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1. Introduction. Let p be a prime number and Z, the ring of p-adic
integers. Let k be a finite extension of the rational number field Q, ko a
Zy-extension of k, ky, the nth layer of ks /k, and A,, the p-Sylow subgroup
of the ideal class group of k,. Iwasawa proved the following well-known
theorem about the order #A,, of A,:

THEOREM A (Iwasawa). Let koo /k be a Zy,-extension and A,, the p-Sylow
subgroup of the ideal class group of ky, where ky, is the nth layer of koo /K.
Then there exist integers A = Mkoo /k) > 0, p = u(ko/k) > 0, v = v(kso / k),
and ng > 0 such that

#A, = pr
for all n > ng, where #A,, is the order of A,.

These integers A = A(koo/k), 1t = (koo /k) and v = v(koo /k) are called
Twasawa invariants of koo [k for p. If ks is the cyclotomic Z,-extension of k,
then we denote A (resp. p and v) by A,(k) (resp. pp(k) and vy, (k)).

Ferrero and Washington proved p, (k) = 0 for any abelian extension field
k of Q. On the other hand, Greenberg [4] conjectured that if &k is a totally
real, then A\, (k) = u,(k) = 0. We call this conjecture Greenberg’s conjecture.

In this paper, we determine all absolutely abelian p-extensions k with
Ap(k) = pp(k) = vp(k) = 0 for an odd prime p, by using the results of
G. Cornell and M. Rosen [1].

2. Main theorem. Throughout this section, we fix an odd prime num-
ber p. Let k be an abelian p-extension of Q and my its conductor, i.e. my
is the minimum positive integer with k£ C Q({, ), where (,, is a primitive
mygth root of unity. Then it follows easily that mi = p®p; ... p, where a is a
non-negative integer and p1, ..., p; are distinct primes which are congruent
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to 1 modulo p. We denote by k¢ the genus field of k£/Q. So k¢ is the maximal
unramified abelian extension of k such that kg /Q is an abelian extension.
In general, if k/Q is an abelian extension of odd degree, then it has been
shown by Leopoldt that

€1...€6¢
[k‘G : k] =
[k:Q]’
where eq,...,e; are the ramification indices of the primes which ramify in

k/Q. Hence, in our case, k¢ is also an abelian p-extension of Q. Now, let

and y be integers. We denote by (%)p the pth power residue symbol. Namely,

(%)p = 1 means that x is the pth power of some integer modulo y.
THEOREM 1. Let k be an abelian p-extension of Q, and my = p®py ... ps

the prime decomposition of its conductor, where the primes p1,...,p; are

distinct. If

(1) Ap(k) = pp(k) = vp(k) = 0,

then t < 2. Conversely, assume that t < 2.

e Ift =0, then the condition (1) holds.
e Ift =1, then the condition (1) holds if and only if kg C koo and

2) <p> 41 or pi#1 (mod p?).
b1/,
o Ift =2, then the condition (1) holds if and only if kg C koo, and for
(1,7) = (1,2) or (2,1),

3) (jj) 41, (;’) 41 py£1 (mod p2),

and there exist x,y,z € F), such that

x Y
b;p pp; z — ;
(4) <3> =1, <> =1, pip; =1 (mod p?), wyz # —1in Fp.
P P

J

pi pj

In the case t = 2, the conditions in Theorem 1 are complicated. So we
will give an example. We consider the case p = 3, p1 = 7 and py = 19.
We denote by k(7) (resp. k(19)) the subfield of Q({7) (resp. Q((19)) with
degree 3 over Q. As for the condition kg C ko, we consider the follow-
ing field F: There exists a field F' such that k(7) € F C k(7)k(19)Q1
and F' # k(7)k(19), k(7)Q1, where Q; is the first layer of the cyclotomic
Zs-extension of Q. Then mp = 3-7-19 and k(7)k(19)Q,/F is a non-trivial
unramified extension. Since k(7)k(19)Q;/Q is abelian, F' C k(7)k(19)Qq
C Fg. But, for Fy = k(7)k(19)Qq, it follows easily that [} = Fj . Hence
Fo CFy g =F C Fy. So, F satisfies the first condition of Theorem 1 (in
the case of t = 2).
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If we consider only the case where p is unramified in k, i.e. a = 0, then
the statement kg C ko can be simplified to k = kg because k1 = kQ;.
This restriction is not very strong: In general, for an absolutely abelian
p-extension field k, there exists an absolutely abelian extension field &’ such
that p is unramified in & and ko, = k.. For the above field F, F' =
k(7)k(19) satisfies Foo = F. (in fact we have Fy = FY) and 3 is unramified
in F’.

