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Reciprocity laws for generalized
higher dimensional Dedekind sums

by

Robin Chapman (Sydney, N.S.W.)

We define a class of generalized Dedekind sums and prove a family of
reciprocity laws for them. These sums and laws generalize those of Zagier [6].
The method is based on that of Solomon [5].

1. Dedekind sums. For a real number t let btc denote its integer part,
i.e., the unique integer with btc ≤ t < btc + 1, and {t} = t − btc denote its
fractional part. Define

B(t) =
{ {t} − 1/2 if t 6∈ Z,

0 if t ∈ Z.
For integers a, b and c with c > 0 we define the Dedekind sum

s(a, b; c) =
c−1∑

j=0

B(aj/c)B(bj/c).

This is a slight generalization of the usual Dedekind sum which is defined
by s(h, k) = s(1, h; k). The Dedekind sum has various formal properties
which we shall not list; one is s(a, b; c) = s(ad, bd; c) for d coprime to c.
If a is coprime to c this shows that s(a, b; c) equals the classical Dedekind
sum s(a′b, c) where aa′ ≡ 1 (mod c). Rademacher [4] proved a three-term
reciprocity law for these sums.

Theorem 1. Let a, b and c be pairwise coprime positive integers. Then

s(a, b; c) + s(b, c; a) + s(c, a; b) = −1
4

+
1
12

(
a

bc
+

b

ca
+

c

ab

)
.

The special case of c = 1 gives the classical reciprocity law:

s(a, b) + s(b, a) = −1
4

+
1
12

(
a

b
+
b

a
+

1
ab

)
.
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Zagier [6] generalized this by considering sums of the form
∑

0≤i1,...,in<a
a|(b1i1+...+bnin)

B(i1/a) . . . B(in/a)

where the integers b1, . . . , bn are each coprime to the positive integer a.
Zagier proves an (n+ 1)-term reciprocity law for these sums.

We generalize Zagier’s formula further to sums of the form

sr1,...,rn(a; b1, . . . , bn;λ1, . . . , λn)

=
∑

0≤i1,...,in<a
a|(b1i1+...+bnin)

B̃r1((i1 + λ1)/a) . . . B̃rn((in + λn)/a)

where the B̃r are Bernoulli functions as defined in the next section, a is
a positive integer, b1, . . . , bn are integers coprime to a, r1, . . . , rn are non-
negative integers and λ1, . . . , λn are real numbers. The case r1 = . . . = rn =
1 and λ1 = . . . = λn = 0 gives the sums studied by Zagier. The classical and
Rademacher’s Dedekind sums are given by

s(h, k) = s1,1(k;h,−1; 0, 0)

and

s(a, b; c) = s1,1(c; b,−a; 0, 0).

2. Bernoulli functions. The Bernoulli polynomials Bn(t) are defined
by the generating function

xetx

ex − 1
=
∞∑
n=0

Bn(t)
xn

n!
.

Each Bn(t) is a monic polynomial of degree n. The first few examples are

B0(t) = 1, B1(t) = t− 1/2, B2(t) = t2 − t+ 1/6.

The Bernoulli numbers are defined by Bn = Bn(0). For n 6= 1 we also
have Bn(1) = Bn since

∞∑
n=0

(Bn(1)−Bn)
xn

n!
=
xex − x
ex − 1

= x.

On the other hand, B1 = −1/2 but B1(1) = 1/2. We define periodic versions
of the Bernoulli polynomials, the Bernoulli functions, by

B̃n(t) =
{
Bn({t}) if n 6= 1 or t 6∈ Z,

0 if n = 1 and t ∈ Z.
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Each B̃n(t) has period 1, and all are continuous save for B̃1(t) which equals
B(t) in our established notation. Let

Φ(t, x) =
∞∑
n=0

B̃n(t)
xn−1

n!

denote the generating function of the Bernoulli functions. We have

Φ(t, x) =





e{t}x

ex − 1
if t 6∈ Z,

ex + 1
2(ex − 1)

if t ∈ Z.

It follows that Φ(−t, x) = −Φ(t,−x) and so

B̃n(−t) = (−1)nB̃n(t).

For positive integers m we easily prove the distribution relation for these
generating functions

m−1∑

j=0

Φ((t+ j)/m, x) = Φ(t, x/m).

As it is apparent that both sides have period 1 in t we may assume that
0 ≤ t < 1 and then the identity becomes just the sum of a finite geometric
series. An immediate corollary is the distribution relation for the Bernoulli
functions:

m−1∑

j=0

B̃n((t+ j)/m) = m1−nB̃n(t).

