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Abstract. We study the large time behaviour of entropy solutions of the Cauchy problem for
a possibly degenerate nonlinear diffusion equation with a nonlinear convection term. The initial
function is assumed to have bounded total variation. We prove the convergence of the solution
to the entropy solution of a Riemann problem for the corresponding first order conservation law.

1. Introduction. In this paper we consider the problem
(P) up + f(u)e = p(U) gz in@Q=RxR"
u(z,0) = up(x) forx e R

under the following hypotheses on the data

(H1) ¢, f: R — R, ¢ is nondecreasing and continuous in R, f is locally Lipschitz
continuous in R.

(H2) wo:R — R, up € BV(R).
Here BV (R) denotes the set of functions of bounded total variation in R, i.e.
BV(R) = {g € Li,.(R) : TVRr(g) < +oo},

2000 Mathematics Subject Classification: Primary 35K55, 35K65, 356B40; Secondary 35L65.

Research supported by the French - Polish cooperation programme POLONIUM, grant 7074.
Current address of the first author is: Instytut Matematyki, Politechnika Wroctawska, ul. Jani-
szewskiego 14, 50-384 Wroclaw, E-mail: goncerz@im.pwr.wroc.pl.

The paper is in final form and no version of it will be published elsewhere.

[119]



120 J. GONCERZEWICZ AND D. HILHORST

where
TVr(g) = sup {/ g¢'dx: ¢ € Cy(R), [|fllm) <1 }
R

(see for example [GR]). We shall also consider the function space BV (I), where I C R is
an open interval and for which the definition is similar. Let us remark that ug € BV (R)
implies that ug(—00) and ug(+00) exist in a sense of ess-limits, and that |Jug||z~r) < oo.
We define a = esslimug(x) and b= esslimug(z).
T— —00 T—00

The form of the partial differential equation in Problem (P) with nonlinear convection
without any convexity assumption and possibly degenerate nonlinear diffusion is natural
in view of many applications. A typical example is nonlinear filtration in porous media
[GM].

Problem (P) may have no classical solutions. If for example ¢(s)
m > 1 one usually considers weak solutions of Problem (P) which are continuous in Q. If
 is not strictly increasing then the differential equation in (P) reduces to the first order
conservation law

(1.1) ug + f(u)y =0

= |s|™"!s with

in regions where ¢(u) is constant; in this case Problem (P) admits discontinuous solutions.
We define solutions of Problem (P) as follows.

DEFINITION 1.1. A function w € L*°(Q) is an entropy solution of Problem (P) if u €
L>=((0,00); BV(R)) N C([0,00); L% .(R)), p(u) € LE ([0,00); HL (R)) and if u satisfies
the inequality

(12 k] (sl — K)(7 () — F(K))

< 5 (signlu— K)p(u) — (k) in D'(Q)

for all constants k € R, together with the initial condition «(0) = ug.

This definition extends the notion of entropy solution of equation (1.1) introduced by
[K]. Note that if u is an entropy solution of Problem (P), then it satisfies the differential
equation

ut + f(u)a: = So(u)xw in D/(Q),

which one can check by successively setting k = %[|ul| L~ (g) in (1.2).
In order to be able to state the main result of this paper, we consider the Riemann
problem
ut + f(u)y =0 in Q

(P™) _ _ _Ja ifx<O

u(z,0) =a+ (b—a)H(z) = b oifa >0
where H is the Heaviside function. It is well known [K], [dB], [MNRR], [Se] that Problem
(P°°) has a unique entropy solution. We remark that the solution 4 of Problem (P)
can be written using the similarity variable n = x/¢ in the form u®(z,t) = U(n), where
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U € BV (R) is a distributional solution of the problem
fU)y =nt in R
U(—o0) =a, U(+x)=Db
which satisfies the “entropy” inequality
(sign(U — k) (f(U) = f(k)) <n U -k inD'(R)

for all £ € R (see for instance [Se, p. 50]).
We also consider a sequence of related uniformly parabolic problems, namely
(p) d ue T fe(W)e = $0e () e inQ
7 u(z,0) = upe (Ax) forz € R
where 0 < ¢ <1, A > 0 and the functions wuge, p- and f. satisfy the Hypotheses (H.):
(1) Upe, Pes fs € COO(R)7
(il) e — @, fe — f as € | 0 uniformly on compact subsets of R;
(iii) e<pl<linR;
(iv) for all R > 0 there exists L = L(R) such that |f!| < L(R) on (—R, R);
(V) wpe — up in L (R) as e — 0;

loc
essinfug < up. < esssupug in R;

)
(vil) /R i ()| dr < TV (up);

(viii) wge(z) = a for x < —1 and ug:(x) = b for x > L.