We continue to examine the above example. If we put (7,5) = (1,2),
then p; = 19 =1 (mod 3?), so the condition (3) is not satisfied. But if we
put (4,5) = (2,1), then we can verify that p; = 19 and p; = 7 satisfy the
conditions (3) and (4). Therefore F satisfies A\, (F') = p,(F) = vp(F) = 0.

Also, if K is the maximal subfield of Q((7.19) which is a 3-extension of
Q, then K satisfies the conditions of Theorem 1. (Note that, in general, if
k is the maximal subfield of Q((,) (m = p®p; ...p: as above) which is an
abelian p-extension of Q, then it follows that k = k¢.) Therefore we have

Ap(K) = pp(K) = vp(K) = 0.

As for the Greenberg conjecture, we can also get the following: In general,
it is known that if L C M then A\, (L) < A\,(M) and p,(L) < pp(M)
for number fields L, M. Hence for any subfield & of Q(({7.19) which is a
3-extension of Q, i.e. k C K, we have \,(k) = p1,,(k) = 0. This consideration
is generalized as follows:

COROLLARY 2. Let m = p®py ...py satisfy the condition either (2) (in
the caset = 1) or (3) and (4) (in the case t = 2) of Theorem 1. Then for any
subfield k of Q((m) which is a p-extension of Q, the Greenberg conjecture
for k and p is valid.

3. The results of G. Cornell and M. Rosen. In this section, we
recall some results of [1]. Let p be an odd prime number and K/Q an abelian
p-extension. Then the genus field K¢ of K/Q is also an abelian p-extension
of Q. If p does not divide the class number hx of K, then K does not
have any non-trivial unramified abelian p-extension by class field theory,
hence K¢ = K. In the following we will assume Kg = K. Furthermore,
we introduce the central p-class field K¢ of K, i.e. K¢ is the maximal p-
extension of K such that K¢ /K is an unramified abelian p-extension, K¢ /Q
is Galois and Gal(K¢/K) is in the center of Gal(K¢/Q). Since a p-group
must have a lower central series that terminates in the identity, one sees
that pfhg if and only if Ko = K. We can reduce our problem to the case
where Gal(K/Q) is an elementary abelian p-group by the following result:

LEMMA 3 ([1], Theorem 1). Let K/Q be an abelian p-extension with
Ko = K. Let k be the maximal intermediate extension between Q and K
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such that Gal(k/Q) is an elementary abelian p-group. Then the p-rank of
Gal(K¢/K) is equal to the p-rank of Gal(kc /k).

Moreover, we have the following lemma by Furuta and Tate:

LEMMA 4 ([1], Section 1). Let K be an absolutely abelian p-extension
such that Gal(K/Q) is an elementary abelian p-group and Ko = K. Then

Gal(Kc/K) ~ Coker (D), A\*(G:) — A*(@)),
where G;’s are the decomposition groups of the primes ramified in K/Q and

G = Gal(K/Q).

We assume Gal(K/Q) ~ (Z/pZ)™. Let p1, .. ., pt be the primes ramifying
in K and hg the class number of K. From genus theory, it follows that if
hx is not divisible by p, then ¢ = m. It follows that if m > 4 then p divides
hx by Lemma 4. So, we assume ¢ = m and m = 2 or 3. (If t = m =1, then
pth, cf. [5].)

