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Abstract. We review the main results concerning the global existence and the stability of
solutions for some models of viscous compressible self-gravitating fluids used in classical astro-
physics.

1. Introduction. Hydrodynamics is a very convenient tool to investigate the stabil-
ity properties of stellar structures [1] [7]. In fact, in various circumstances, a star can be
considered as a continuous medium, with some additional particularities, due to gravita-
tion, radiation and thermonuclear reactions.

The physical framework we consider here is that of a self-gravitating perfect fluid,
compressible, viscous and heat-conducting, in local equilibrium with the radiation, which
is considered by the astrophysicists as a reasonable model for protostars [1] [7].

To take into account thermonuclear processes, we consider a self-consistent production
of energy inside the fluid, modelling the “burning” of the constitutive elements of the star.

In fact, these thermonuclear reactions are described by a lot of coupled equations of
reaction-diffusion type (hundred of reactions are currently taken into account in realistic
numerical simulations).

In order to get a tractable problem, we introduce a simple reacting process with a
first order kinetic [8].

As the boundary of the structure is not a priori known, we consider the free-boundary
case: the star is situated in a connected region Ωt ⊂ R3 and its (unknown) boundary
St ≡ ∂Ωt is allowed to fluctuate.

So the equations describing the model are those of self-gravitating hydrodynamics,
with radiation and first-order Arrhenius kinetics.

So, for each y ∈ Ωt, and each t ≥ 0, the problem to be solved is the following
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Navier-Stokes-Poisson system:

ρt +∇ · (ρv) = 0,

ρ
Dv
Dt

= ∇ · s− ρ∇Φ,

ρ
De

Dt
= s : d−∇ ·Qth + λφ(θ, Z)

ρ
DZ

Dt
= −∇ ·Qch − φ(θ, Z),

∆Φ = 4πGρ,

(1)

where d is the linearized strain tensor, with entries: dij = 1/2(∂jvi + ∂ivj). denote also
by We denote by ”:” the contraction for two tensors a and b, so that a : b =

∑
ij aijbij .

We denote also by D
Dt = ∂

∂t + v · ∇, the “material derivative”.
If one solves the Poisson equation giving the gravitational potential Φ, we get the

formula:

Φ(y, t) = −G
∫

Ωt

ρ(z, t)
|y − z|

dz, (2)

where G is the Newton constant. So, the unknown quantities are finally the density
ρ(y, t), the velocity v(y, t) = (v1, v2, v3), the temperature θ(y, t), and the fraction of
reactant Z(y, t).

The thermodynamical and mechanical properties of the fluid are determined by the
expressions of:

1. The stress tensor:
s = −pI + 2νd + µ Tr(d) I,

where:
p(ρ, θ) = Rρθ +

a

3
θ4,

is the pressure of the gas (gaseous and radiative), R is the perfect gas constant, a is the
Stefan-Boltzmann constant, I is the unit tensor, Tr(d) denotes the trace of d: Tr(d) =∑
i dii, , and ν and µ are two (positive) viscosity coefficients.

2. The energy density:

e(ρ, θ) = Cvθ + a
θ4

ρ
,

where Cv is the gaseous conductivity.

3. The thermal flux:
Qth = −χ(ρ, θ)∇θ,

where:

χ(ρ, θ) = κ1 + κ2
θq

ρ
,

is the thermal conductivity (gaseous and radiative), with κ1, κ2, q some positive constant.

4. The chemical flux:
Qch = −dρ∇Z,

where d is a diffusion constant.



NAVIER-STOKES-POISSON SYSTEMS 85

5. The rate function φ(θ, Z) is determined by the Arrhenius law:

φ(θ, Z) = KZθβe−
E
θ ,

where E is the activation energy, β a non-negative number, and K the coefficient of rate
of reactant. The coefficient λ is the difference in the heat of formation of the reactants.

We consider, for a given initial configuration Ω0, and for each y in Ω0, the initial
conditions:

(ρ, v, θ, Z)(y, 0) = (ρ0, v0, θ0, Z0)(y) (3)

We take, for each t ≥ 0, the following dynamical boundary conditions:
(s + P I) · n = 0
Dψ

Dt
= 0,

(4)

where P is a pressure, modelling the external medium (P = 0 corresponds to the vacuum),
and ψ(x, t) = 0 is the equation of the boundary St. The second equation in (4) tells us
that St is a material boundary: at each time t it follows the motion of the same particles.

We consider also Neumann thermal and chemical boundary conditions:{
Qth = 0,

Qch = 0.
(5)

We suppose also that the data (ρ0, v0, θ0, Z0)(y) have sufficient regularity (see below),
and that ρ0, θ0 and Z0, are non-negative everywhere.

The natural question is then to show that the problem (1)-(5) has a unique global
solution, and study its behaviour at large times, under various conditions on the physical
parameters.

The plan of the paper is as follows. In section 2, we give some ideas concerning the
“state of the art” and difficulties of the 3d problem. Then (section 3), we consider the
spherical case with a hard core, for the non-radiative case. Then we briefly analyze, in
the monodimensional case, the competition between the radiative parts of p and e, and
the conductivity χ.

2. The 3d problem

2.1. Local and global existence in the general case. The local-in-time existence of a
solution can be proved [12] by using the Schauder fixed point method after Secchi [9], the
only differences being the different dynamical boundary condition, and the coupling of
the chemical process by the diffusion equation for Z̄, and uniqueness is proved by using
a simple “Gronwall” argument.

Concerning the global existence, the problem is largely open.
In the non-gravitational case and non-reactive case, when radiation is absent,

W. M. Zaja̧czkowski and E. Zadrzyńska [5] have recently proved the global existence
and stability for small perturbations of a spherical equilibrium.

Even more recently, G. Ströhmer and W. M. Zaja̧czkowski [6] have extended this
result to the barotropic gravitational case.
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It is easy to realize that, in the gravitational case, a serious difficulty comes from the
non-definite-positiveness of the energy.

In fact, by using the equations of motion, a simple computation gives the conservation
of the total energy:

∀t ≥ 0, E(t) = Ec(t) + Eth(t) + Ech(t) + EP (t)− Eg(t) = E(0),

where: Ec =
∫

Ωt
1
2ρv

2 dx is the kinetic contribution, Eth =
∫

Ωt
ρe dx is the thermal

and radiating contribution, Ech =
∫

Ωt
λρZ dx is the chemical contribution, EP =

P |Ωt|, is the contribution of the external pressure (positive if P > 0), and Eg =
G
2

∫
Ωt

∫
Ωt

ρ(x,t)ρ(y,t)
|x−y| dx dy, is the gravitational energy.

It appears that the gravitational contribution has the wrong sign, so, a bound on E(t)
is not helpful to get individual ones: in particular, singularities can appear by some local
“pinching” of the free boundary.

Let us mention that one has a (partial) global result due to Solonnikov [16], with a
“reduced gravitation” (G small), which can be applied in a model interesting for astro-
physicists (barotropic Eddington model). Initially, it requires a surface tension on the
boundary, but it can be adapted to our situation [13].

In the radiating case, an extra difficulty comes from the high powers in θ for the state
functions p, e, χ.

2.2. Some blow-up results for a confined star with positive energy. Let us suppose for
a moment that the system (1) has a unique classical solution when the external pressure
is zero (external vacuum), and that the fluid remains in a bounded region of R3, for any
t > 0, then one has the simple blow-up result, in the spirit of Makino-Perthame [11]:

Theorem 1. Let T > 0, and (ρ, v, θ, Z) the solution of (1)(3)(4)(5) for P = 0, and
let:

R(t) = maxx,y∈Ωt |x− y|,

be the maximal spatial extension of Ωt. Suppose that there exists a positive radius Rm
such that:

∀t ≥ 0 : R(t) ≤ Rm.

Then, if:

1. the energy E is positive, large enough,
2. the polytropic index satisfies γ ≥ 4

3 ,
3. the Stokes hypothesis 3µ+ 2ν = 0 is satisfied,

the solution of (1) has to blow-up in a finite time Tc such that:

Tc ≤
1

2E

(
−I ′0 +

√
I ′20 + 2E(MR2

m − 2I0)
)
, (6)

where E is the reduced energy:

E =
∫

Ω0

(
1
2
ρ0v

2
0 + ρ0e0

)
dx− G

2

∫
Ω0

∫
Ω0

ρ0(x)ρ0(y)
|x− y|

dx dy,
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and I0 and I ′0 are the following constants:

I0 =
1
2

∫
Ω0

|x|2ρ0(x) dx, I ′0 =
∫

Ω0

ρ0(x) (x · v0(x)) dx.

Proof. If we define the inertia I(t) by:

I(t) =
1
2

∫
Ωt

|x|2ρ(x, t) dx,

then, by using integrations by parts, and, for any regular function f , the formula:

d

dt

∫
Ωt

f(x, t) dx =
∫

Ωt

(
∂f

∂t
+∇ · (vf)

)
dx,

we compute the derivatives:

d

dt
I(t) =

∫
Ωt

ρ(x · v) dx,

1
2
d2

dt2
I(t) =

∫
Ωt

(
∂

∂t
+∇ · (v·)

)
(ρ(x · v)) dx,

=
∫

Ωt

(
ρv2 + x ·

(
ρ
Dv
Dt

))
dx

=
∫

Ωt

(
ρv2 + x · (∇s− ρ∇Φ)

)
dx,

by using the equations of motion.
By a direct computation, one gets:∫

Ωt

x · ∇s dx =
∫
St

P (x · n) dSt +
∫

Ωt

3p dx− (3µ+ 2ν)
∫
St

(n · v) dSt.

As P = 0, and by using the Stokes hypothesis, we get:∫
Ωt

x · ∇s dx =
∫

Ωt

3p dx.

The symmetry of Φ gives also:∫
Ωt

x · (ρ∇Φ) dx =
G

2

∫
Ωt

∫
Ωt

ρ(x, t)ρ(y, t)
|x− y|

dx dy = Eg.

We obtain finally (“Virial theorem”):

1
2
d2

dt2
I(t) =

∫
Ωt

(ρv2 + 3p) dx− Eg.

