kr, m1))-topology for
every m &€ N.

Proof. If P& L'(Kg,m;) then the function ((Pxe,.) e F)G~' is mea-
surable and

{ PR e)xen (FENCHE vy dmy = | P& p)xe..(8) dma,
Kgn Ky
which shows that ((Pxe,.)o F) -G~ € L} (Kgr,m1).
Take h € Lm(Km,ml). Then ho F~t ¢ Lm(Km,ml) and

| (P (P, 0)) — PUE(E )Xo (F(E, 0))GHE 0)R(E, 0} dmy
K

= | (P (6, 0) — P(690))x0,. (€, @)M(F (&, ) dma.
Kn
Consecquently, it follows from Lemma 3.3 that {((Pn,Xe,.) © F) G hen
converges to ((Pxe,.) o F)- G™1 in the o(L!, L }-topology. m
LEMMA 3.6. The measure dy = Pdm, is tnvariont under F.

Proof. It is easy to verify that G;I(F(@(p)) = G(E,(p)Gj_jl(g,ga) for
every 7 > 1. Then

P (P& )06 0) = == D Cihl60).
&
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On the other hand, a straightforward computation shows that

PP e)GTHEY) = o 3 Grh(6w)
=0

mn;+1

Poii(60) %Pl(e,m,

and hence

PoF(E G690 ()= (P Pl ) = P1le ) e
for every m € N. Moreover

Pnl (F(éa W))X@m (f) = Pm (F(E? (P))XQWVH(F(&! @))X@m (‘5)

Taking limits as ! — co in the o(L*, L®)-topology and using Lemma 3.5, we
deduce the equality ((Pxe,..,) ¢ F)- G~ - xe, = Pxa,, for every m € N;
therefore Po F' = P .G~ almost everywhere on Kg. This shows that the
measure du = Pdm, is invariant under F'. m

Proof of Theorem 3.2. We argue by contradiction and assume that there
is no linear invariant measure with density function in L TP/2, Consider the
functions

b1 T
Qn(&, ) = % > GiE % = “:; > (sin® g + (cos  + S5 £(€) sin ) )P/,
j=1 J=1

Lemma 3.5 provides the invariant measure du = Pdm,y, absolutely contin-
uous with respect to mq. Birkhof’s ergodic theorem assures the existence
of the pointwise limit of the sequence {Q, }nen, and from Theorem 2.3 we
deduce that limp_,e Qn (¢, ) = oo almost everywhere on Ky (with respect
to ). Consequently, lim, o (1/n) i1 185 F(E)P = oo for almost every
£ € {2, and Fatou’s lemma yields limy,, 0 (1/n) S $e 1SiF ()P dmg = 0.
"This contradicts the hypotheses of the theorem and proves the existence of
LP-solutions of the cohomology equation. w

PROPOSITION 3.7. Let 0 < p < 0o. The following statements are equiva-
lent:

(i) the cohomology equation f = hoT — h has o solution h € LP(42,mq)

(ii) I satisfies the pointwise ergodic theorem in L3272 (K, my)

)

Proof. We first assume that the cocycle f is an LP-coboundary. From
Proposition 3.1 we deduce that F admits an absolutely continuous invari-
ant measure with density function in L+P/2(Ky m,). Consequently, Theo-
rem 2.2 assures the existence of the pointwise limit P = lim,_,, P, almost
everywhere in Kg. More precisely, it follows from Theorem 5.4 of [13] that
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the sequence {F,},en i uniformly integrable and converges to P in the
norm topology of L1 (K, my ). Moreover, Birkhoff’s ergodic theorem yields

n—oa g 4 M

We now repeat the arguments used in Lemma 3.3 to conclude that P €
L}*P/2(Kg,my) and {P,}nen converges to P in the a (L2 (Kg,ma),
L}23/P( Ky, my))-topology. Finally, Theorem 4 of Assani [3] shows that F
satisfies the pointwise ergodic theorem in L1*+2/P(Kp ms).