LEMMA 5 ([1], Proposition 2). Suppose m = 2 and p; # p for i = 1,2.
Then p | hg if and only if (%)p =1 and (g—f)p =1

Next, we consider the case where p ramifies in K/Q. Suppose m = 2 and
primes p and p; are the only primes ramified in K. Then K = k(p;)Q; and
p1 =1 (mod p), where k(p1) is the unique subfield of Q((,,) which is cyclic
over Q of degree p, and Q, is the first layer of the cyclotomic Z,-extension

of Q.

LEMMA 6 ([1], Proposition 3). Suppose m = 2 and primes p and py are
the only primes ramified in K. Then p|hy if and only if (p%)p =1 and
p1 =1 (mod p?).

Next, suppose that ¢ = m = 3 and py,p2 and p3 are all the primes
ramified in K. Denote by D,,, the decomposition field of p; (¢ = 1,2,3) in
K. In [1], the following result is given:

LEMMA 7 ([1], Theorem 2). Suppose t = m = 3. Then the following
statements are equivalent:

(a) hx is not divisible by p.
(b) [Dp, : Q] = [Dy, : Q] = [Dy, : Q] = p and Dy, Dy, Dp, = K.

In the next section, we shall prove Theorem 1 using these results.

4. Proof of Theorem 1. Notations are as in the previous section.

First, suppose A\,(k) = pp(k) = vp(k) = 0. Clearly, this condition is
equivalent to A(k,) = 0 for any sufficiently large n. Then k,, satisfies k,, =
kn.c. So it follows easily that kg C k, g = kn C kso. Since k,, is also an
abelian p-extension of QQ, we can apply the results of Cornell-Rosen:
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Let L be the maximal subfield of k,, such that Gal(L/Q) is an elementary
abelian extension of Q. Since k,, = k, ¢, Gal(k,/Q) is the direct sum of
the inertia groups of primes ramified in k,/Q. Hence it follows that L =
k(p1)...k(p)Q:1. By Lemma 3, A(k,) = 0 is equivalent to pthr. Note that
if t > 3 then we always have p|hy by Lemma 4. Hence we may examine
each case, t =0 or 1 or 2.

If t = 0 then L = Qq, hence it is well known that A(L) = A(Q1) =0
(cf. [5]).

If t = 1 then L = k(p1)Q;. By Lemma 6, we get the statement of
Theorem 1.

In the following, we assume ¢ = 2. In this case, L = k(p1)k(p2)Q;s.
Let Gp,Gp, (i = 1,2) be the decomposition groups for p,p; in Gal(L/Q)
and D,, D, the fixed field of G,,G),, respectively. We note that D, C
k(p1)k(p2), Dp, C k(p2)Q1 and Dy, C k(p1)Qs.

Now, pthy, shows [D, : Q] = [D,, : Q] = [Dpzp: Q] =p andprDple2

1

= L by Lemma 7. Here, we assume that either (E)p =1or (E)p =1or

p2 = 1 (mod p?), and either (]%)p =1 or (%)p =1lor p; =1 (mod p?).
This is equivalent to

(5) Dy =k(pi) or Dy, = k(pj) or D,, =Qy for (4,7) = (1,2) and (2,1),

because [D:D : Q] = [Dpl : Q] = [Dm : Q] =D

If D, = k(p1), then D, # k(p1) because D, D,, D,, = L. Hence by (5)
(put (4,4) = (2,1)), we have D,, = Qy. Then D, C k(p1)Q1 = D,D,,, a
contradiction D,D,, D,, = L. In the same way, if D,, = k(p2), then D,, #
k(p2) and we have D,, = Q; by (5), a contradiction. Thus, it follows that
the assumption (5) contradicts D, D, D), = L. Therefore, for (i,7) = (1,2)

or (2,1), (ﬁ)p #1, (%)p #1,and p; Z 1 (mod p?).

Without loss of generality, we may assume (i,7) = (1,2). Since (p%)p
# 1, p is inert in k(p;). Hence o = (w) # 1, where (M) is the
Artin symbol, and o generates Gal(k(p1)/Q): (o) = Gal(k(p1)/Q). We often
regard (o) = Gal(k(p1)k(p2)/k(p2)) or Gal(L/k(p2)Q1) in the natural way.
Similarly, we put 7 = (k(p;%) and n = (%) Then (1) = Gal(k(p2)/Q)
and (n) = Gal(Q1/Q).