Then, as p = Rρθ + a
3θ

4, and:

E =
∫

Ωt

(
1
2
ρv2 + ρe+ λρZ

)
dx− Eg,

we find:
1
2
d2

dt2
I(t)− E =

∫
Ωt

(
1
2
ρv2 + (3R− Cv)ρθ

)
dx−

∫
Ωt

λρZ dx,
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so, if 3R−Cv ≥ 0, which is equivalent, with the thermodynamical definitions R = Cp−Cv,
and γ = Cp

Cv
, to the condition γ ≥ 4

3 , we have:

1
2
d2

dt2
I(t)− E ≥ −

∫
Ωt

λρZ dx.

As φ ≥ 0, and by using the fourth equation (1), and the boudary condition (2), one gets:
d

dt

∫
Ωt

ρZ dx ≤ 0,

so we obtain:
1
2
d2

dt2
I(t) ≥ E −

∫
Ω0

λρ0Z0 dx.

So, if E is large enough:

E = E −
∫

Ω0

λρ0Z0 dx > 0, I(t) ≥ E t2 + I ′0 t+ I0,

where I ′0 =
∫

Ω0
ρ0(x · v0) dx and I0 = 1

2

∫
Ω0
|x|2ρ0 dx. But, by using the mass constraint,

I(t) ≤ 1
2MR2

m. So, for any t ≥ 0, we have the inequality E t2 +I ′0 t+I0 ≤ 1
2MR2

m, which
implies the bound (6).

The physical interpretation of the theorem is the following: if the energy is positive
(“tendancy to explosion”) then either the solution becomes singular in finite time, or the
domain expands without bounds into the space.

Now, we are interested in the energy repartition (between kinetic, thermal and grav-
itational), for a compressible fluid of positive energy, in the simplified situation of the
perfect fluid: λ = 0 and a = 0.

We have the following partial result:

Theorem 2. Let (ρ, v, θ) the solution of (1)(3)(4)(5), with P = 0, for a perfect com-
pressible fluid such that the polytropic index γ satisfies γ < 5

3 , and the Stokes hypothesis
3µ + 2ν = 0 holds. Suppose also that the (conserved) energy E =

∫
Ωt

(
1
2v

2 + e+ 1
2Φ
)
dx

is positive, and that the kinetic energy Ec =
∫

Ωt
1
2v

2dx is small enough, i.e.

∃T0 > 0, ∃ξ ∈ (0, 1) : ∀t > T0, Ec ≤ ξE.

Then the solution of (1) has to blow-up in a finite time Tc such that:

Tc ≤

√
1

(1− ξ)E

(∫
Ω0

x2ρ0(x) dx− 2
∫

Ω0

(x · v0) ρ0(x) dx+ 2E
)
. (7)

Proof. Following Zhoupin Xin1 [17], we consider the modified functional:

I(t) =
∫

Ωt

(x− (t+ 1)v)2ρ(x, t) dx+ 2(t+ 1)2

∫
Ωt

ρ(x, t)
(
e+

1
2

Φ
)
dx. (8)

We have:

I(t) =
∫

Ωt

x2ρ(x, t) dx− 2(t+ 1)
∫

Ωt

(x · v) ρ(x, t) dx+ 2(t+ 1)2

∫
Ωt

ρ(x, t)ε(x, t) dx, (9)

1I thank Prof. Song Jiang for communicating me the reference [17].
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where ε = 1
2v

2 + e+ 1
2Φ, is the total energy density. From (9), we compute:

d

dt
I(t) =

3∑
i=1

d

dt
Ii(t).

We have:
d

dt
I1(t) =

d

dt

(∫
Ωt

x2ρ dx

)
= 2

∫
Ωt

(x · v) ρ dx,

d

dt
I2(t) =

d

dt

(
−2(t+ 1)

∫
Ωt

(x · v) ρ dx
)

= −2
∫

Ωt

(x · v) ρ dx+ 2(t+ 1)
(
− 3

∫
Ωt

p dx+ (2ν + 3µ)
∫
St

(v · n) dS

+
∫

Ωt

ρ (x · ∇Φ) dx−
∫

Ωt

ρv2 dx

)
.

By using the Stokes hypothesis together with the following symmetry property of Φ:∫
Ωt

ρ (x · ∇Φ) dx = −1
2

∫
Ωt

ρ Φ dx,

we get:
d

dt
I2(t) = −2

∫
Ωt

(x · v) ρ dx− 6(t+ 1)
∫

Ωt

p dx− (t+ 1)
∫

Ωt

ρ Φ dx− 2(t+ 1)
∫

Ωt

ρv2 dx.

One has also:
d

dt
I3(t) =

d

dt

(
2(t+ 1)2

∫
Ωt

ρε dx

)
= 4(t+ 1)

∫
Ωt

ρε dx.

So we get finally:

d

dt
I(t) = 2(t+ 1)

∫
Ωt

(
2ρe− 3p+

1
2

Φ
)
dx = 2(t+ 1)

∫
Ωt

(
(5− 3γ)e+

1
2

Φ
)
dx. (10)

If 5− 3γ < 0, we have d
dtI(t) ≤ 0. So: I(t) ≤ I(0), where I(0) > 0 if Ec is small enough.

But we have also:

I(t) ≥ 2(t+ 1)2(E − Ec).
Finally, if Ec is small enough, say Ec ≤ ξE, we get finally:

(1− ξ)Et2 ≤ I(0),

which gives the rough bound (7), for the blow-up time Tc.

If the analysis is restricted to the spherical or monodimensional geometry, one can
get global results and describe, modulo some extra hypothesis, the asymptotic states of
the system for large time, covering the possibilities of the physical stellar evolution [1]:
asymptotically stable stationary state, expansion, and gravitational collapse.

3. The spherical symmetry. A favorite model for astrophysicists studying (classi-
cal) compact stellar objects is the spherical symmetry, which shares some physical prop-
erties with the 3d case, and which is extensively considered in the physical (a standard
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reference is Chandrasekhar [2]) and mathematical literature (Fujita-Yashima, Benabidalla
[18], Hoff [19]).

For technical reasons, let us suppose that, if r is the radial variable, we have R0 ≤
r ≤ R(t), where R0 > 0 is a “hard core cut-off” for the star, and we restrict the analysis
to the non-radiative situation:

e(θ) = Cvθ, p(ρ, θ) = Rρθ χ = Cst.

To take into account the free-boundary in a simple manner, we consider the spherical
version of (1) in the lagrangian version, by using a mass variable defined by:

x =
∫ r

R0

ρ(s, t) s2 ds,

with M =
∫ R(t)

R0
ρ(s, t) s2 ds. So, the inverse transformation is given by:

r(x, t) =
[
R3

0 + 3
∫ x

0

dξ

ρ(ξ, t)

]1/3

.

The problem is then posed in the fixed domain [0,M ].
If we denote by u = 1

ρ the specific volume, the system we have to solve, for (u, v, θ, Z),
for each x ∈ [0,M ], is the following:

ut − (r2v)x = 0,

vt + r2px = µr2

(
(r2v)x
u

)
x

−G x
r2 ,

Et + (r2v p)x =
(
µ
r2v(r2v)x

u
− 4η

(
rv2
)
x

+ χ
r4θx
u

+ λd
r4Zx
u2

)
x

Zt + φ(θ, Z) = d

(
r4Zx
u2

)
x

,

(11)

where E is the total energy: E = 1
2v

2 + Cvθ + λZ − Gx
r , µ and η are two viscosity

coefficients, satisfying the stability condition:

3µ− 4η > 0, (12)

and σ is the stress: σ = −Rθu + µ (r2v)x
u − 4η vr .

The initial data are:

(u, v, θ, Z)(x, 0) = (
1
ρ0
, v0, θ0, Z0)(x), (13)

together with the boundary conditions on the sphere {|x| = M}:
σ(M, t) + P = 0,

(θx + kθ)(M, t) = 0,

Zx(M, t) = 0,

(14)

and at the core x = 0: 
v(0, t) = 0,

(θx − kθ)(0, t) = 0,

Zx(0, t) = 0,

(15)
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where k is a non-negative coefficient (if k = 0, we recover the above Neumann boundary
condition).

We assume finally the compatibility conditions:
v0(0) = 0,

σ0(M) + P = 0,

(θ0x − kθ0x(0) = (θ0x + kθ0x(M) = 0,

Z0x(0) = Z0x(M) = 0.

(16)

3.1. Global existence and stationary solution. If QT ≡ [0,M ] × [0, T ], we consider
classical Hölder functional space: If:

Hν(u) = sup
QT

|u|+ sup
x 6=y ; t∈[0,T ]

|u(x, t)− u(y, t)|
|x− y|ν

+ sup
x∈[0,M ] ; t 6=s

|u(x, t)− u(x, s)|
|t− s|ν/2

,

we set:

Bν,ν/2(QT ) = {u ∈ C0(QT ) : Hν(u) <∞},

with the norm ‖u‖ν = Hν(u), together with:

B1+ν = {u ∈ Bν,ν/2(QT ) : ut, ux ∈ Bν,ν/2(QT )},

B2+ν = {u ∈ Bν,ν/2(QT ) : ut, ux, uxx ∈ Bν,ν/2(QT )},

with natural norms ‖u‖1+ν = ‖u‖ν+‖ut‖ν+‖ux‖ν , and ‖u‖2+ν = ‖u‖ν+‖ut‖ν+‖ux‖ν+
‖uxx‖ν , where 0 < ν < 1.

We finally denote by ‖ · ‖ the L2 norm.
We make the following hypothesis on the data:


0 < c−1

0 ≤ u0(x) ≤ c0 <∞,
0 < c−1

0 ≤ θ0(x) ≤ c0 <∞,
0 ≤ Z0(x) ≤ 1,

(17)

where c0 is a positive constant.
By using an iterative scheme and the Banach fixed point theorem, one can show that

a unique solution of the problem (11)-(16) exists, at least on a finite interval [0, T ].
Moreover, taking benefit of the presence of the hard core, one proves the global-in-time

existence of the solution for the initial boundary value problem (11)-(16).

Theorem 3. Let the initial data satisfy the conditions (16), (17), and:

u0 ∈ C1+ν [0,M ], v0, θ0, Z0 ∈ C2+ν [0,M ],

‖v0, θ0, Z0‖H1 ≤ C0, for 0 < ν < 1.