We would like to expand these expressions as formal power series and
equate both sides, for instance for 0 < t < 1 we should have

∞∑
n=0

B̃n(t)
xn

n!
=

xetx

ex − 1
= −

∞∑

j=0

xe(t+j)x = −
∞∑

j=0

∞∑

k=0

(t+ j)k
xk+1

k!
.

However there seems to be no meaningful way that this gives an identity
of power series in x. If we were to invert the order of summation, then the
coefficients of the xk+1 would be non-convergent series. Also we have the
embarrassment that the infinite sum of series without a constant term is
equated to a series with a non-zero constant term. Nonetheless in the next
section we shall see how one can assign a power series expansion to certain
infinite sums of exponential series.

3. Formal power series of quotient type. Let K be a field and
G be a torsion-free abelian group with the group operation written mul-
tiplicatively. Let K[G] denote the group ring. Then the elements of K[G]
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are finite sums
∑
g∈G agg where ag ∈ K and ag = 0 with only finitely

many exceptions. Indeed K[G] is an integral domain. To see this we may
assume that K[G] is finitely generated, in which case it is isomorphic to
K[x1, x

−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n ] for some n. This is clearly an integral do-

main.
We now define K{G} to be the set of all formal infinite linear combina-

tions
∑
g∈G agg where ag ∈ K and we do not assume that all but finitely

many are non-zero. The set K{G} contains the group ring K[G] but is not
itself a ring in a natural way, but K{G} is a vector space over K. However
we can multiply elements of K[G] and K{G} together to get elements of
K{G} and so K{G} is a K[G]-module. We say that f ∈ K{G} is of quotient
type if there is a non-zero g ∈ K[G] with gf ∈ K[G]. We denote the set of
all f ∈ K{G} which are of quotient type by K{G}q.

As an example let G be cyclic with generator x. Then f =
∑∞
n=−∞ xn ∈

K{G} is of quotient type since (x − 1)f = 0. Our aim is to identify f ∈
K{G}q with h/g whenever gf = h and g, h ∈ K[G] with g non-zero. This
example shows that on some occasions a non-zero formal sum should be
identified with zero.

Lemma 1. The set K{G}q is a K[G]-submodule of K{G} containing
K[G].

P r o o f. For f ∈ K[G], 1f = f ∈ K[G] so that K[G] ⊆ K{G}q.
If f ∈ K{G}q take a non-zero h ∈ K[G] with hf ∈ K[G]. Then for

g ∈ K[G] we have h(gf) = g(hf) ∈ K[G] so that hf ∈ K{G}q. If f1,
f2 ∈ K{G}q let h1, h2 ∈ K[G] be non-zero with h1f1, h2f2 ∈ K[G]. Then
h1h2 6= 0 and h1h2(f1 + f2) = h2(h1f1) + h1(h2f2) ∈ K[G].

Let L be a field containing K and ϕ : K[G] → L be an injective K-
homomorphism. For instance ϕ could be the inclusion of K[G] in its quotient
field. We wish to extend ϕ to a “homomorphism” of K{G}q to L. (We put
homomorphism in quotes since there is no obvious ring structure onK{G}q.)

Lemma 2. The map ψ : K{G}q → L given by ψ(f) = ϕ(gf)/ϕ(g)
whenever g, gf ∈ K[G] and g 6= 0 is well defined. Also ψ is additive and
ψ(hf) = ϕ(h)ψ(f) for f ∈ K{G}q and h ∈ K[G].

P r o o f. Suppose that g1 and g2 are non-zero elements of K[G] with g1f ,
g2f ∈ K[G]. Then g2(g1f) = g1(g2f) and so ϕ(g2)ϕ(g1f) = ϕ(g1)ϕ(g2f).
As ϕ is injective then ϕ(g1), ϕ(g2) 6= 0 and so ϕ(g1f)/ϕ(g1) = ϕ(g2f)/ϕ(g2)
so that ψ is well defined.

For f1, f2 ∈ K{G}q let g1, g2 ∈ K[G] be non-zero with f1g1, f2g2 ∈
K[G]. Then g1g2(f1 + f2) ∈ K[G] and so
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ψ(f1 + f2) =
ϕ(g1g2(f1 + f2))

ϕ(g1g2)
=
ϕ(g2)ϕ(g1f1) + ϕ(g1)ϕ(g2f2)

ϕ(g1)ϕ(g2)

=
ϕ(g1f1)
ϕ(g1)

+
ϕ(g2f2)
ϕ(g2)

= ψ(f1) + ψ(f2).