The existence of functions wug., ¢ and f. follows from hypotheses (H1)-(H2) by a stan-

dard mollifying argument. It follows from [LSU, Chapter V, Theorem 8.1] that for any

0 <e <1, x>0 Problem (P2) has a unique classical solution u?.

Next we introduce a notion of limit entropy solution of Problem (P).

DEFINITION 1.2. We say that an entropy solution u of Problem (P) is a limit entropy

solution if it is the limit of a sequence of solutions {u., } of the problems (P! ) such that
u., —u in C([0,T]; L. (R)) ase, — 0.

n

We refer to Benilan and Touré [BT], Maliki and Touré [MT] and Marcati [M] for a
study of semigroup solutions, entropy solutions and limit solutions of Problem (P).

The main result of this paper is the following.
THEOREM 1.3. Let u be the limit entropy solution of Problem (P). Set
(1.4) u(n,t) = u(z,t).
Then for all R > 0
tli?;o lu(-,t) —U| p2(~r,r) = O.

REMARK 1.4. In the (z,t) variables this convergence result reads as

1 Rt
lim —— - 2dz =
Jim s /_ ) ~U(a/) dz = 0

for all R > 0.
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In order to prove Theorem 1.3 we use a scaling technique. For all A > 0 we set
(1.5) ut(x,t) = u(Ax, At),

where v is the limit entropy solution of Problem (P). Then u* is a limit entropy solution
of Problem (P?),

1
X
u(z,0) = u} () = uo(\z) for xr € R,

where a limit entropy solution u* of Problem (P?) is defined in a similar way as in
Definition 1.2. Theorem 1.3 is the consequence of the following convergence result.

THEOREM 1.5. Let {u*}\>1 be limit entropy solutions of Problem (P*). Then, for any
T >0,

u* — u>  in C([0,T); L3 .(R))

loc

as X — 0o, where u® is the entropy solution of Problem (P>).

Indeed it follows from (1.4), (1.5) and Theorem 1.5 that for all R > 0

R R
/ [ (y, 1) = U(y)* dy = / [a(n, \) =Um)Pdn — 0 as A — oo,
-R -R
which is precisely the result stated in Theorem 1.3.

The large time behaviour of solutions of Problem (P) has been studied for a long time
under various assumptions on f, ¢ and ug. We refer to [I02] and [W] for a historical
review and an extensive list of references contained therein. Results related to presented
here were obtained by II'in and Oleinik [IO1], [IO2] in the case that p(u) = eu, with € > 0
and f” > 0 and by Weinberger [W] with the hypotheses that the differential equation
in Problem (P) is uniformly parabolic and that f” is continuous and only has isolated
zeros. Van Duijn and de Graaf [vDdG] also examined a similar problem for a degenerate
parabolic equation in the case of power type nonlinearities for the functions ¢ and f.
Most of the methods of proof used in those papers are based on maximum principle
arguments; here we present an approach based on a scaling method together with energy
type estimates. This approach enables us to obtain a unified description of the limiting
profile as ¢ — oo of solutions of Problem (P), without standard distinguishing between
convexity and concavity of the convection function f. We also refer to [BGH] for a short
note about these results. In a forthcoming article we will extend the results that we
present here to the case of higher space dimension.

The organization of this paper is as follows. In Section 2 we prove a priori estimates
for the solutions of Problems (P2). In Section 3 we deduce from these estimates both the
existence of an entropy solution u* of Problem (P*) and the convergence of u* to the
function 4™ as A — oo.

2. A priori estimates. In this section in a series of lemmas we derive a priori
estimates for the solutions u? of Problems (P2), with A > 1.
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LEMMA 2.1.
(2.1) essinfug < u) < esssupug  in Q.