The problem (11)-(16) has a classical solution (u, v, θ, Z) ∈ B1+ν(QT ) × (B2+ν)3 such
that for any T > 0 the following estimates hold:
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C−1
1 ≤ u ≤ C1, C−1

2 ≤ θ ≤ C2, −C2 ≤ v ≤ C2, 0 ≤ Z ≤ 1,

‖ut, ux‖2(t) +
∫ t

0

‖ut, ux‖2(s)ds ≤ C1,

‖vx, θx, Zx‖2(t) +
∫ t

0

‖vxx, θxx, Zxx, vx, θx, Zx, vt, θt, Zt‖2(s)ds ≤ C1,

‖u‖1+ν , ‖v, θ, Z‖2+ν ≤ C2,

(18)

where C1(C0) (independent of T ) and C2(C0, T ) are two positive constants.

A sketch of the proof (see [15] for the details) is as follows.
By using the philosophy of Kazhikhov-Shelukhin (see [10] [18] [20]), one has to prove

upper and lower bounds for the density u.
One gets first an explicit representation for u:

Lemma 1. The following formula holds:

u(x, t) = u0(x)
(
r(M, t)
r0(M)

)β
Φ(x, t) exp{−Ψ(x, t)}, (19)

where:

β =
4η
µ
,

Ψ(x, t) =
P

µ
t+

1
µ

∫ t

0

∫ M

x

(
2v2(y, s)
r3(y, s)

+
Gy

r4(y, s)

)
dy ds+

1
µ

∫ M

x

(
v(y, t)
r2(y, t)

− v0(y)
r2
0(y)

)
dy,

Φ(x, t) = 1 +
R

µu0(x)

∫ t

0

θ(x, s)
(
r0(M)
r(M, s)

)β
exp{Ψ(x, s)} ds.

Now, by using the boundary conditions, one checks the following estimates:

Lemma 2. ∫ M

0

u(x, t) dx = |Ωt|, (20)

where |Ωt| is the renormalized volume of the gaseous domain: |Ωt| = 1/3(r3(M, t)−R3
0);∫ M

0

(
1
2
v2 + e+ λZ

)
dx+ |Ωt|P ≤ E0, (21)

where:

E0 =
∫ M

0

(
1
2
v2

0 + e0 + λZ0

)
dx+

∫ M

0

G · x
(

1
R0
− 1
r0

)
dx+ |Ω0|P ;

U(t) +
∫ t

0

(V (s) +W (s)) ds ≤ E1, (22)

where:

U(t) =
∫ M

0

(
1
2
v2 + Cv(θ − log θ − 1) +R(u− log u− 1) + λZ

)
dx,

V (t) =
∫ M

0

(
r4χθ2

x

uθ2
+

2
3
µζ

((r2v)x)2

θu
+

6µζ(3− 4ζ)
3− 2ζ

v2u

θr2

)
dx,
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with ζ = 3µ−4η
4µ > 0,

W (t) =
∫ M

0

λφ(θ, Z)
θ

dx,

E1 =
∫ M

0

(
1
2
v2

0 + Cv(θ0 − log θ0 − 1) +R(u0 − log u0 − 1) + λZ0

)
dx+

(
1 + 2

R

P

)
E0;

∫ M

0

Z(x, t) dx+
∫ t

0

∫ M

0

φ(θ, Z) dx ds =
∫ M

0

Z0(x) dx; (23)

0 ≤ Z(x, t) ≤ 1. (24)

Then, by using convexity arguments, one can prove uniform-in-time upper and lower
bounds for u: 0 < C−1

1 ≤ u(x, t) ≤ C1, and, applying the maximum principle to the
thermal equation, one gets also a lower bound for θ: θ(x, t) ≥ C−1

2 (T ).
If we consider the following global quantities:

X(t) =
∫ M

0

r4σ2
x dx, Y (t) =

∫ M

0

((r2v)x)2

u
dx, Ξ(t) =

∫ M

0

r4θ2
x

u
dx,

Γ(t) =
∫ M

0

uσ2 dx, J(t) =
∫ M

0

W 2 dx ≡
∫ M

0

(
1
2
v2 + e+ λZ

)2

dx,

H(t) =
∫ M

0

r4Z2
x

u2
dx, Θ(t) =

∫ M

0

φ(θ, Z) Z dx, ∆(t) =
∫ M

0

r4

u
v2v2

x dx,

one gets first a uniform bound for the chemical part:

Lemma 3. The following estimate holds:

1
2

∫ M

0

Z2 dx+
∫ t

0

H(s) ds+K

∫ t

0

Θ(s) ds ≤ E0. (25)

In fact, if we multiply the last equation in (11) by Z, integrate on [0,M ] and use
boundary conditions, we get:

1
2
d

dt

∫ M

0

Z2 dx+H(t) +KΘ(t) = 0,

which implies (25).
By using similar techniques with suitable multiplicators, one gets:

Lemma 4. ∫ t

0

Y (s) ds ≤ C(T ). (26)

Γ(t) + J(t) +
∫ t

0

Ξ(s) ds+
∫ t

0

∆(s) ds ≤ C(T ),∫ t

0

∫ M

0

u2
t dx ds ≤ C(T ),∫ t

0

∫ M

0

v2
t dx ds ≤ C(T ),

(27)

where C(T ) is a positive constant.
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We have seen that there exists a positive T such that the problem (11) has a unique
solution (u, v, θ, Z), for t ∈ [0, T ]. It is clear that we can choose this T arbitrarily large,
provided that the norm of (u, v, θ, Z) is finite in the prescribed space, i.e. (u, v, θ, Z) ∈
B1+ν(QT )× (B2+ν)3. This property is easily checked by inspection.

3.2. Asymptotic behaviour. Let us consider the solutions (v̄(x) = 0, ū(x), θ̄(x), Z̄(x))
of the stationary version of (11), which reads:

px = −G x

r4
,(

r4χ
θx
u

)
x

+ λφ(θ, Z) = 0,(
r4d

Zx
u2

)
x

− φ(θ, Z) = 0.

(28)

If k = 0, the first equation tells us that θ̄(x) cannot be identically zero.
Now, if we integrate the second equation, we find Z̄(x) = 0, for each x ∈ [0,M ], which

implies in turn that θ(x) = θ̄, where θ̄ is a positive constant: any stationary solution is
isothermal and chemically inactive.

Now, if k > 0, one gets easily that θ̄(x) is identically zero.
For the stationary density, we have:

Proposition 1. Let: 
dr̄

dx
=

ū

r̄2
,

dp̄

dx
= −Gx

r̄4
,

(29)

be the stationary problem for the density ū and the lagrangian radius r̄, for x ∈ [0,M ],
together with the boundary conditions:{

r̄(0) = R0,

p̄(M) = P .
(30)

Then:

(i) if k = 0, this system has a unique solution ū(x) > 0, r̄ ≥ R0, for any θ̄ > 0, P > 0,
provided that R0 is large enough,

(ii) if k > 0, the system has the unique trivial solution ū(x) = 0, r̄ = R0, θ̄ = 0.

The role of the hypothesis on the radius is to avoid possible multiple stationary
solutions, and the trivial solution corresponds to the “gravitationally collapsed” solution.

As one expects, for thermally insulated boundaries (k = 0), the solution converges to-
ward the associated stationary solution given in proposition 12, and for Fourier conditions
(k > 0), the solution converges toward the trivial stationary solution.

For the dissipative case (k > 0), the fluid looses its energy across the exterior bound-
ary, and the gravitation forces the solution to concentrate on the surface of the core.

2In the literature [1], this corresponds to radial stellar pulsations, the only vibrational modes
allowed by the symmetry.
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To prove this, one needs stronger estimates than those given in the above section
(especially lemma 7), to obtain bounds independent of time [15], and we obtain:

Theorem 4. (i) If k = 0, and if R0 is large enough, the solution (u, v, θ, Z) converges
uniformly to the stationary solution (ū, r̄, v̄ = 0, θ̄, Z̄ = 0) as t → +∞, where ū is the
solution of the stationary problem (29)-(30), and θ̄ is a positive constant given by the
implicit algebraic equation:∫ M

0

(
Cv θ̄ −

Gx

r̄
+ Pū

)
dx =

∫ M

0

(
1
2
v2

0 + Cvθ0 + λZ0 −
Gx

r0
+ Pu0

)
dx, (31)

where: r̄(x) = (R3
0 + 3

∫ x
0
ū(y) dy)1/3, and: r0(x) = (R3

0 + 3
∫ x

0
u0(y) dy)1/3.

(ii) If k > 0, the solution (u, v, θ, Z) converges toward the trivial stationary solution
(ū = 0, r̄ = R0, v̄ = 0, θ̄ = 0, Z̄ = 0) as t→ +∞.

In fact, when k = 0, one can check easily that, if R0 large enough, equation (31) has
a unique solution, by using a regular perturbative expansion with respect to R0.

4. The monodimensional model. We said in the introduction that a difficulty of
our problem was the strong non-linearities into the state functions. A good “toy model”
for this is the one-dimensional situation, in the spirit of Dafermos, Hsiao, Kawohl, Jiang
[27] [21] [20] [22] .

Although rather degenerate, this geometrical situation is physically interresting. In
fact, it can be considered as a simplified model for some large-scale structures described
in the astrophysical litterature [3] under the name of ”Zeldovitch’s pancakes”.

If x is the mass variable, u(x, t) the specific volume, v(x, t) the velocity, θ(x, t) the
temperature, and Z(x, t) the fraction of reactant, the (lagrangian) system to be solved is
now: 

ut − vx = 0,

vt − σx +G

(
x− 1

2
M

)
= 0,

et − σvx +Qx − λφ(θ, Z) = 0,

Zt −
(
d

u2
Zx

)
x

+ φ(θ, Z) = 0,

(32)

for t ≥ 0 and x ∈ [0,M ], where M is the mass of the slab.
Recall that p(u, θ) = R θ

u + a
3θ

4 is the pressure, e(u, θ) = Cvθ + auθ4 is the internal
energy, σ(u, v, θ) = −p+ ν vxu is the stress, and Q(u, θ) is the thermo-radiative flux, to be
specified below.

The last term in the second equation (32) is the gravitational contribution if G > 0
or the Coulomb contribution if G < 0. Its specific expression has been chosen in such a
way that x = 1

2M is a symmetry center for the slab.
We consider, for each x in [0,M ], the initial conditions:

(u, v, θ, Z)(x, 0) = (u0, v0, θ0, Z0)(x). (33)

We take, for each t ≥ 0, the dynamical boundary conditions:
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σ(0, t) = −P,
σ(M, t) = −P,

(34)

where P is an exterior pressure, modelling the external medium (P = 0 corresponds to
the vacuum).