The proof of the converse is also immediate. It follows from [3] that
if F' satisfles the pointwise ergodic theorem in L'*2/?(Kg,m;) then it ad-
mits an absolutely continuous invariant measure dp = Pdm, with P €
L*+P/2(Kp, m;). Proposition 3.1 shows that f is an LP-coboundary. =

In the general case, the expression of the transfer function h for a real
coboundary f is not easy to calculate (see Bradley [4]). The sequences
{Pr}nen and {Qn}new provide an alternative way to obtain it: if f is a
coboundary, then

1
P&, o) = - :
&0 f‘§m sin? @+ (cosg + (h(n) — A{£)) sinp)?
and if f is an LP-coboundary, then

Q& p) = S (sin® p + (cos  + (h(n) — h(€)) sin}?)#/? dmg ().
Kr

> ma(FA)) = Jim &S my(FI(A)) = | P(6, ) dms = ().
=1 J=1

d'mU (TJ‘):

In particular, when f is an L'-coboundary and Yo hdmo = 0, the previous
expressions lead to the well known relation A = limy .00 (1/n) E?:l Sif
almost everywhere on {2.

The calculation of h can also be simplified when exp(h) € L!(£2, myp), as
shown in the next result.

ProposITION 3.8. Let f be a cocyele on {2, The following steternents are
equivalent:

(i) the cohomology equation f = hoT —h has a solution h with exp(h) €
L2, mo);

(ii) there ewists an invariant subset 2y C 12 with mo(£2y) = 1 such that
the limit

RE) = lim =3 exn(s;£(6)
=1

exists and is positive for every £ € {X.

Proof. We first show that (i) implies (ii). Let » be a measurable solu-
tion of the cohomology equation f = hoT — h and g = exp(h). We have
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g(T™(£)) = g(&) exp(Snf(£)) for every n € N; thus

n

B0 = LS on(s10) = 5t S o),
i=1 =1

Birkhoff’s ergodic theorem assures the existence of an invariant subset (25 C
2 with mo(f2p) = 1 such that R*(€) = (1/9(£)) |, 9(&) dmy for every £ € 1.

Now we consider the converse implication. It is easy to check the refation
Ry (6 = exp(F(E)(1/(n + 1) + nRE(T(E)) /(n + 1)) for every n & N.
Taking limits as n — oo we obtain R*(T'(£)) = R*(£) exp(—f(£)) for every
£ € (2, bence defining g(¢) = 1/R*(£) we get a positive solution of g(T'(¢)) =
g(&) exp(f(£)). Moreover, we alsc have

G
n—oo 71 g(é)

‘Therefore, there exists a T-invariant subset 25 C 2 with mg(f2p) = 1 such
that lim,_,..(1/n) E;:Dl g(T?(£)) = 1 for every € € (2. From Birkhoff's
ergodic theorem for positive functions we deduce that g € LY(2,myg), which
proves the claim. =

n—1 n—1
m(©) = tim 23 I i pe9) L S g rige))
i=0 j=0

We complete this section with scme results and examples concerning
the non-measure-preserving case. Let (12, A, myp) be a normalized measure
space and T': £2 — {2 an invertible non-singular transformation. In all what
follows, we assume there exists an invariant measure equivalent to mg, which
permits us to apply the previous theory.

PROPOSITION 3.9. Let r > (¢ and p,g > 1 be real numbers with /p+1/g
= 1. Assume that the following conditions hold:

(i) mo is equivalent to an F-invariant measure g with drng = wdify
and density function w € L9(12, fiyg);
(ii) there emists a measurable subset ©® C 2 with mp(@) > 0 and «a
sequence {ny }ren of positive integers with
Ty

= lim iz S 183 f|" dmg < co.

ko0 1)
Ttk i 6

Then f is an L¥/ "-coboundary, i.e. there exists h € L”/”(Q,m@) such
that f = hoT — h almost everywhere in Kr.