PROOF. This result follows from Hypothesis (H.) (vi) and applying the standard
maximum principle. m

LEMMA 2.2. Let 0 < e <1, A>1 and T > 0 be fized. Then

w}—a—(b—a)H(x), uly, ulyy =0 ) as |2] — oo,

uniformly in [0, T].

PROOF. (i) We first prove that

ud —b=0(e™) asx — 400,
uniformly in [0,7]. Set M = ||ug||oo. Then, by (2.1),
~M<ud<M inQ.
We compare u with the function
w(z,t) =b—ye "HE

in the set Sy x = {(z,t) : = > A+ Kt, t > 0} for some v, A, K > 0. If we choose
v = (b+ M)e” then
w(A+ Kt,t)=—-M

for t > 0. Furthermore, if A =1 then by (H.)(viii)
w(z,0) =b—vye ¥ <upe(x)
for x € [A, 00). Finally, for K = K large enough we have
Wy — YLy, — L (W + flww, =
ve TR K + gl(w) — ve T gl (w) + fl(w)] <0
in S4 . Hence, by the maximum principle w(z,t) < u in Sa x so that
—yefT=2 <y} —p
for x > A+ Kt and t € [0,T]. Similarly, comparing u? with the function of the form
G(x,t) = b+ ye ot
in Sy K, for some vy, K1 > 0 and A as before leads to
W — b < qef T

forx > A+ Kyt and ¢t € [0, 7).
The proof that u? —a = O(e™*l) as 2 — —oo uniformly in [0, 77 is similar.
(ii) In order to prove that
ud, =0(e™®) asx — +oo

uniformly in [0, 7] we observe that p = u2, satisfies

pe = (L(ul)pe + L (ud)p* — fL(ud)p)a

= PL(u2)pra + 3¢ (u)ulypa + 02 (ud)(d,)*p — fL(u2)pe — I (ud)ul,p,
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and moreover |p| < M, in R x [0,T] and, by (H.)(viii), p(z,0) = 0 for z > 1. Thus we
can compare p with functions

w(z,t) = dye oK
in Sp k for v, K >0and A = %
The proof that u), = O(e 121} as & — —oo uniformly in [0, 7] is similar.

(iii) The proof that u
proof given in (ii). m

2w = O(e71?) as & — 400 uniformly in [0, 7] is similar to the

LEMMA 2.3. For allt > 0,
(2.2) [ e tlde < [ fupe@)ldz < TV (o).
R R

PROOF. For the sake of simplicity we use the notations u and u instead of u2 and
uge respectively. To begin with we differentiate the the differential equation in Problem
(P2) with respect to =, multiply the resulting equation by signu, = sign(¢.(u)u,) and
integrate over Qg for fixed R and 7" > 0. This leads to

1
(2.3) // Uy SIEN Uy + // Yoz SigD U, = — // Ve (U) g SigN Uy .
R, T R, T A R, T

We show below that

R T
(2.4) // Ugy SIgN U, dxdt = / |t dx7
Qr,T -R
(2.5) // )wa sign u, dedt = / fl(u \u$|
QRr,T

eo [ el s dads < / T(w;w)ux)msign(so;(u)ux)

R
dt.

In order to prove (2.4)-(2.6) we use a sequence of smooth approximations {Ss}s=¢ of the
sign function and set Ms(w) = [, Ss(s)ds for w € R. Then Ms(w) — |w| as § — 0. We

have that
// . S ()t //R,T(Mé(uz))t /};Mts(ur) g

where we let § — 0 to obtain (2.4).
In order to prove (2.5) we observe that

(fé(u)ux)xS(;(ux) = (fé(u))xuafsé(ux) + f;(u)(M(;(ux))x
= (fl(u)Ms(ug))z 4 (fL(w)) e [uaSs(ur) — M5 (uz)],

dzx,

which implies that

@7 / /Q L) -/ /Q @M. + I0)

:/ FMs(uw) | dt + J0),
0 —R
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where

/ /QRTfe o[taSs () — Ms(us)].

Since J(4) — 0 as § — 0 we obtain (2.5) by letting 6 — 0 in (2.7).
Finally we prove (2.6). We have that

(2.8) // Pe (1) e S5 (Uar)

//{D2 WeselS5() = S5(L ]+ [ [ () en S0
=1(s TIQ(&) -

and remark that since ¢, > 0 then I;(§) — 0 as 6 — 0. Next we estimate [2(§). We have
that

(29) b)) =

T
/0 (L (w)tta) S5 (L (1)1

- | /Q el S ) da

T
< / (el (w)a)sSa (L (W) | dt.