Finally let f ∈ K{G}q and h ∈ K[G] and let g be a non-zero element of
K[G] with gf ∈ K[G]. Then g(hf) = h(gf) ∈ K[G] and so

ψ(hf) =
ϕ(ghf)
ϕ(g)

=
ϕ(h)ϕ(gf)

ϕ(g)
= ϕ(h)ψ(f).

4. Exponential sums over lattice points. From now on we fix a
positive integer n and take indeterminates X1, . . . , Xn. We identify the real
Euclidean space Rn with the set of linear forms in X1, . . . , Xn so that we
equate a vector x = (x1, . . . , xn) with x1X1 + . . .+ xnXn.

Now let G be the group of all formal power series exp(x1X1 + . . . +
xnXn) = ex where x = (x1, . . . , xn) ∈ Rn. Then G is a torsion free abelian
group.

We let K be any field of characteristic zero, so that G ⊆ K[[X1, . . . , Xn]],
the field of formal power series in n variables. We let L = K((X1, . . . , Xn))
be its quotient field. The inclusion G ⊆ L gives rise to a homomorphism
ϕ : K[G]→ L and so also a map ψ : K{G}q → L. Define, for real t,

ω(t) =

{
1 if t > 0,
1/2 if t = 0,
0 if t < 0.

Note that ω(t) + ω(−t) = 1. Set

φ(λ,X) = −
∑

t∈λ+Z
ω(t)etX .

Then

ψ(φ(λ, v)) = Φ(λ, v)

whenever v ∈ Rn, identifying, as always, Rn with the space of linear forms
in X1, . . . , Xn.

Let a0, . . . , an be pairwise coprime positive integers.

Lemma 3. The group Zn has elements u0, . . . , un with the property that
the uj generate Zn as an additive group and

∑n
j=0 ajuj = 0.

P r o o f. Let u′1, . . . , u
′
n be n linearly independent vectors in Qn. Set u′0 =

−a−1
0
∑n
j=1 aju

′
j . The abelian group Λ generated by the u′j is free abelian

of rank n, and is isomorphic to Zn. If ψ : Λ → Zn is an isomorphism, then
the uj defined by uj = ψ(u′j) have the desired properties.
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Note that each size n subset of u0, . . . , un forms a basis of Rn. Also since
the uj span Zn a vector x ∈ Rn lies in Zn if and only if all the uj · x are
in Z.

For distinct integers j, k ∈ {0, . . . , n} there is vjk ∈ Rn such that ui · vjk
= 0 for i 6∈ {j, k} and uj · vjk = ak. It follows that uk · vjk = −aj . Hence
each vjk is in Zn. As ui · (vjk + vkj) = 0 for all i we have vjk + vkj = 0.
Similarly aivjk + ajvki + akvij = 0.

For a fixed k consider the set {vjk : j 6= k}. For i 6= j we have ui · vjk
= ak if i = k and ui · vjk = 0 otherwise. It follows that the set {vjk : j 6= k}
is a basis of Rn. Also if

x =
∑

j 6=k
λjvjk

then uj ·x = akλj . The vector x lies in Zn if and only if uj ·x ∈ Z for each j.
Taking j 6= k this means that λj = hj/ak where hj ∈ Z and taking j = k it
means in addition that

∑
j 6=k ajhj ≡ 0 (mod ak).

We now wish to consider sums of exponentials over regions defined by
inequalities such as uj · z ≥ 0. Let

Sk(x) =
∑

y∈x+Zn
ey

n∏

j=0
j 6=k

ω(uj · y).

Essentially this is the sum of ey over all y ∈ x+ Zn which lie in the region
defined by the inequalities uj · y ≥ 0 but where each term ey is weighted
according to the number of boundary hyperplanes that y lies in. It is crucial
that each of these sums is of quotient type.

Proposition 1. Let 0 ≤ k ≤ n. Then Sk(x) is of quotient type; in fact

ψ(Sk(x))

= (−1)n
∑

0≤i0,...,ik−1,ik+1,...,in<ak
ak|(a0i0+...+ak−1ik−1+ak+1ik+1+...+anin)

n∏

j=0
j 6=k

Φ((ij + λj)/ak, vjk)

where λj = uj · x.

P r o o f. For 0 ≤ j ≤ n and j 6= k the vectors vjk lie in Zn and are
linearly independent over Q. Let Λk denote the lattice they generate. Then
Λk has finite index in Zn. We shall determine the cosets of Λk in Zn and
split up the sum Sk into sums over each coset.