Proof Set @ ={¢ €O |1/l < w(€) < I}. We can find an index | € N
with my(€;) > 0; then

_ 1 & 1 & 1
li il g, " e = 1i =N . -
msup - jE=1 e§,J S F (6" difg foa sup - jil (.g, |5, £ (&) e dmg < oo.
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Theorem 3.2 assures the existence of a function h € LP(2, ) such that
f=hol —h almost everywhere in K. Moreover,

[ dmo < ( § h(e) diia) " ( § w(e)? din) " < oo,
r

o] n

which implies that A € LP/"(£2,mg) and completes the proof. m

ExXAMPLE 3.10. The following example, based on a construction given by
Furstenberg [6], shows that the conclusions of Proposition 3.9 are optimal.

Let {vx}ren be the sequence of positive numbers defined by vpe1 =
2¥% + vy + 1 for k > 1 and consider the irrational number o = 3 00 | 275,
The map T : §* — 81, £ =+ £ 4 «, represents the rotation of angle o on 1.
In this case myg is the Lehesgue measure on the circle.

We introduce the functions

. ) 1 _
f(é—) e Z i(e}mnka - 1)62w1nk£ and h(g) - Z _eZm'tnkE‘
Ll ||
[0 Jl£0
It is easy to check that f € C°°(S'). Furthermore, b € LP(S%, mq) for every
0<p<ooand h(é+ a) — h(£) = F(£) almost everywhere on St (see {12]).

Now we take the base 2 = ST and denote by F the discrete trans-
formation induced by (2.1) on Kr = 2 x P}(R). Fix 1 < p < oo. The
map 7 : LP(Kg,my) — LP(Kg,m1), B — B o F, is continuous with

1
Il = G > 1. » _

We introduce the function Q(&,¢) = 1 + h%(¢)sin® ¢ — 2h(€) sinp cos
and P = 1/@. The measure dy = Pdm, is invariant under F; moreover,
dmy = Qdu and @ € LP(Kp, i) for every 0 < p < oo.

We fix an exponent p > 0 and take a measurable function H such
that H € LP(Kw,p) — LP(Kg,m1). In particular this implies that H €
g (Kg, mq) for every 0 < p' < p. If we define B = H o F — H, it is obvious
that

1 m
lim sup — Z S 1S B{€, @) du < oo.
n—t00 nj=1KR
There exists [ € N such that, if K; = {(§,¢) € Kr | 1/l < Q(&, ) < 1}, then
my(K;) > 0 and

1 T
lirn sup = Z S |8;B(€, @) |F dmy < oo.
n—0a =1 K,

Notice that B is an LP -coboundary for every 0 < p’ < p (with respect to
my), but it is not an LP-coboundary.
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Schauder decompositions and multiplier theorems
by

P. CLEMENT (Delft), B. b8 PAGTER (Delft),
F. A. SUKOCHEV (Adelaide, S.A.) and H. WITVLIET (Delft)

Abstract. We study the interplay between unconditional decompositions and the
R-boundedness of collections of operators. In particular, we get several multiplier results
of Marcinkiewicz type for LP-spaces of functions with values in a Banach space X. Fur-
thermore, we show connections between the above-mentioned properties and geometric
properties of the Banach space X,

1. Introduction. A number of important operators i1 analysis may
be represented as multiplier operators with respect to a given Schauder
decomposition {Dy,}22,; of a Banach space X, i.e.,

(1) T (z) = Z MeDpz, ze€X,

where A = {Ar} € C. The characterization of the sequences A for which (1)
defines a bounded operator Ty on X for a given decomposition {0, }22 , is
an interesting problem. The study of this problem for the Schauder decom-
position defined by the trigonometric system in L7(0, 1} led J. Marcinkiewicz
[Mar39} (see also [EGT77]) to his famous multiplier theorem.

A similar description to that of Marcinkiewicz was obtained by G. I. Sun-
ouchi [Sun51] for the Schauder decomposition defined by the Paley-Walsh
system in L?(0,1). Vector-valued extensions of the Marcinkiewicz theorem
are given in [Bou83] (see also [BGO4]).

In all results mentioned above the descriptions of the sequences A for
which T} is bounded are given in terms of certain blockings A = {Ax}32.,; of
the Schauder decomposition {D, 152, (the dyadic blocking for both trigono-
metric and Paley~Walsh systems), which turns out to be an unconditional
decomposition of X. In fact, the study of the operators given by (1) naturally
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