We consider also Neumann thermal boundary conditions:{
Q(0, t) = 0,
Q(M, t) = 0.

(35)

Then, we consider also the chemical boundary conditions:{
Zx(0, t) = 0,
Zx(M, t) = 0.

(36)

We suppose also that the data (u0, v0, θ0, Z0)(x) have sufficient regularity (see below),
and that u0, θ0 and Z0 are positive on [0,M ].

Moreover, we impose the following symmetry conditions, for 0 ≤ x ≤ 1
2M :

(u, u0, θ, θ0, Z, Z0)
(

1
2
M + x, t

)
= (u, u0, θ, θ0, Z, Z0)

(
1
2
M − x, t

)
,

(v, v0)
(

1
2
M + x, t

)
= −(v, v0)

(
1
2
M − x, t

)
.

(37)

Let us describe now the remaining terms in (32).
The flux Q(u, θ) is given by Q = −χ(u,θ)

u θx, where the conductivity χ is:

χ = κ1 + κ2uθ
q, (38)

where the coefficients κ1, κ2 and q are positive3.
We call ν the (constant) viscosity coefficient4, and λ ≥ 0 and d ≥ 0 two “chemical”

constants.
Finally, the function φ mimics the simplest one-order Arrhenius kinetics (see [4]):

φ(θ, Z) = AZθβe−
E
Bθ , (39)

where A, β, B, E are given positive constants.
Our task is now to show that the problem (32)-(37) has a unique global solution, and

study its behaviour at large times, under various conditions on the physical parameters.
At this point, we suspect that the exponent q in (38), plays a major role in the a

priori estimates.
In fact, several authors [31] [27] [21] [22] [25] [26] considered recently analogous prob-

lems for general fluids or solids, under various growth constraints.
Among these conditions the more general are (see [22] [23] [24]):

a(1 + θ)r+1 ≤ e(u, θ) ≤ a′(1 + θ)r+1,

b(1 + θ)r+1u−1 ≤ p(u, θ) ≤ b′(1 + θ)r+1u−1,

c(1 + θ)q ≤ χ(u, θ) ≤ c′(1 + θ)q,

3The values (κ2 = 0, a = 0) correspond to the perfect gas.
4To clarify the exposition, we consider a unique viscosity coefficient.
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where r ∈ [0, 1] and q ≥ r + 1. Clearly, these constraints are not satisfied for radiating
fluids for which r = 3, but a result of our analysis will be that this value is allowed if q
is large enough.

We use the notations (Cr[0,M ], ‖ · ‖r) and (Cr,r/2(QT ), ||| · |||r), with QT = [0,M ]×
[0, T ], for the usual Hölder spaces (see [10]).

Our main result for the global existence is the following.

Theorem 5. Assume that u0, u0x, v0, v0x, v0xx, θ0, θ0x, θ0xx, Z0, Z0x, Z0xx are
in Cr[0,M ], for some 0 < r < 1. Suppose that u0, θ0, Z0 are positive on [0,M ], that the
compatibility conditions hold between boundary conditions and initial data. Then, if q ≥ 4,
there exists a unique solution (u(x, t), v(x, t), θ(x, t), Z(x, t)) to the problem (32)-(37) such
that u(x, t) > 0, θ(x, t) > 0, Z(x, t) > 0, on [0,M ]× [0,∞), that:

(u, ux, ut, uxt, v, vx, vt, vxx, θ, θx, θt, θxx, Z, Zt, Zx, Zxx) ∈ (Cr,r/2(QT ))16,

and that:
(utt, vxt, θxt, Zxt) ∈ (L2(QT ))4.

4.1. Global existence. As in [31], [27], [21] or [22], the proof of theorem 1 is based on
a priori estimates, and is completed by establishing the following result.

Theorem 6. Suppose that the problem (32)-(37) have at least a classical solution:

(u(x, t), v(x, t), θ(x, t), Z(x, t)) .

Then the functions (u, v, θ, Z, vx, θx, Zx) can be bounded on Cr,r/2(QT ), with r = 1/3:

|||u|||1/3 + |||v|||1/3 + |||θ|||1/3 + |||Z|||1/3 + |||vx|||1/3 + |||θx|||1/3 + |||Zx|||1/3 ≤ C,

where C depends only on T , the physical parameters of the problem, and the data.

As usual, we begin with some conservation laws, leading to a priori estimates.

Lemma 5. The following relations hold, for any t ≥ 0:∫ M

0

Z(x, t) dx+
∫ t

0

∫ M

0

φ(θ, Z)(x, s) ds dx =
∫ M

0

Z0(x) dx; (40)

∫ M

0

[
1
2
v2 + e+ λZ + f(x)u

]
dx = E0, (41)

where f(x) ≡ P + 1
2Gx(M − x), and E0 =

∫M
0

[
1
2v

2
0 + e0 + λZ0 + f(x)u0

]
dx;

θ(x, t), Z(x, t) > 0, on [0,M ]× [0,∞); (42)

Φ(t) +
∫ t

0

Ψ(t) dt ≤ C, (43)

where:

Φ(t) =
∫ M

0

[R(u− log u− 1) + Cv(θ − log θ − 1)] dx,

Ψ(t) =
∫ M

0

(
v2
x

uθ
+ χ

θ2
x

uθ2
+ λ

φ(θ, Z)
θ

)
dx,

and C is a positive constant, independent of t provided P > 0; and
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1
2

∫ M

0

Z2(x, t) dx+
∫ t

0

∫ M

0

d

u2
Z2
x dx ds+

∫ t

0

∫ M

0

Zφ(θ, Z)(x, s) ds dx

=
1
2

∫ M

0

Z2
0 (x, t) dx. (44)

Proof. The relation (40) is obtained by integrating the fourth relation (32) on
[0,M ]× (0, t), by using (36).

By multiplying by v the second relation in (32) we find the conservation law:(
1
2
v2 + e+ λZ +G(x− 1

2
M)r

)
t

=
(
σv −Q+

λd

u2
Zx

)
x

, (45)

where r = r(x, t) is the Lagrangian position, defined by ∂
∂tr(x, t) = v(x, t).

By using (32), one sees that:(∫ M

0

G(x− 1
2
M)r(x, t) dx

)
t

=
(∫ M

0

f(x) u(x, t) dx
)
t

.

Now, by integrating (45) on [0,M ], and using (33)-(36), we obtain (41).
To get the positivity of θ in (42), we apply the maximum principle to the third

equation (32), rewritten as:

eθθt + θpθvx −
ν

u
v2
x =

(χ
u
θx

)
x

+ λφ(u, θ, Z), (46)

together with (35), and we use the positivity of θ0.
To get the positivity of Z, we apply the same principle to the fourth equation (32),

together with (36), and we use the positivity of Z0.
To get (43), we multiply (46) by θ−1:

eθ
θt
θ

+ pθut =
ν

uθ
v2
x +

χ

uθ2
θx

2 +
( χ
uθ
θx

)
x

+ λ
φ(u, θ, Z)

θ
. (47)

A standard thermodynamical computation gives S the entropy:

S(u, θ) = R log u+ Cv log θ +
4
3
auθ3 + S0. (48)

By using the thermodynamical formulae Sθ = eθ
θ , and Su = pθ, and by integrating (46)

on [0,M ]× [0, t], we get:∫ M

0

∫ t

0

(
ν

uθ
v2
x +

χ

uθ2
θx

2 + λ
φ(u, θ, Z)

θ

)
ds dx =

∫ M

0

S(x, t) dx−
∫ M

0

S0(x) dx.

So we obtain the identity:∫ M

0

∫ t

0

(
ν

uθ
v2
x +

χ

uθ2
θx

2 + λ
φ(u, θ, Z)

θ

)
ds dx

+
∫ M

0

(R(u− log u− 1) + Cv(θ − log θ − 1)) dx

=
∫ M

0

(
R(u− 1) + Cv(θ − 1) +

4
3
auθ3

)
dx+

∫ M

0

(
Ru0 + Cvθ0 +

4
3
auθ0

3

)
dx.
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By using the estimate (41), we bound the two first terms in the first integral of the rhs,
when P > 0. For the last one, we use Cauchy-Schwarz:∫ M

0

uθ3 dx ≤
(∫ M

0

uθ2 dx

)1/2(∫ M

0

uθ4 dx

)1/2

≤
(∫ M

0

u dx

)1/4(∫ M

0

uθ4 dx

)3/4

,

and we obtain (43), by using once more (41).
The relation (44) is obtained by multiplying by Z the fourth relation (32) , integrating

the result on [0,M ]× (0, t), by using (36) and (40).

Remarks. 1. When G > 0 (attractive case) and P > 0, (41) gives a bound on
‖u‖L1(0,M) which does not depend on t.

2. WhenG < 0 (repulsive case), a bound on ‖u‖L1(0,M) is given again by (41), provided
that P > −G2 .

Now, following [22], we need some estimates for the mean temperature.

Lemma 6. If q ≥ 4, we have:∫ t

0

max
x∈[0,M ]

θα(x, s) ds ≤ C, (49)

for 1 ≤ α ≤ 8.

Proof. We have, for any r ≥ 1:

θr(x, s) ≤
∫ M

0

θr(y, s) dy + r

∫ M

0

θr−1|θx| dx ds,

when we used the well known fact that:

∀f ∈ C0(0,M), ∃y(t) ∈ [0,M ] : f(y(t), t) =
∫ M

0

f(z, t) dz.

If we suppose that r ≤ 4, we get, by using Cauchy-Schwarz:

θr(x, s) ≤ C + C

∫ M

0

χ1/2

u1/2θ
|θx|

u1/2θr

χ1/2
dx ds

So:

θr(x, s) ≤ C + C

(∫ M

0

χ

uθ2
θ2
x dx

)1/2(∫ M

0

θ2r−q dx

)1/2

.