Since (p%)p # 1, there exists « € F,, such that (p;—fw)p = 1. Then

(B) _ o (MUQ) _ (K/0) (/0"

Pr o/, p2p” P2 P

Therefore (k(p;%) = o~ . Similarly, there exist y, z € F,, such that (%)

k(m)/@) (Ql/@)
P P1

p
z

=1 and p1p3 =1 (mod p?). Hence ( =7"Y and =n"*
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Since (MEUMP2)/Q) — (MeU/R) (RR2)/8) — 57-v, D, s the fixed field

of (c77Y) in k(p1)k(p2). Therefore, when we consider G, in Gal(L/Q),
Gp = (n,ot7Y).
And similarly,
Gp, = (o,m7) and Gy, = (1,9077),
in Gal(L/Q). By a direct computation, G, N G, = (o7~ ¥Yn¥?). Hence,
Gp NGy, NGy, = (o7 YnY*) N (1, no™")
_ {{1} if xyz # —1,

(o7 ¥n¥*) if zyz = —1.

But our assumption D, D, D,, = L implies G, N G, N Gp, = {1}. Hence
ryz # —1.

Conversely, we assume k satisfies the conditions of Theorem 1 in the
case of t = 2. Since kg = koo, it follows easily that L = k(p1)k(p2)Q1 is
the maximal intermediate extension between Q and k, (for a sufficiently
large n) such that Gal(L/Q) is an elementary abelian p-group. Without
loss of generality, we may assume (i,5) = (1,2). Since Gal(k(p1)k(p2)/Q) ~
(Z/pZ)? and p is unramified in k(p1)k(p2), p must decompose in k(p1)k(pz).

k

1)k(p2
But the condition (p%)p # 1 implies that p is inert in k(p;) C k(p1) (]];2),
hence we obtain [D, : Q] = p. Similarly, (%)p # 1 and py Z 1 (mod p?)
imply [Dp, : Q] = [Dp, : Q] = p. Therefore, as in the above computation of
Gp,Gp,, we have D, D), D,,, = L by zyz # —1. m

5. Remarks. The condition of Theorem 1 in [6] means xyz = 0 which
is a special case of zyz # —1. Hence, our Corollary 2 contains some known
results and there exist infinitely many fields satisfying the conditions of
Theorem 1 (cf. [6]).

If K = k(p1)k(p2) satisfies the conditions of Theorem 1, then \,(k) =
tp(k) = 0 for any field k¥ C K with [k : Q] = p. This is a result of Fukuda
[2]. The case xyz = —1 is a more difficult case. But we have some results:

PROPOSITION 8. Notations are as in Section 3. Assume that (p%)p;é 1,
(%)p #1, and py Z1 (mod p?). Then \y(k) = p,(k) = 0 for the decompo-
sition field k of p in k(p1)k(p2).

Proof. We apply a result of [3]:

LEMMA 9 ([3]). Let k be a cyclic extension of Q of degree p. Then the
following conditions are equivalent:

() Ap(K) = 1y () = 0.
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(b) For any prime ideal w of koo which is prime to p and ramified in
koo /Qoo, the order of the ideal class of w is prime to p.

If zyz # —1 then A\, (k) = pp(k) = 0 by Corollary 2. So we only consider
the case zyz = —1. In this case we have k # k(p;) (i = 1,2). It follows
easily that A(k), the p-part of the ideal class group of k, is cyclic of order
p, and it is generated by products of primes of k£ above p. On the other
hand, for ¢ = 1,2, the prime p; of k above p; generates A(k), and is inert in
koo /K. Since the primes of k above p is principal for some k,, by the natural
mapping A(k) — A(k,) (cf. [4]), p; are principal in k.

Since all the primes ramified in ko, /Qoo are p; and po, which are principal
in koo, we can apply Lemma 9 and obtain A, (k) = p,(k) = 0.
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