
ACTA ARITHMETICA
XCII.1 (2000)

Theta functions of quadratic forms
over imaginary quadratic fields

by

Olav K. Richter (Santa Cruz, CA)

1. Introduction. Let Q be a positive definite n×n matrix with integral
entries and even diagonal entries. It is well known that the theta function

ϑQ(z) :=
∑

g∈Zn
exp{πi tgQgz}, Im z > 0,

is a modular form of weight n/2 on Γ0(N), where N is the level of Q, i.e.
NQ−1 is integral and NQ−1 has even diagonal entries. This was proved by
Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the
Poisson summation formula to generalize their results for arbitrary n and
he also computes the theta multiplier explicitly. Stark [8] gives a different
proof by converting ϑQ(z) into a symplectic theta function and then using
the transformation formula for the symplectic theta function. In [4], we
apply Stark’s method and use theta functions of indefinite quadratic forms
to construct modular forms over totally real number fields. In this paper, we
define theta functions attached to quadratic forms over imaginary quadratic
fields. We show that these theta functions are modular forms of weight n/2
on some Γ0 groups by regarding them as symplectic theta functions and then
applying well known results for symplectic theta functions. In particular, the
main result of [8] allows us to compute the theta multiplier for our theta
functions in a very elegant way.

2. Symplectic theta functions. The symplectic group, Spn(R), con-
sists of those 2n× 2n real matrices

M =
(
A B
C D

)
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(each entry is n× n) such that

tMJM = J :=
(

0 −In
In 0

)
,

where In is the n×n identity matrix. The corresponding symmetric space is
the Siegel upper half plane H(n) which consists of n×n symmetric complex
matrices Z with ImZ > 0 (positive definite). The action of M on Z is
given by

M ◦ Z = (AZ +B)(CZ +D)−1.

Let Γ (n) = Spn(Z). The theta subgroup Γ (n)
ϑ of Γ (n) is the set of all

(
A B
C D

)
in

Γ (n) such that both A tB and C tD have even diagonal entries. The subgroup
acts on the symplectic theta function,

ϑ

(
Z,

(
u

v

))
=
∑

m∈Zn
exp{πi[ t(m+ v)Z(m+ v)− 2 tmu− tvu]},

where u and v are column vectors in Cn. It is well known (see Eichler [1],
for example) that for (

A B
C D

)
in Γ

(n)
ϑ ,

we have

(1) ϑ

(
M ◦ Z,M

(
u

v

))
= χ(M)[det(CZ +D)]1/2ϑ

(
Z,

(
u

v

))
,

where χ(M) is an eighth root of unity which depends upon the chosen square
root of det(CZ +D), but which is otherwise independent of Z, u, and v. It
is also known that χ(M) can be expressed in terms of Gaussian sums. Stark
[8] determined χ(M) in the important special case where pD−1 is integral
for some odd prime p. The main result in [8] is

Theorem 1. Suppose M =
(
A B
C D

)
is in Γ

(n)
ϑ where C−1 and D−1 ex-

ist. Suppose further that for some odd prime p, pD−1 is integral. Then
(mod p), the symmetric matrix pD−1C has rank h where det(D) = ±ph. Let
(pD−1C)(h) be a nonsingular (mod p) h× h principal submatrix of pD−1C
and s be the signature (the number of positive eigenvalues minus the number
of negative eigenvalues) of C−1D. Then

χ(M)[det(CZ +D)]1/2

= ε−hp

(
2h det[(pD−1C)(h)]

p

)
eπis/4|det(C)|1/2{det[−iC−1(CZ +D)]}1/2,

where εp = 1 for p ≡ 1 mod 4, εp = i for p ≡ 3 mod 4,
( ·
p

)
is the Legendre

symbol , |det(C)|1/2 is positive and {det[−iC−1(CZ + D)]}1/2 is given by
analytic continuation from the principal value when Z = −C−1D + iY .
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Alternatively , if just C−1 exists and pC−1 is integral , det(C) = ±ph, then
pC−1D (mod p) has rank h and

χ(M)[det(CZ +D)]1/2

= ε−hp

(−2
p

)h(det[(pC−1D)(h)]
p

)
|det(C)|1/2{det[−iC−1(CZ +D)]}1/2.