We have seen that

y =
n∑

j=0
j 6=k

µjvjk
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lies in Zn if and only if µj = ij/ak where ij ∈ Z and
∑n
j=0, j 6=k ajij is

divisible by ak. Thus each coset of Λk in Zn has a unique representative
y = a−1

k

∑
j ijvjk with ij ∈ Z, 0 ≤ ij < ak, and ak | (a1i1 + . . .+ ak−1ik−1 +

ak+1ik+1 + . . .+ anin).
Given such a y, consider the sum

Sk(x, y) =
∑

z∈x+y+Λk

ez
n∏

j=0
j 6=k

ω(uj · z).

Each z in x+ y + Λk has the form

a−1
k

n∑

j=0
j 6=k

(ij + λj + cjak)vjk

where the cj are arbitrary integers. Then ω(u · z) depends only on the sign
of ij + λj + cjak. We get

Sk(x, y) =
∑

cj∈Z
j 6=k

n∏

j=0
j 6=k

ω(ij + λj + cjak) exp(a−1
k (ij + λj + cjak)vjk).

It is clear that this is of quotient type and that

ψ(Sk(x, y)) = (−1)n
n∏

j=0
j 6=k

Φ((ij + λj)/ak, vjk).

Adding up Sk(x, y) over all the coset representatives y gives the stated
formula.

Expanding each Φ((ij+λj)/ak, vjk) as a Laurent series immediately gives
the following generating function for the generalized Dedekind sums.

Corollary 1. We have

ψ(Sk(x))

= (−1)n
∞∑
rj=0
j 6=k

sr0,...,rk−1,rk+1,...,rn

vr0−1
0k . . . v

rk−1−1
k−1,k v

rk+1−1
k+1,k . . . vrn−1

nk

r0! . . . rk−1!rk+1! . . . rn!

where sr0,...,rk−1,rk+1,...,rn denotes

sr0,...,rk−1,rk+1,...,rn(ak; a0, . . . , ak−1, ak+1, . . . , an;

λ0, . . . , λk−1, λk+1, . . . , λn).

In this generating function, each term is a quotient of homogeneous poly-
nomials in the variables Xn. Each term thus has a well defined total degree,
namely r1 + . . .+ rk−1 + rk+1 + . . .+ rn − n.
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The reciprocity law comes from the following evaluation of the sum of
the ψ(Sk(x)).

Theorem 2. We have
n∑

k=0

ψ(Sk(x)) =
{

0 if n is odd or x 6∈ Zn,
2−n if n is even and x ∈ Zn.

P r o o f. For each subset B of B0 = {0, 1, . . . , n} define

SB(x) =
∑

y∈x+Zn
ey

n∏

j=0
j 6∈B

ω(uj · y)

so that in particular S{j}(x) = Sj(x). Also since each aj > 0 and
∑n
j=0 ajuj

= 0 we can only have uj · y ≥ 0 for all j ∈ B0 if y = 0. It follows that
S∅(x) = δ/2n+1 where

δ =
{

1 if x ∈ Zn,
0 if x 6∈ Zn.

However if i and j are distinct elements of B, then ω(uk ·(y+vij)) = ω(uk ·y)
for each k 6∈ B so that (evij − 1)SB(x) = 0. Thus for |B| ≥ 2 we have
ψ(SB(x)) = 0.

We now consider the following sum:

Σ =
∑

y∈x+Zn
ey

n∏

k=0

(1− ω(uk · y)).

First of all 1− ω(t) = ω(−t) and so only the terms with uk · y ≤ 0 for all y
can be zero. But this necessitates that y = 0 and so Σ = δ/2n+1. Expanding
out the product gives

Σ =
∑

B⊆B0

(−1)n+1−|B|SB(x).

Hence

ψ(Σ) = (−1)n+1S∅(x) + (−1)n
n∑

k=1

ψ(Sk(x)).

Rearranging gives
n∑

k=0

ψ(Sk(x)) = (1 + (−1)n)δ/2n+1,

which is equivalent to the stated identity.

Formal sums of the form Sk(x) were used in [3] to construct cocycles of
PGL2(Q) and PGL3(Q).
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5. Examples. We can read off reciprocity laws by equating the terms
of a given degree on each side of the identity of Theorem 2. We shall do this
explicitly for the terms of degree zero. We first note that the Dedekind sums
are essentially trivial unless all the parameters rj are strictly positive.