By using lemma 5, the last integral is bounded if 2r− q = 1 or 4, and for 1 ≤ 2r− q ≤ 4,
by interpolation. So we get finally:

max
x∈[0,M ]

θr(x, s) ≤ C + C

(∫ M

0

χ

uθ2
θ2
x dx

)1/2

, (50)

if 5/2 ≤ r ≤ 4.
But we have also:

θr(x, s) ≤ C + C

(∫ M

0

χ

uθ2
θ2
x dx

)1/2(∫ M

0

θ2r dx

)1/2

,

where the last integral is bounded if 1 ≤ 2r ≤ 4. So (50) holds provided 1/2 ≤ r ≤ 2.
If 2 ≤ r ≤ 5/2, we see that θ2r−q ≤ C max(1, θ), so

∫
θ2r−q dx is also bounded in this

case.
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Finally, by taking the square in (50), putting 2r = α, and integrating on [0, t], we get
(49) as soon as q ≥ 4.

Lemma 7. (i) There is a pair (um, uM ) of positive numbers, depending only on T and
the data, such that:

∀(x, t) ∈ [0,M ]× [0, T ] : um ≤ u(x, t) ≤ uM . (51)

(ii) One has:

∀(x, t) ∈ [0,M ]× [0, T ] : 0 ≤ Z(x, t) ≤ 1. (52)

Proof. (i) We let generically C be a t-dependent constant. Let us consider first the
lower bound. From (32), we get:

vt + px = ν(log u)tx −G(x− M

2
). (53)

By integrating on [0, x]× [0, t], we find:

−ν log u(x, t) +
∫ t

0

p(x, s) ds = −
∫ x

0

(v(z, t)− v0(z)) dz +
∫ t

0

p(0, s) ds− ν log u(0, t)

+ν log u0(0)− ν log u0(x)− tG
2
x(x−M).

By integrating on [0, t] the boundary condition σ(0, t) = −P , we have:∫ t

0

p(0, s) ds− ν log u(0, t) + ν log u0(0) = Pt,

so we obtain the identity:

−ν log u(x, t) +
∫ t

0

p(x, s) ds = −
∫ x

0

(v(z, t)− v0(z)) dz + tf(x)− ν log u0(x). (54)

So u(x, t) ≥ um, with um = e
− 1
ν

(
M1/2E

1/2
0 +νmax[0,M] | log u0(x)|+t(P+GM2

4 )
)
.

To find an upper bound, we integrate (54) on [0,M ]:∫ M

0

ν log u(x, t) dx ≤ C1 +
∫ M

0

∫ t

0

p(x, s) ds dx,

where C1 = M3/2E
1/2
0 + νmax[0,M ] | log u0(x)|+ tM2(P + GM2

12 ). So:∫ M

0

ν log u(x, t) dx ≤ C1 +
∫ t

0

∫ M

0

(
Rθ

um
+ aθ4

)
ds dx,

which, by (41), gives: ∫ M

0

log u(x, t) dx ≤ C2,

where C2 depends only on t and the data.
As above, we use that ∃y(t) ∈ [0,M ] : log(y(t), t) =

∫M
0

log u(x, t) dx, and we find:

max
x∈[0,M ]

log u(x, t) ≤ C3 +
(∫ M

0

(ν(log u(x, t))x − v)2
dx

)1/2

.

So, we just need an upper bound for the rhs.
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For that purpose, we multiply (53) by ν(log u(x, s))x−v, and integrate on [0,M ]×[0, t]:∫ M

0

(ν(log u(x, t))x − v)2
dx−

∫ M

0

(ν(log u0(x))x − v0)2
dx

=
∫ t

0

∫ M

0

[(
−Rθ
u2
ux + (

R

u
+

4
3
aθ3)θx

)]
(ν(log u(x, s))x − v) dx ds

+
∫ t

0

∫ M

0

G

(
x− M

2

)
(ν(log u(x, s))x − v) dx ds,

or: ∫ M

0

(ν(log u(x, t))x − v)2
dx−

∫ M

0

(ν(log u0(x))x − v0)2
dx

+νR
∫ t

0

∫ M

0

θ

u
(log u(x, s))x)2

dx ds

=
∫ t

0

∫ M

0

Rθv

u
(log u(x, s))x dx ds

+
∫ t

0

∫ M

0

(
R

u
+

4
3
aθ3

)
θx (ν(log u(x, s))x − v) dx ds

+
∫ t

0

∫ M

0

G

(
x− M

2

)
(ν(log u(x, s))x − v) dx ds, (55)

We first bound the first contribution in the rhs:∫ t

0

∫ M

0

Rθ|v|
u
|(log u(x, s))x| dx ds

≤ R

2
ε

∫ t

0

∫ M

0

θ

u
((log u(x, s))x)2 dx ds+

R

2ε

∫ t

0

max
x∈[0,M ]

θ(x, s)
(∫ M

0

v2 dx

)
ds,

with ε > 0.
By using lemma 5 and 7, we have:∣∣∣∣∣
∫ t

0

∫ M

0

Rθv

u
(log u(x, s))x dx ds

∣∣∣∣∣ ≤ C +
R

2
ε

∫ t

0

∫ M

0

θ

u
((log u(x, s))x)2 dx ds.

The second contribution gives:∣∣∣∣∣
∫ t

0

∫ M

0

(
R

u
+

4
3
aθ3

)
θx (ν(log u(x, s))x − v) dx ds

∣∣∣∣∣
≤
∫ t

0

∫ M

0

3R+ 4auθ3

3u
θu1/2

χ1/2
|ν(log u(x, s))x − v|

χ1/2|θx|
u1/2θ

dx ds,

and by using (43) and Cauchy-Schwarz, the rhs is bounded by:

C +
1
18

∫ t

0

∫ M

0

(3Rθ + 4auθ4)2

uχ
(ν(log u(x, s))x − v)2

dx ds,

which is dominated by:

C + C

∫ t

0

∫ M

0

(
1 + θ5−q + θ8−q) (ν(log u(x, s))x − v)2

dx ds.
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Finally, the last contribution gives:∣∣∣∣∣
∫ t

0

∫ M

0

G

(
x− M

2

)
(ν(log u(x, s))x − v) dx ds

∣∣∣∣∣
≤ C +

1
2

∫ t

0

∫ M

0

(ν(log u(x, s))x − v)2
dx ds.

By collecting all of these estimates, taking ε small enough, and putting:

F (t) =
∫ M

0

(ν(log u(x, t))x − v)2
dx,

and:

K(s) = max
x∈[0,M ]

(
1 + θ5−q + θ8−q) (x, s),

we get:

F (t) ≤ C + C

∫ t

0

K(s)F (s) ds.

Now, by using lemma 6, and applying Gronwall’s lemma, we obtain finally:

F (t) ≤ C exp
(∫ t

0

K(s) ds
)[

1 +
∫ t

0

exp
(
−
∫ s

0

K(τ) dτ
)
ds

]
.

As the rhs is bounded, by (49), this gives an upper bound for
∫M

0
(ν(log u(x, t))x − v)2

dx,
and consequently for u.

2. The proof of (52) is analogous to that of [4], and we omit it.

Lemma 8. ∫ T

0

∫ M

0

v2
xdx dt ≤ C. (56)

Proof. By multiplying the second equation (32) by v, and integrating on [0,M ] ×
[0, T ], we have:

1
2

∫ M

0

v(x, T )2dx+
∫ T

0

∫ M

0

ν
v2
x

u
dx dt

=
1
2

∫ M

0

v0(x)2dx+ P

∫ T

0

(v(M, t)− v(0, t)) dt+
∫ T

0

∫ M

0

pvx dx dt

−
∫ T

0

∫ M

0

G(x− M

2
)v dx dt.

By using lemma 5 and 6, the rhs is bounded by:

C + C

∫ T

0

∫ M

0

p2 dx dt+
1
2

∫ T

0

∫ M

0

ν
v2
x

u
dx dt,

and: ∫ T

0

∫ M

0

p2 dx dt ≤ C
∫ T

0

∫ M

0

(θ2 + θ5 + θ8) dx dt,

where each term is bounded by using lemma 6.
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Lemma 9.

max
t∈[0,T ]

∫ M

0

u2
xdx ≤ C. (57)

Proof. As the proof of lemma 7 tells us that:∫ M

0

(ν(log u(x, t))x − v)2
dx ≤ C,

this implies:

ν2

∫ M

0

u2
x

u2
dx+

∫ M

0

v2 dx ≤ 2ν
∫ M

0

|v| |ux|
u

dx.

The result follows by using Young’s inequality together with lemma 10.

Lemma 10. ∫ T

0

∫ M

0

|vx|3dx dt ≤ C. (58)

Proof. By using an argument of Dafermos and Hsiao [27], we set w(x, t) =∫ x
0
v(y, t) dy, and we check that w satisfies the following parabolic problem:

wt − ν
uwxx = −p(x, t) + f(x),

w(0, t) = 0,

w(M, t) =
∫M

0
v(y, t) dy = 0,

w(x, 0) =
∫ x

0
v0(y) dy.

(59)

Then linear parabolic Lp estimates give in particular

‖wxx‖L1([0,T ];L3(0,M)) ≤ C + ‖p‖L1([0,T ];L3(0,M)),

and we have just to verify that the rhs is finite. We have:∫ T

0

∫ M

0

p3(x, t) dx dt ≤ C
∫ T

0

∫ M

0

(
θ3 + 3θ6 + 3θ9 + θ12

)
dx dt.

By lemma 6, the first two terms in the rhs are bounded, and, by using lemma 5, we get:∫ T

0

∫ M

0

(
θ9 + θ12

)
dx dt ≤ C

∫ T

0

max
x∈[0,M ]

(
θ5 + θ8

)
(x, t) dt,

which is also bounded by lemma 6.

Following [21] [22], we consider the three quantities:

X =
∫ t

0

∫ M

0

(1 + θ7)θ2
t dx, Y = max

t∈[0,T ]

∫ M

0

(1 + θ8)θ2
x dx, Z = max

t∈[0,T ]

∫ M

0

v2
xx dx,

We have:

max
x∈[0,M ]

θ10(x, t) ≤ C max
x∈[0,M ]

θ9(x, t) + C

∫ M

0

θ9|θx| dx

≤ C +
1
2

max
x∈[0,M ]

θ10(x, t) + C

(∫ M

0

θ8θ2
x dx

)1/2(∫ M

0

θ10 dx

)1/2

.
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So:

max
x∈[0,M ]

θ10(x, t) ≤ C + CY1/2 max
x∈[0,M ]

θ3,

and we obtain:

max
QT

θ ≤ C(1 + Y
1
14 ).