Substituting (2.9) into (2.8) and letting § — 0 we obtain (2.6).
Now it follows from (2.3)-(2.6) that

R R
/ (2, T)| da — /\/ b, (\z)| da <
“R

[uZ,
-R

T R T R
|ttt sionter ) |~ der [l | ) ae
0 - 0 -
for all R, T > 0. Hence, by Lemma 2.2, in the limit as R — oo
[ e nlde = [ g0 de <o,
R R
which yields (2.2) by (H.)(vii). =
LEMMA 2.4. There exists a positive constant C = C(R,T) such that

(2.10) 1 fe (@)l 20,7111 (— o)) < C-
PROOF. Here again we omit the lower index € and the upper index A from the notation.
Let R > 0 and ¢ € C§°(—R, R). We have that
R
(o) / felulo 6@ de = - [ L@ @) ds
-R

which imply that

0= (e ara)” ([ cwra)”

R 1/2
< ( / |fe<u><x,t>|2dx) 13—y
“R
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for all t € [0,T]. Hence

R 1/2
o) Ol ) < ( | |f5<u><x,t>|2dx)

for all ¢ € [0,T] and consequently by (H.)(ii) and Lemma 2.1

T
/0 16O e < [ /Q NG

for some positive constant C' = C(R,T). =
LEMMA 2.5. There ezists a positive constant C = C(R,T) such that
(2.11) e (ud)allL2((—r,R)x (0,7)) < CVA.

ProOF. For simplicity we write u and g instead of u and uo. respectively. Let R > 0
and 1 be a smooth function such that

1 if|z| <R
¥(z) = {0 if |z > R+ 1.
We multiply the differential equation in Problem (P2) by ¢, (u)y? and write the resulting
equality as
1
q)s(u)t¢2 + ‘Pe(u)zwz = X@s(u)mmws(u)va

where we have set ®.(u) = [ ¢-(s)ds and U (u) = [’ fL(s)pc(s)ds. Integrating by
parts on the domain Qri17=(—R—1,R+1) x (0,T) gives

R+1
/ (B2 (ulz, T)) — . (uo ()02 (x) dir — / / W, (u) (1)’

—(R+1) QRr+1,T

_ _i//QMT(%(u)I)W - i//QRM e (w)ape (W),

Applying the Cauchy-Schwarz inequality to the second term of the right-hand side of the
equality above gives

/R+1 (P (u(x, T)) = @(uo))*(v) dar — / / T (0) ()

—(R+1) QRr+1,T

<o [ e[ wrer

Therefore, in view of (H.) and Lemma 2.1

/[ ewarsa

where the positive constant Cy, = C1(R,T) does not depend on € and X. »
COROLLARY 2.6.

(2.12) ||%05(U?)mHL2((O,T);H*1(—R,R)) < CVA.
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PROOF. As in the proof of Lemma 2.5, we omit the lower index ¢ and the upper index
A from the notation. Let R > 0, ( € C§°(—R, R) and ¢ € [0,T]; we have that

R R
(e (Waa(+ 1), C) = / e (W)n (o 000 do = = / () (.0 (@) de

(/_z |905(U)z(:v,t)2dx>1/2(/_1;|€_,(x)|2dm>1/2

R 1/2
< ([ leetwntenl o) il e

so that

IN

|<§05(u)xz('7 t)7 C>|

for all t € [0,T]. Hence

R 1/2
|¢E<u>x<x,t>|2dx)
R

for all ¢ € [0,T]. In view of Lemma 2.5 we obtain

T
/ 19 () s D2 gy < / / e () < O
0 QR,T

for some positive constant C = C(R,T). u

e ()aa s Ol -1 ) < ( /

We end this section with the following compactness result.
LEMMA 2.7. Let R > 0. The set {u2}.~0.x>1 is precompact in C([0,T]; L?(—R, R)).
PROOF. It follows from (2.2) and (2.11) that