Lemma 4. If some rj are 0 then

sr1,...,rn(a; b1, . . . , bn;λ1, . . . , λn) = an−1−(r1+...+rn)B̃r1(λ1) . . . B̃rn(λn).

P r o o f. Assume without loss of generality that rn = 0. The condi-
tion that a | ∑j bjij means that each choice of i1, . . . , in−1 determines a

unique in. As B̃0(t) = 1 we have

sr1,...,rn(a; b1, . . . , bn;λ1, . . . , λn) =
a−1∑

i1,...,in−1=0

n−1∏

j=0

B̃rj ((ij + λj)/a)

=
n−1∏

j=0

a−1∑

i=0

B̃rj ((i+ λj)/a)

=
n−1∏

j=0

a1−rj B̃rj (λj)

by the distribution relation. Since B̃rn(λn) = B̃0(λn) = 1 the lemma now
follows.

We now consider the terms of degree zero in the generating function
ψ(Sk(x)). For convenience write

s(k) = s1,1,...,1(ak; a0, . . . , ak−1, ak+1, . . . , an;λ0, . . . , λk−1, λk+1, . . . , λn).

Let Rk denote the set of (n + 1)-tuples r = (r0, . . . , rn) of non-negative
integers with r0 + . . . + rn = n and rk = rj = 0 for some j 6= k. Then by
Lemma 4 the sum of the degree zero terms of ψ(Sk(x)) is

Σk = s(k) +
∑

r∈Rk

1
ak

n∏

j=0
j 6=k

B̃rj (λj)
v
rj−1
jk

rj !
.

Let us write vjk = ajakwjk. Then wjk + wkj = 0 and wij + wjk + wki = 0
for all i, j and k. We thus have wjk = xk − xj for some xk, for instance if
xk = w0k for k > 0 and x0 = 0. Thus

Σk = s(k) +
1

a0 . . . an

∑

r∈Rk

n∏

j=0
j 6=k

B̃rj (λj)
rj !

a
rj
j (xk − xj)rj−1.
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Let us put R =
⋃n
k=0Rk and

Dk =
n∏

j=0
j 6=k

(xk − xj).

Then
n∑

k=0

(Σk − s(k)) =
1

a0 . . . an

∑

r∈R

B̃r0(λ0) . . . B̃rn(λn)ar00 . . . arnn
r0! . . . rn!

Tr

where

Tr =
n∑

k=0

1
Dk

n∏

j=0

(xk − xj)rj .

Lemma 5. Let r = (r0, r1, . . . , rn) be an n-tuple of positive integers with
r0 + r1 + . . .+ rn = n. Then Tr, as defined above, equals 1.

P r o o f. Define f(x) =
∏n
j=0(x−xj)rj . Then f is a monic polynomial of

degree n. Consider the determinant

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xn
x2

0 x2
1 . . . x2

n
...

...
. . .

...
xn−1

0 xn−1
1 . . . xn−1

n

f(x0) f(x1) . . . f(xn)

∣∣∣∣∣∣∣∣∣∣∣∣

.

By using elementary row operations we see that ∆ equals the Vandermonde
determinant

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
x0 x1 . . . xn
x2

0 x2
1 . . . x2

n
...

...
. . .

...
xn−1

0 xn−1
1 . . . xn−1

n

xn0 xn1 . . . xnn

∣∣∣∣∣∣∣∣∣∣∣∣

=
∏

0≤i<j≤n
(xj − xi).

But expanding out along the last row gives

∆ =
n∑

k=0

f(xk)(−1)n−k
∏

0≤i<j≤n
i 6=k 6=j

(xj − xi).

Taking the quotient of these two expressions for ∆ establishes the lemma.
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We thus get the reciprocity law: suppose that
∑n
k=0 akλk = 0. Then

n∑

k=0

s(k) =
δ(1 + (−1)n)

2n+1 − 1
a0 . . . an

∑

r∈R

n∏

j=0

B̃rj (λj)a
rj

rj !

where R is the set of (n+ 1)-tuples r = (r0, . . . , rn) of non-negative integers
summing to n with at least two of the rk vanishing, and δ = 1 if all the λk
are in Z and δ = 0 otherwise.

By reading off the coefficients of terms of positive degree in the ψ(Sk(x))
we can obtain further reciprocity laws; however they rapidly become cum-
bersome to write down.

In [2] Hu proved a reciprocity law akin to Theorem 2 by generalizing
the method of Hall, Wilson and Zagier [1]. However he did not use this to
deduce explicit reciprocity laws for the Dedekind sums themselves.
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