By using the interpolation inequality [32]:

‖vx‖2L2(0,M) ≤ ‖v‖L2(0,M)‖v‖H2(0,M),

we have:

max
0,T

∫ M

0

v2
x dx ≤ C(1 + Z

1
2 ).

The Sobolev theorem gives:

‖vx‖L∞(0,M) ≤ ‖vx‖L2(0,M) + 2‖vxx‖L2(0,M).

By combining the last two estimates:

max
QT
|vx| ≤ C(1 + Z

3
8 ),

where QT = [0, T ]× [0,M ].

Lemma 11. One has the following inequalities:

Y ≤ C(1 + Z
7
8 ), (60)

X ≤ C(1 + Z
7
8 ). (61)

Proof. We consider the function:

K(u, θ) =
∫ θ

0

χ(u, ξ)
u

dξ = κ1
θ

u
+

1
5
κ2θ

5,

which satisfies |Ku|, |Kuu| ≤ C(1 + θ). We multiply (46) by Kt, and integrate on Qt,
with t ≤ T :∫ t

0

∫ M

0

(
eθθt + θpθvx −

ν

u
v2
x

)
Kt dx ds+

∫ t

0

∫ M

0

χ

u
θxKtx dx ds

=
∫ t

0

∫ M

0

λφ(u, θ, Z)Kt dx ds. (62)

We compute:

Kt = Kuvx +
χ

u
θt,

Ktx =
(χ
u
θx

)
t

+Kuvxx +Kuuvxux +
(χ
u

)
u
uxθt.

We have to bound each term in (62).
We have first: ∫ t

0

∫ M

0

eθ
χ

u
θ2
t dx ds ≥ C1X, (63)

where C1 is a positive constant.
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Now: ∣∣∣∣∣
∫ t

0

∫ M

0

eθθtKuvx dx ds

∣∣∣∣∣ ≤
∫ t

0

∫ M

0

(1 + θ4)|θt||vx| dx ds

≤ 1
4
C1X + C

∫ t

0

∫ M

0

(1 + θ)v2
x dx ds.

So: ∣∣∣∣∣
∫ t

0

∫ M

0

eθθtKuvx dx ds

∣∣∣∣∣ ≤ 1
4
C1X + C + CZ3/4. (64)

Next:∣∣∣∣∣
∫ t

0

∫ M

0

(
θpθvx −

ν

u
v2
x

)
Kuvx dx ds

∣∣∣∣∣ ≤ C
∫ t

0

∫ M

0

((1 + θ4)|vx|+ v2
x)θ|vx| dx ds

≤ C max
Qt

v2
x

∫ t

0

∫ M

0

(1 + θ5) dx ds+ C max
Qt
|vx|

∫ t

0

max
x∈[0,M ]

θ

∫ M

0

v2
x dx ds.

So: ∣∣∣∣∣
∫ t

0

∫ M

0

(
θpθvx −

ν

u
v2
x

)
Kuvx dx ds

∣∣∣∣∣ ≤ C + CZ7/8. (65)

Now:∣∣∣∣∣
∫ t

0

∫ M

0

(
θpθvx −

ν

u
v2
x

) χ
u
θt dx ds

∣∣∣∣∣
≤ 1

8
C1X + C

∫ t

0

∫ M

0

(1 + θ8)v2
x dx ds+ C

∫ t

0

∫ M

0

v4
x dx ds.

So, finally, by using lemma 7 and 10:∣∣∣∣∣
∫ t

0

∫ M

0

(
θpθvx −

ν

u
v2
x

) χ
u
θt dx ds

∣∣∣∣∣ ≤ 1
8
C1X + C + CZ3/4. (66)

Let us consider now the various contributions in the second integral of (62). We have:∫ t

0

∫ M

0

χ

u
θx

(
χ2

u2
θ2
x

)
t

dx ds =
1
2

∫ M

0

(
χ2

u2
θ2
x

)
(x, t) dx− 1

2

∫ M

0

(
χ2

u2
θ2
x

)
(x, 0) dx

≥ 1
2

∫ M

0

χ2

u2
θ2
x dx− C,

so: ∫ t

0

∫ M

0

χ

u
θx

(
χ2

u2
θ2
x

)
t

dx ds ≥ C2Y − C. (67)

Now:∣∣∣∣∣
∫ t

0

∫ M

0

χ

u
θxKuuvxux dx ds

∣∣∣∣∣ ≤ C max
QT
|vx|

∫ t

0

∫ M

0

(1 + θ4)|θx|θ|ux| dx ds

≤ C + CZ3/8

(∫ t

0

∫ M

0

θ2θ2
x dx ds

)1/2(∫ t

0

∫ M

0

(1 + θ8)u2
x dx ds

)1/2

,

≤ C + CZ3/8Y1/2.
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So: ∣∣∣∣∣
∫ t

0

∫ M

0

χ

u
θxKuuvxux dx ds

∣∣∣∣∣ ≤ C +
1
4
C2Y + CZ3/4. (68)

Now:∣∣∣∣∣
∫ t

0

∫ M

0

χ

u
θx

(χ
u

)
u
uxθt dx ds

∣∣∣∣∣ ≤ C
∫ t

0

∫ M

0

|θx|(1 + θ4)|θt||ux| dx ds,

≤ 1
8
C1

∫ t

0

∫ M

0

(1 + θ7)θ2
t dx ds+ C

∫ t

0

∫ M

0

(χ
u
θx

)2 u2(1 + θ)
χ2

u2
x dx ds,

≤ 1
8
C1X + C

∫ t

0

max
[0,M ]

(χ
u
θx

)2

ds,

by using lemma 9.
Now, we have:(χ

u
θx

)2

≤
∫ M

0

(χ
u
θx

)2

dx+
∫ M

0

∣∣∣χ
u
θx

∣∣∣ ∣∣∣(χ
u
θx

)
x

∣∣∣ dx,
so:

max
[0,M ]

(χ
u
θx

)2

≤ C max
QT

(χθ2)
∫ M

0

χ

uθ2
θ2
x dx+

∫ M

0

∣∣∣χ
u
θx

∣∣∣ ∣∣∣(χ
u
θx

)
x

∣∣∣ dx.
So: ∫ t

0

max
[0,M ]

(χ
u
θx

)2

ds ≤ C max
QT

(1 + θ6) + C

(∫ t

0

∫ M

0

χθ2
∣∣∣(χ
u
θx

)
x

∣∣∣2 dx ds

)1/2

,

and, by using the third equation (32):

≤ CY3/7 +
(∫ t

0

∫ M

0

(1 + θ6)
[
e2
θθ

2
t + θ2p2

θv
2
x + v4

x + λφ(u, θ, Z)
]
dx ds

)1/2

.

The integral is bounded by:(
C(1 + max

QT
θ5)X + max

QT
v2
x ·
∫ t

0

∫ M

0

(1 + θ14) dx ds

+ max
QT
|vx|(1 + max

QT
θ6) ·

∫ t

0

∫ M

0

|vx|3 dx ds
)1/2

,

≤ C(1 + max
QT

θ5/2)X1/2 + C(1 + max
QT

θ)Z3/8 + C(1 + max
QT

θ3)Z3/16,

and finally, by using once more Young’s inegality, we obtain:∣∣∣∣∣
∫ t

0

∫ M

0

χ

u
θx

(χ
u

)
u
uxθt dx ds

∣∣∣∣∣ ≤ C +
1
8
C1X +

1
4
C2Y + CZ3/4. (69)

The last contribution is:∣∣∣∣∣
∫ t

0

∫ M

0

λφ(u, θ, Z)
[
Kuvx +

χ

u
θt

]
dx ds

∣∣∣∣∣
≤ C

∫ t

0

∫ M

0

(1 + θ2)|vx| dx ds+ C

∫ t

0

∫ M

0

(1 + θ4)|θt| dx ds,
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which, by using the definition of φ, and lemma 5, is less than:

C

(
(1 + max

QT
θ2)(1 + Z3/8) + C +

1
8C

C1X
)
,

which gives:∣∣∣∣∣
∫ t

0

∫ M

0

λφ(u, θ, Z)
[
Kuvx +

χ

u
θt

]
dx ds

∣∣∣∣∣ ≤ C +
1
8
C1X + CZ3/4. (70)

By collecting the estimates (63)-(70), we obtain:

C1X + C2Y ≤ C(1 + Z7/8),

which ends the proof.

Lemma 12. One has the following inequality:

max
[0,T ]

∫ M

0

v2
t dx+

∫ T

0

∫ M

0

v2
xt dx dt ≤ C(1 + Z

7
8 ). (71)

Proof. We sketch a formal proof, which can be made rigorous by using adapted
mollifiers (see [21] [22]).

If we derivate with respect to t the second equation (32), multiply it by vt, and
integrate on QT , we get:

1
2

∫ M

0

v2
t (x, t) dx− 1

2

∫ M

0

v2
t (x, 0) dx =

∫ T

0

∫ M

0

vtσxt dx dt.

By integrating by parts on [0,M ], the rhs is:∫ T

0

∫ M

0

vtx

[
pt − ν

vtx
u

+ ν
v2
x

u2

]
dx dt,

and we get the majorization:

1
2

∫ M

0

v2
t (x, t) dx+

∫ T

0

∫ M

0

ν
v2
tx

u
dx dt ≤ C + C

∫ T

0

∫ M

0

(
p2
t + v4

x

)
dx dt.

The integral in the rhs is bounded by:∫ T

0

∫ M

0

(
(1 + θ6)θ2

t + θ2v2
x + v4

x

)
dx dt ≤ C + CX + CZ

3
4 + CZ

7
8 ,

which ends the proof, by using lemma 11.

Lemma 13. There exists a constant C(T ) such that:(
Z, X, θ, Y, max

[0,T ]

∫ M

0

v2
x dx, max

QT
|vx|, max

[0,T ]

∫ M

0

v2
t dx,

∫ T

0

∫ M

0

v2
xt dx dt

)
≤ C(T ). (72)

Proof. By the second equation (32):

vxx =
u

ν

(
vt + px +

ν

u2
uxvx

)
.
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So: ∫ M

0

v2
xx dx ≤ C

∫ M

0

(
v2
t + (1 + θ6)θ2

x + θ2u2
x + u2

xv
2
x

)
dx,

≤ C

∫ M

0

(
v2
t + (1 + θ6)θ2

x + u2
xv

2
x

)
dx.