3. Theta functions as modular forms. Let K = Q(
√
d) be the imagi-

nary quadratic field with discriminant d < 0. Let OK be the ring of integers
of K and δK be the different of K. The algebraic conjugate of an alge-
braic number α is identical with its complex conjugate and denoted by α.
Furthermore, let Γ = SL2(OK) and, as usual, for an integral ideal N, let

Γ0(N) :=
{
M =

(
α β
γ δ

) ∣∣∣∣M ∈ Γ and γ ∈ N

}
.

Our upper half space H := {x+ yk | x ∈ C, y ∈ R+} is the quaternionic
upper half plane consisting of quaternions with no j-component and positive
k-component. The matrix

M =
(
α β
γ δ

)
∈ SL2(K)

acts on H by M ◦ z := (αz + β)(γz + δ)−1. Note that M ◦ z ∈ H. For γ and
δ in K and z in H, we define

N (γz + δ) := ‖γz + δ‖2 = |γx+ δ|2 + |γ|2y2.

Let Q be a symmetric n × n matrix with entries in OK defining the
quadratic form Q[x] := txQx, where x ∈ Cn. Furthermore, let Q{x} :=
txQx and Q[x] := txQx. If, in addition, Q has diagonal entries which are
divisible by 2, we say that Q is of level N (N ∈ OK) whenever the following
two conditions are satisfied:

(a) The matrix NQ−1 has entries in OK , and 2 divides the diagonal
entries of NQ−1.

(b) For any M ∈ OK , N divides M whenever MQ−1 has entries in OK

and 2 divides the diagonal entries of MQ−1.

For the vector λ = t(λ1, . . . , λn), we define λ := t(λ1, . . . , λn), where
λ1, . . . , λn are in K. We define the theta function ΘQ for a quadratic form by

Definition 1. Let Q be a symmetric n × n matrix with entries in
OK such that 2 divides the diagonal entries of Q and such that Q is of
level N . Since Q is symmetric, Q = tLL for an upper triangular complex
matrix L = (lsr)s,r=1,...,n (lsr = 0 for s > r). For an ideal I ⊂ OK and
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z = x+ yk ∈ H, set

ΘQ(z) :=
∑

λ∈In

exp
{
πi
[
(Q[λ]x+Q[λ]x) + 2i

( n∑
s=1

∣∣∣
n∑
r=s

lsrλr

∣∣∣
2)
y
]}
,

where λ = t(λ1, . . . , λn).

Remarks. (a) For R := tLL, we have
n∑
s=1

∣∣∣
n∑
r=s

lsrλr

∣∣∣
2

= tλRλ = R{λ}.

Furthermore, observe that

(2) RQ−1R = Q and tR = R > 0.

Hence the matrix R is a majorant of the matrix Q (in the terminology of
Siegel [7]).

(b) For any algebraic integer t ∈ K, Q[λ]t + Q[λ]t = tr(Q[λ]t) is an
even rational integer, and thus ΘQ(z) is invariant under linear transforma-
tions, i.e.

(3) ΘQ(z + t) = ΘQ(z).

The first task toward showing that ΘQ is a modular form is to convert ΘQ
into a symplectic theta function ϑ. Let us introduce some helpful notation.
For α ∈ C, define

diag(α) :=
(
α 0
0 α

)

and the 2n× 2n matrix

diag∗(α) :=




diag(α)
. . .

diag(α)


 .

For z = x+ yk ∈ H, let

Z2 :=
(
x iy
iy x

)

and furthermore, define the 2n× 2n matrix

Z∗ :=



Z2

. . .
Z2


 .

Let Λ := t(λ1, λ1, . . . , λn, λn). Some computation gives
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(4) tΛ tLZ∗LΛ =
{

(Q[λ]x+Q[λ]x) + 2i
( n∑
s=1

∣∣∣
n∑
r=s

lsrλr

∣∣∣
2)
y
}
,

where

L :=




diag(l11) . . . diag(l1n)
. . .