(2.13) 1)l Lo 0.y (— Ry < C(R,T),
while by (2.10), (2.12) and the differential equation of (P2),
(2.14) ”(ug)t||L2((0,T);H—1(—R,R)) <C(R,T)

for some positive constant C(R,T'). The result then follows from the embeddings
WY (-R,R) c L>(-R,R) c H }(—R,R),

the compactness of the embedding W11 (—R, R) C L?(—R, R), and a compactness result
due to Simon [Si] (Corollary 4, p. 85). m

3. Existence and asymptotic behaviour of limit entropy solutions of Pro-
blem (P}) as A — oo

DEFINITION 3.1. We say that a function v is an entropy solution of Problem (P*) if

it satisfies Definition 1.1 with ¢ replaced by (1/A)¢. A limit entropy solution of Problem
(P) is then defined as in Definition 1.2.

We begin with the following lemma.

LEMMA 3.2. Let 0 < ¢ < 1 and A > 1 be fired and let u) be the classical solution of
Problem (P2). Then u? satisfies the inequality
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(31) D — M+ - (s — R)(L(2) — L (8)
2
< § s (siEn(d — (e (ud) — o2 ()

in D'(Q) for all k € R.

PROOF. As in the proofs above we write u instead of u2. Let k € R. Multiplying the
differential equation in Problem (P2) by Ss(u — k) gives

(3.2) e Ss(u— k) + fo(u)aSs(u — k) = i%(u)msg(u k)
in Q. Set y
F(w) = /k F1()S5(s — k) ds.

Then

(3.3) upSs(u — k) = (Ms(u — k))s,

(3.4) fe(u)eS5(u — k) = (F2(u))a,

and

(3.5) ©e(U)22Ss(u — k) = (@c(u)2Ss(u — k) — (0 () S5(u — k)uy

< (pe(u)2Ss(u — k),
since (e (u)zS5(u — k)ug > 0. Set

Giw) = [ L(s)Ss(s — ) ds.
k
Then (G%(u))zz = (e(uw)2Ss(u — k)), and therefore combining (3.2)-(3.5) we obtain
(Ms(u— k)¢ + (F2 (u)a < (G2(1))aa-

Letting § — 0 gives

0 0

Silu— k4 R < 5 556w mD(Q),

1 0
A Ox?
where we use the notations

F.(w) = /kw fl(s)sign(s — k)ds, Ge(w)= /kw ©L(s)sign(s — k) ds.

ve(w) — (k) ifk<w

0 if k=w.
Thus G.(w) = sign(w — k) (¢ (w) — @< (k)). Similarly F.(w) = sign(w — k) (fe(w) — fe(k)).
Therefore u satisfies (3.1). m

we(k) —pe(w) ifk>w
G (w) :{

Next we prove the existence of a limit entropy solution of Problem (P*) with properties
which we use later on.

THEOREM 3.3. Let A > 1 be fized and let {ud}o<c<1 be the classical solutions of
Problems (P2). There exists a sequence {,} and a function v € L>(Q) such that

u) — v’ in C([0,T);L*(~R,R)) as &, — 0,

En
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for all R and T > 0. The function u’ is an entropy solution of Problem (P) and satisfies
the following estimates:

(i) essinfug < u* < esssupug  a.e. in Q;

(ii) lo(uM)all L2 (= r,Ryx (0,1)) < CVA;
(iii) TV (u?(-,t)) < TV(ug) for a.e. t € (0,00);

(iv) 1 20,7y (- r,Ry) < C
where the positive constant C' only depends on R and T'.

PROOF. Let A > 1. We deduce from Lemma 2.7 that there exists a sequence ,, — 0
and a function u* € C([0,00); L2 .(R)) such that as &, — 0

loc

(3.6) u) — vt in C([0,T]; L*(~R, R)) and a.e. in Q,

for all R > 0 and all T' > 0. The assertions (i)-(iv) are consequences of (2.1), (2.2), (2.11),
and (2.14), and of the lower semicontinuity of total variation ([EG], [GR]). Observe that
by (He) (ii) and (3.6) as e, — 0,