By using lemma 12:

≤ C + C(1 + Z
7
8 ) + CY + CZ

3
4 ,

so, by lemma 11:

Z ≤ C(1 + Z
7
8 ).

This implies that Z is bounded, so is Y, and all the other quantities.

Lemma 14. There exists a constant C(T ) such that:(
max
[0,T ]

∫ M

0

θ2
t dx,

∫ T

0

∫ M

0

θ2
xt dx dt,

∫ T

0

∫ M

0

θ2
xx dx

)
≤ C(T ). (73)

Proof. By differentiating equation (46) with respect to t, multiplying by eθθt, and
integrating on [0,M ], we get:

1
2

∫ M

0

(eθθt)
2 (x, t) dx− 1

2

∫ M

0

(eθθt)
2 (x, 0) dx+

∫ t

0

∫ M

0

pθvxeθθ
2
t dx ds

+
∫ t

0

∫ M

0

θθθvxeθθ
2
t dx ds+

∫ t

0

∫ M

0

θpθuv
2
xeθθt dx ds+

∫ t

0

∫ M

0

θpθvxteθθt dx ds

−
∫ t

0

∫ M

0

(
− ν

u2
v3
x +

2ν
u
vxvxt

)
eθθt dx ds

= −
∫ t

0

∫ M

0

χ

u
eθθ

2
xt dx ds−

∫ t

0

∫ M

0

(
− κ1

u2
vxθx + 4κ2θ

3θtθx

)
(eθθt)x dx ds

−
∫ t

0

∫ M

0

(eθuux + eθθθx)θx dx ds+
∫ t

0

∫ M

0

λφ(u, θ, Z)eθθt dx ds.

So we can write:

1
2

∫ M

0

(eθθt)
2 (x, t) dx+

∫ t

0

∫ M

0

χ

u
eθθxt dx ds = other terms.

Using the same techniques as above, one can bound the rhs (see [27]), then we get:

max
[0,T ]

∫ M

0

θ2
t dx,

∫ T

0

∫ M

0

θ2
xt dx dt ≤ C(T ).

Now, by using equation (46), we see that:

θxx =
u

χ

(
eθθt + θpθvx −

ν

u
v2
x −

(χ
u

)
x
θx − λφ(u, θ, Z)

)
.

As all the coefficients in the rhs are L2, the last estimate in (73) follows.

The Hölder regularity of the solution is now proved in the same manner as in [22],
which ends the proof of theorems 1 and 6.
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4.2. Asymptotic behaviour. As the physics taking place in our model is rather complex
(radiation, gravity, chemistry, free boundary), so is the problem of the precise asymptotic
behaviour, and we get only partial results.

In fact, for technical reasons, we have to limit the analysis to three simplified situations
of physical interest:

1. The non-gravitating Dirichlet problem.
2. The free-boundary chemical problem, in which one discards gravity and radiation.
3. The gravitating Eddington’s model.

Before considering these simplified models, let us begin with some results valid in the
general case.

As usual the first thing to do is to identify all the possible asymptotic states.
Let us consider the regular static solutions

(
ū(x), v̄(x) = 0, θ̄(x), Z̄(x)

)
of (32), satis-

fying the system: 
p̄x +G

(
x− 1

2
M

)
= 0,

Q̄x − λφ(θ̄, Z̄) = 0,(
d

ū2
Z̄x

)
x

− φ(θ̄, Z̄)) = 0.

(74)

The corresponding energy of this solution is given by:

Ē(θ̄) =
∫ M

0

(
e(ū, θ̄) + f(x)ū

)
dx. (75)

We obtain easily the following result:

Lemma 15. Any admissible static solution of (74) is defined by:
ū(x) =

Rθ̄

P − a
3 θ̄

4 + 1
2Gx(M − x)

,

θ̄(x) = θ̄,

Z̄(x) = 0,

(76)

where θ̄ is a positive constant. Such a solution exists if and only if the temperature sat-
isfies:

P >
a

3
θ̄4. (77)

Proof. By integrating the third equation (74) on [0,M ], we see that:∫ M

0

φ(θ̄, Z̄) dx = 0.

As φ ≥ 0, we find that in fact φ(θ̄, Z̄) = 0, and so Z̄ must be zero, at least in the
gravitational case (by the first equation (74), θ̄ = 0 cannot be a solution if G 6= 0).

By putting into the second equation (74), we see that Q̄(x) = Q̄, where Q̄ is a constant,
which is zero, by symmetry properties. This implies that θ̄(x) = θ̄, another constant.
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By integrating the first equation (74), we get finally:

ū(x) =
Rθ̄

P − a
3 θ̄

4 + 1
2Gx(M − x)

. (78)

One sees that this solution is admissible (ū(x) finite) only if (77) is satisfied, i.e. if the
exterior pressure P “dominates” the radiation.

If the condition (77) is not satisfied, no static solution can exist, and one cannot
expect the system to converge toward an equilibrium.

If (77) holds, the energy of the solution is then:

Ē(θ̄) =
∫ M

0

(
e(ū, θ̄) + f(x)ū

)
dx = M(C +R)θ̄ +

4
3
aθ̄4

∫ M

0

ū dx.

We get finally:

Ē(θ̄) = M(C +R)θ̄ +
8aRθ̄5

3τG
log

∣∣∣∣∣ M2 + τ
M
2 − τ

∣∣∣∣∣ , (79)

where τ(θ̄) =
√

2
G

(
P + GM2

8 − a
3 θ̄

4
)
. Clearly, θ̄ → Ē(θ̄) is increasing from [0, θ∗[ to

[0,+∞[, so given Ē, one gets a unique corresponding θ̄.

Now, we have first a useful representation lemma for the specific volume (see [10]):

Lemma 16. One has the formula:

u(x, t) =
1

Y (x, t)B(x, t)D(x, t)

[
u0(x) +

R

ν

∫ t

0

Y (x, s)B(x, s)D(x, s)θ(x, s) ds
]
, (80)

where:

B(x, t) = exp
(

1
ν

∫ x

0

(v0(y)− v(y, t)) dy
)
,

D(x, t) = exp
(
− a

3ν

∫ t

0

θ4(x, s) ds
)
, Y (x, t) = exp

(
1
ν
tf(x)

)
.

Lemma 17. (i) Let θi and θs be the two positive roots, with 0 < θi ≤ θs, of the
equation:

θ − log θ − 1 =
C
Cv

,

where C is a constant (independent of t) (see lemma 15). For each t ≥ 0, there is a
y(t) ∈ [0,M ] such that:

0 < θi ≤ θ(y(t), t) ≤ θs. (81)

Moreover:

0 < θi ≤
1
M

∫ M

0

θ(x, t) dx ≤ θs, ∀t ≥ 0. (82)

(ii) Let ui and us be the two positive roots, with 0 < ui ≤ us, of the equation:

u− log u− 1 =
C
R
.
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For each t ≥ 0, there is a z(t) ∈ [0,M ] such that:

0 < ui ≤ u(z(t), t) ≤ us. (83)

Moreover:

0 < ui ≤
1
M

∫ M

0

u(x, t) dx ≤ us, ∀t ≥ 0. (84)

Proof. It is sufficient to prove the first part of the lemma. By lemma 15, we have:∫ M

0

Cv (θ(x, t)− log θ(x, t)− 1) dx ≤ C,

and by applying the mean value theorem, there is a y(t) ∈ [0,M ] such that:

θ(x, t)− log θ(x, t)− 1 ≤ C
Cv

,

which gives (81).
Using Jensen’s inequality for the convex function x→ x− log x− 1, we get:

Θ(t)− log Θ(t)− 1 ≤ C
Cv

,

where Θ(t) = 1
M

∫M
0
θ(x, t) dx, which gives (82).

By using the representation of u, one has:

Lemma 18. If P > 0, there exist two positive constants u+ and u−, independent of t,
such that:

u− ≤ u(x, t) ≤ u+, (85)

for any t ≥ 0, and x ∈ [0,M ].

Proof. From now on, we denote by C and Cj various time-independent constants.
By lemma 15, it is clear that:

0 <
1

C1
≤ B(x, t) ≤ C1, (86)

where C1 = exp(2ME0) is independent of t.
Now, we have, as usual:

θ2(x, t) = θ2(y(t), t) + 2
∫ x

y(t)

θ(x, t)θx(x, t) dx,

where y(t) is defined in lemma 21. Then:

|θ2(x, t)− θ2(y(t), t)| ≤ CV 1/2(t),

with V (t) =
∫M

0
χ
uθ2 θ

2
x dx. By using lemma 16, we get:

1
2
θ4
i − CV (t) ≤ θ4(x, t) ≤ 2θ4

s + CV (t),

so, by lemma 15:

1
2
θ4
i (t− s)− C ≤

∫ t

s

θ4(x, τ) dτ ≤ 2θ4
s(t− s) + C,
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for any 0 ≤ s ≤ t. So:

Ce−
2a
3ν θ

4
st ≤ D(x, t) ≤ Ce− a

6ν θ
4
i t, (87)

and, for 0 ≤ s ≤ t:

Ce
a
6ν θ

4
i (t−s) ≤ D(x, s)

D(x, t)
≤ Ce 2a

3ν θ
4
s(t−s). (88)

Now, by using lemma 16, we decompose u(x, t) = u1(x, t) + u2(x, t), with:

u1(x, t) =
u0(x)

Y (x, t)B(x, t)D(x, t)
,

u2(x, t) =
R

ν

∫ t

0

Y (x, s)B(x, s)D(x, s)
Y (x, t)B(x, t)D(x, t)

θ(x, s) ds.

By using (86) and (87):

Ce
t
ν ( a6 θ4i−f(x)) ≤ u1(x, t) ≤ Ce

t
ν ( 2a

3 θ
4
s−f(x)), (89)

where the two bounds are exponentially decreasing, provided that P > 2a
3 θ

4
s .