...
diag(lnn)


 .

Let {ω1, ω2} be an integral basis of the ideal I ⊂ OK . The entries of the
vector Λ are integers in I and can be written in terms of the basis {ω1, ω2}.
Hence, we can define a vector P = t(m1, . . . ,m2n) with rational integers
m1, . . . ,m2n such that Λ = WP , where

(5) W :=



W2

. . .
W2




and

(6) W2 :=
(
ω1 ω2

ω1 ω2

)
.

Furthermore,

(7) W−1
2 =

(
ν1 ν1

ν2 ν2

)
,

where {ν1, ν2} is an integral basis for I−1δ−1
K .

With T := LW and Z := tTZ∗T , we have

(8) ΘQ(z) = ϑ

(
Z,

(
0
0

))
=

∑

m∈Z2n

exp{πi[ tmZm]}.

To see that Z is actually in H(2n), we observe that Z is symmetric and that
Z = tTS∗Z∗T , where

S :=
(

0 1
1 0

)
and S∗ :=



S

. . .
S


 .

Also, 1
2i (S

∗Z∗ − tS∗Z∗) = yI2n > 0 and a corollary of Sylvester’s theorem
implies that Im Z > 0.

For
(
α β
γ δ

) ∈ Γ = SL2(Ok), set

(9) M∗ :=
(
A∗ B∗

C∗ D∗

)
:=
(

diag∗(α) diag∗(β)
diag∗(γ) diag∗(δ)

)
.



6 O. K. Richter

It is easy to check that the diagram

z

(
α β
γ δ

)
◦ z

Z∗
(
A∗ B∗

C∗ D∗

)
◦ Z∗²²

//

²²

//

is commutative. Hence

z 7→
(
α β
γ δ

)
◦ z

in H corresponds to

Z 7→
(
A B
C D

)
◦ Z

in H(2n), where

(10)
(
A B
C D

)
=
(

tTA∗ tT−1 tTB∗T
T−1C∗ tT−1 T−1D∗T

)
.

When is the matrix in (10) in the theta subgroup? To answer this ques-
tion, let us introduce some more notation. Assume that S = (sij)i,j=1,2 and
R = (rkm)k,m=1,...,n are matrices with entries in K (not necessarily in OK).
We define the matrix

R� S := ((tr(rkmsij)i,j=1,2))k,m=1,...,n.

Note that the entries of R � S are rational numbers. Computation shows
that A = In�A′, B = Q�B′, C = Q−1�C ′, D = In�D′, and A′, B′, C ′

and D′ are given by

A′ =
(
ω1ν1α ω1ν2α
ω2ν1α ω2ν2α

)
,

B′ =
(
ω1ω1β ω1ω2β
ω2ω1β ω2ω2β

)
,

C ′ =
(
ν1ν1γ ν1ν2γ
ν2ν1γ ν2ν2γ

)
,

D′ =
(
ω1ν1δ ω2ν1δ
ω1ν2δ ω2ν2δ

)
.

From the definition of A,B,C and D, we see that tAC = tCA, tBD = tDB,
and tDA − tBC = In (as αδ − βγ = 1) and hence

(
A B
C D

) ∈ Sp2n(R). In
addition, A tB = tTA∗B∗T = Q � (αB′) and C tD = T−1C∗D∗ tT−1 =
Q−1 � (δC ′). Thus, if γ is in the ideal I2δKN (N the level of Q), then the
entries of A,B,C, and D are traces of algebraic integers and hence rational
integers, and A tB and C tD have even diagonal entries. Hence for

(
α β
γ δ

)
∈ Γ0(I2δKN),
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we have

M =
(
A B
C D

)
∈ Γ (2n)

ϑ .

It is easy to verify that

det(CZ +D) = det(C∗Z∗ +D∗) = N (γz + δ)n,

and therefore by (1) and (8),

(11) ΘQ

((
α β
γ δ

)
◦ z
)

= χ

((
α β
γ δ

)
, Q

)
N (γz + δ)n/2ΘQ(z),

where χ
((
α β
γ δ

)
, Q
)

is an eighth root of unity depending on
(
α β
γ δ

)
and Q.

Thus, ΘQ(z) is a modular form on Γ0(I2δKN) of weight n/2.

4. The eighth root of unity. It remains to determine χ
((
α β
γ δ

)
, Q
)

explicitly. Assume that δ is a first degree prime in Ok of norm p (meaning
that p is a positive odd prime in Z). In this case, pD−1 is integral. Note that
det(D) = det(D∗) = pn, and thus by Theorem 1, pD−1C has rank n (mod
p). Hence for Q−1 = (ril)i,l=1,...,n, we find that

(pD−1C)(n) =




tr(r11ν1ν1pδ
−1γ) . . . tr(r1nν1ν1pδ

−1γ)
...

...
tr(r1nν1ν1pδ

−1γ) . . . tr(rnnν1ν1pδ
−1γ)




and

det(pD−1C)(n) ≡ (pδ−1γ)n(ν1ν1)n det(Q)−1 (mod δ).

Some computation shows that

|det(C)|1/2{det[−iC−1(CZ +D)]}1/2eπis/4 = N (γz + δ)n/2.

Hence

(12) χ

((
α β
γ δ

)
, Q

)
= ε−np

(
(pδ−12γ)n det(Q)

δ

)

and in the special case where n is even,

(13) χ

((
α β
γ δ

)
, Q

)
=
(

(−1)n/2 det(Q)
δ

)
.

We have proved

Theorem 2. Suppose that
(
α β
γ δ

) ∈ Γ0(I2δKN), where δ is a first degree
prime in OK of norm p. For z ∈ H, we have

(14) ΘQ

((
α β
γ δ

)
◦ z
)

= ε−np

(
(pδ−12γ)n det(Q)

δ

)
N (γz + δ)n/2ΘQ(z),

where εp = 1 for p ≡ 1 mod 4 and εp = i for p ≡ 3 mod 4.
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Actually, we have determined the eighth root of unity more explicitly
than it seems. In (3), we showed that for all algebraic integers t, ΘQ(z+t) =
ΘQ(z). It follows from (11) that for

(
α β
γ δ

) ∈ Γ0(I2δKN) and for all algebraic
integers t,

(15) χ

((
α β
γ δ

)(
1 t
0 1

)
, Q

)
= χ

((
α β
γ δ

)
, Q

)
.

Furthermore, Hecke [2] gives a proof of Dirichlet’s primes in progres-
sion theorem for number fields. Hence for algebraic integers γ and δ with
(γ, δ) = 1, the arithmetic progression {γt+ δ}t∈Ok

contains infinitely many
first degree primes (in a general number field, the progression contains in-
finitely many totally positive first degree primes), and the theta multiplier
is determined explicitly after locating a first degree prime with odd norm in
the arithmetic progression {γt+ δ}t∈Ok

.
There is a special case which should also be mentioned. Let δ be a prime

in OK with N (δ) = p2, where p is an odd prime in Z. As before, we observe
that pD−1 has rational integers as entries. Also, det(D) = det(D∗) = p2n

and by Theorem 1, pD−1C has rank 2n (mod p). Thus,

det(pD−1C) = (N (det(Q)))−1(d(N (I)2))−n(N (γn)).

Hence

χ

((
α β
γ δ

)
, Q

)
= ε−2n

p

(
22ndnN (γn)N (det(Q))

p

)

= (−1)n
(

(−1)nN (γn det(Q))
p

)
.

In the special case where n is even, we see that

(16) χ

((
α β
γ δ

)
, Q

)
=
(N ((−1)n/2 det(Q))

p

)
.

The result from (13) matches the result from (16) since an element a is
a square in Fp2 (the field of p2 elements) iff NFp2/Fp(a) is a square in Fp
(the field of p elements). This can be seen by observing that the mapping
N : F∗p2 → F∗p given by a→ N(a) := NFp2/Fp(a) is an epimorphism.
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