By using the same methods, we have also, for any ε > 0:

θi − εC2 −
1
4ε
V (t) ≤ θ(x, t) ≤ θs + εC2 +

1
4ε
V (t),

where C2 = E0
κ1(Pa)1/2)

. By taking ε = θi
2C2

, we get:

1
2
θi −C3V (t) ≤ θ(x, t) ≤ C4(1 + V (t)),

where C3 = C2
2θi

and C4 are time independent.
So we find first, for the upper bound:

u2(x, t) ≤ C5

∫ t

0

e
1
ν (f(x)− 2a

3 θ
4
s)(s−t)(1 + V (s)) ds ≤ C5

(
1 +

∫ t

0

V (s) ds
)
≤ C6.

The lower bound is obtained as follows, following [23]:

u2(x, t) ≥ R

νC1

∫ t

0

eC6(s−t)(
1
2
θi −C3V (s)) ds,

where C6 = 1
ν (P − a

6θ
4
i ) > 0. So:

u2(x, t) ≥ C7

(
θi

2C6
(1− e−C6t)−C3e

−C6
t
2

∫ t/2

0

V (s) ds−C3

∫ t

t/2

V (s) ds
)
,

and the rhs is bounded, for t large enough, by a positive constant. So we get:

C7 ≤ u2(x, t) ≤ C6, (90)

and taking into account (89) and (90), we obtain C7 ≤ u(x, t) ≤ 1 + C6, which ends the
proof.

The large time properties of the solution of (32)-(37) are the following:
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Theorem 7. Let (u, v, θ, Z) be the solution of (32)-(37), and r(x, t) the associated
lagrangian position, solution of:

dr

dt
= v(x, t), for x ∈ [0,M ], t ≥ 0,

r(x, 0) = r0(x).
(91)

(i) If P > 0, the specific volume u(x, t) and the chemical fraction Z(x, t) are bounded
uniformly on [0,M ]× [0,∞):{

0 < u− ≤ u(x, t) ≤ u+, for x ∈ [0,M ], t ≥ 0,

0 ≤ Z(x, t) ≤ 1, for x ∈ [0,M ], t ≥ 0.
(92)

Moreover, the solution admits a slab of finite extension r∞ as a spatial attractor:

r(x, t) ≤ r∞, (93)

where r∞ ≤ r0(M) + E0
P .

(ii) If P = 0 (“vacuum”), there exist two positive numbers T1 and C1 such that:∫ M

0

u(x, t) dt ≥ C1(t+ T1), (94)

for t > T1.

Proof. The estimate (92) for Z follows from the maximum principle applied to the
chemical equation.

By integrating the second equation (32), on [0,M ], we have:

r(x, t) ≤ r0(M) +
∫ M

0

u(x, t) dx ≤ r0(M) +
E0

P
.

By integrating the second equation (32), on [0, x], we have:(∫ x

0

u(y, t) dy
)
t

= σ +
1
2
Gx(x−M).

By multiplying by u:

u

(∫ x

0

u(y, t) dy
)
t

+ pu = νut − f(x), (95)

where f(x) = 1
2Gx(x−M)u. Then, by integrating on [0, t]× [0,M ] the first term in the

lhs, we have:∫ t

0

∫ M

0

u

(∫ x

0

u(y, s) dy
)
s

dx ds

=
∫ M

0

{
−
∫ t

0

us

∫ x

0

v(y, s) dy ds+ u

∫ x

0

v(y, s) dy
∣∣∣∣t
0

}
dx.

As ut = vx, we can integrate by parts in x the first term in the rhs, and we obtain:∫ t

0

∫ M

0

u

(∫ x

0

u(y, s) dy
)
s

dx ds ≥
∫ t

0

∫ M

0

v2 dx ds− C
(

1 +
∫ M

0

u(x, t) dx
)
.
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By putting into (95):∫ t

0

∫ M

0

(v2 + pu+ f(x)u) dx ds ≤ C
(

1 +
∫ M

0

u(x, t) dx
)
.

So: (
1 +

∫ M

0

u(x, t) dx
)
≥ C−1R

∫ t

0

∫ M

0

u dx ds.

But we find easily a lower bound for u by integrating the second equation (32) on [0, x]×
[0, t].

We have: ∫ x

0

(v(y, t)− v0(y)) dy =
∫ t

0

σ ds−
∫ t

0

G

(
x− M

2

)
dt.

So:

ν log
u(x, t)
u0(x)

= −
∫ t

0

(p+ f(x)) ds+
∫ x

0

(v(y, t)− v0(y)) dy,

and, by Cauchy-Schwarz:

ν log
u(x, t)
u0(x)

≥ −
∫ x

0

(|v|+ |v0|) dy ≥ −2(2M)1/2E
1/2
0 ,

with E0 =
∫ t

0

∫M
0

( 1
2v

2 + Cvθ + auθ4 + f(x)u+ λZ) dx ds.
Then we get finally:

u(x, t) ≥ u−,
where u− = minx∈[0,M ] u0(x) exp(−2(2M)1/2E

1/2
0 ). This implies:(

1 +
∫ M

0

u(x, t) dx
)
≥ C−1RMu−t,

which ends the proof.

Now, to obtain more precise asymptotics, we consider successively the three particular
situations described above.

4.2.1. The radiating Dirichlet problem. We simplify the system (32) as follows:

ut − vx = 0,

vt − σx = 0,

et − σvx +Qx − λφ(θ, Z) = 0,

Zt −
(
d

u2
Zx

)
x

+ φ(θ, Z) = 0,

(96)

with Dirichlet conditions:

v(0, t) = v(M, t) = 0, (97)

and we keep the other conditions (33) and (35)-(37). In this case, one checks easily, by
using the first equation (96), that the constant stationary state is given by:

ū =
1
M

∫ M

0

u0(x) dx. (98)
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Then, the asymptotic behaviour of the solution of this problem is the following [14]:

Theorem 8. Suppose that the initial conditions u0, v0, θ0, Z0 satisfy:

u0, u
′
0, v0, v

′
0, v

′′

0 , θ0, θ
′
0, θ

′′

0 , Z0, Z
′
0, Z

′′

0 ∈ Cβ [0,M ],

with β ∈ [0, 1], and that:

u0(x), θ0(x), Z0(x) > 0,

for x ∈ [0,M ]. If q is large enough (q ≥ 6), then the solution (u, v, θ, Z) converges toward
the static solution (ū, 0, θ̄, 0), in H1(0,M), when t→∞, where ū is given by (98), and θ̄
is found by solving the quartic equation:

aūθ̄4 + Cv θ̄ =
E0

M
, (99)

where E0 =
∫M

0

(
1
2v

2
0 + e0 + λZ0

)
dx. Moreover, there exist three positive numbers γ, T0,

and C0 such that:

‖u− ū‖H1(0,M) + ‖v‖H1(0,M) + ‖θ − θ̄‖H1(0,M) + ‖Z‖H1(0,M) ≤ C0e
−γt, (100)

for t ≥ T0.

Physically, the result tells us that the static equilibrium is stable provided that the
radiating part of the thermal dissipation is strong enough.

The proof of the theorem relies on bounds for high Sobolev norms. The complication
with respect to [23] comes from the high powers in θ of p(u, θ), e(u, θ), and κ(u, θ),
together with the anisotropic behaviours of the gaseous and radiating contributions of e
and p.

4.2.2. The free-boundary chemical problem. We consider the problem (32)-(37), with
a = 0 (no radiation), and G = 0 (no gravitation).

The regular static solutions
(
ū(x), v̄(x) = 0, θ̄(x), Z̄(x)

)
is given by:

ū =
Rθ̄

P
,

θ̄(x) = θ̄,

Z̄(x) = 0,

(101)

where θ̄ is a positive constant. Then, we have the following result:

Theorem 9. If P > 0, and if the initial conditions u0, v0, θ0, Z0 satisfy:

u0, u
′
0, v0, v

′
0, v

′′

0 , θ0, θ
′
0, θ

′′

0 , Z0, Z
′
0, Z

′′

0 ∈ Cβ [0,M ],

with β ∈ [0, 1], and:

u0(x), θ0(x), Z0(x) > 0,

for x ∈ [0,M ], the solution (u, v, θ, Z) converges toward the static solution (ū, 0, θ̄, 0), in
H1(0,M), when t→∞, where ū and θ̄ are given by:
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ū =

RE0

MP (Cv +R)
,

θ̄ =
E0

M(Cv +R)
,

(102)

where E0 =
∫M

0

(
1
2v

2
0 + e0 + Pu0 + λZ0

)
dx.

This result is proved in [30], by adapting to the reacting case the results of Naga-
sawa [29].

4.2.3. The Eddington’s model. This model is a barotropic approximation used in as-
trophysics to simulate radiation at low cost!

The idea is the following. If we write pgas = Rθ
u and prad = a

3θ
4, and if we set

β(x, t) = p
prad

, some observations show that β(x, t) is slowly varying. The Edding-
ton’s model consists in supposing that β is a pure constant. This leads to the following
barotropic equation for the pressure:

p(u) =
A

uγ
,

with A =
(

3β3R4

a(β−1)4

)1/3, and γ = 4/3. The temperature is then: θ =
(

3R4

a(β−1)

)1/3 1
uγ−1 . The

problem to solve is then: 
ut − vx = 0,

vt − σx +G

(
x− 1

2
M

)
= 0,

(103)

for t ≥ 0 and x ∈ [0,M ], where M is the mass of the slab, and p(u) = A
uγ .

We consider the initial conditions:

(u, v)(x, 0) = (u0, v0)(x), (104)

together with the boundary conditions (34), with P > 0, and the symmetry condi-
tions (37).

By using the technique of Okada [28], one can prove the following result:

Theorem 10. (i) Suppose the problem ((103),(104),(34),(37)) has at least a classical
solution (u(x, t), v(x, t)) . Then the functions (u, v, vx) can be bounded on Cr,r/2(QT ),
with r = 1/3:

|||u|||1/3 + |||v|||1/3 + |||vx|||1/3 ≤ C,
where C depends only on T , the physical parameters of the problem, and the data.

(ii) If P > 0, and if the initial conditions u0, v0 satisfy:

u0, u
′
0, v0, v

′
0, v

′′

0 ∈ Cβ [0,M ],
with β ∈ [0, 1], and:

u0(x) > 0,

for x ∈ [0,M ], the solution (u, v) converges toward the static solution (ū, 0), in H1(0,M),
when t→∞, where ū is given by:

ū(x) =
(

A

f(x)

)1/γ

, (105)

where f(x) = P + 1
2Gx(M − x).
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