(3.7 sign(u? — k) — sign(u — k)
ae.in QN {(x,t): uv* —k #0} and

(3-8) feu(ud)) = fe, (k) — f(u?) = f(K),
(3.9) e, (12,) = ¢z, (k) = o(u) — (k)

a.e. in Q. Then, letting €,, tend to zero in an integrated form of inequality (3.1) and using
(2.1), (3.7) - (3.9) and Lebesgue’s dominated convergence theorem, one deduces that u*
satisfies the inequality

St = k] + - (sign(e — () — F(8)
2
< il — B(p() ~ (1) in D'(Q)

for all constants k& € R. Furthermore it follows from (H.)(v) and from (3.6) that u’
satisfies the initial condition u*(0) = ug. Thus u* is a limit entropy solution of Pro-
blem (P*). m

COROLLARY 3.4. Let A\ > 1 and let u* be a limit entropy solution of Problem (P*).
Then the statements (i) - (iv) of Theorem 8.3 hold for u*.

PROOF. This is an immediate consequence of the definition of the limit entropy solu-
tion of Problem (P*) and of Theorem 3.3. m

Before proving Theorem 1.5 we give the definition of an entropy solution of Pro-
blem (P°).

DEFINITION 3.5. A function u € L>(Q) N C([0,00); L .(R)) is an entropy solution of
Problem (P> ) if it satisfies the entropy inequality
0 0
. —|u— — (si - - <
(3.10) gt = Kl + - (sign(u — k)(f(u) = £(k))) <0

in D'(Q) for all constants k € R, together with the initial condition u(0) = uo.
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Proof of Theorem 1.5. Let A > 1, R > 0, T > 0 and let «* be a limit entropy solution
of Problem (P*). We deduce from Corollary 3.4, Theorem 3.3 (iii), (iv), the embeddings
BV(-R,R) C L*(-R,R) ¢ H '(—R, R),

the compactness of the imbedding
BV(-R,R) C L*(—R, R)

which we shall prove in the Appendix and Corollary 4 p. 85 of [Si] that the set {u}xs1
is precompact in C([0,T]; L?(—R, R)). Hence there exists a sequence )\, — oo and a
function u* € C([0,00); L (R)) such that for all R > 0 and T > 0

loc
(3.11) ut — u™®

in C([0,T); L*(—R, R)) and a.e. in Qg 1 as n — oc. It then follows from Theorem 3.3 and
Corollary 3.4 that u®> € L>(Q) N L*°((0,00); BV(R)). Finally, similarly as it has been
done in the proof of Theorem 3.3 one can prove that u° satisfies the entropy inequality
(3.10). Thus u is an entropy solution of Problem (P*°).

Now as a consequence of (3.11) and the uniqueness of the entropy solution of Problem
(P>°) ([K], [dB]) we obtain that for all R > 0 and 7" > 0

u* — u>® in C([0,T); L>(—R,R)) as A — oo.
This completes the proof of Theorem 1.5. m

4. Appendix. We shall prove the following lemma.

LEMMA A.1. Let R > 0. Then for any p > 1, BV(—R, R) is compactly embedded in
L”(—R, R).

PROOF. Since this result is well known for p = 1 we prove it for p > 1. Let {g,,}22; C
BV (—R, R) be such that
(A1) lgnllBv(—=r,R) = llgnllr (=r,R) + TV (—R,R)(gn) < M

for all n > 1 and for some constant M > 0. We first prove that {g,}>>; is uniformly
bounded in L*°(—R, R) (the proof is almost a facsimile of the proof of Claim 3, p. 218 in
[EG]). Fix n > 1 and choose {gn;}32, C BV(—R, R) N C*(—R, R) such that as j — oo,

gnj — gn in L'(—R,R) and a.e. in (—R, R)
and

R
/ 18l do = TV (a0

For each y, z € (—R, R) we have that
z
30i(2) = 0ns() + [ 1) da.
y

Averaging with respect to y € (—R, R) gives

R R
0@ < 1/@R) [ lg@ldy+ [ gyl ds
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and hence for j large enough,

l9nillLe(—r,r) < Cllgn;llBV(-R,R),
where the constant C' does not depend on n and j. Taking the limit j — oo yields
(A.2) lgnllLo(~r,R) < CM.

Now, by (A.1), (A.2) and the compactness theorem in [EG] p. 176, there exist a sequence
ng, — oo and a function g € L>®(—R, R) such that as k — oo,

gn, — g in LY(=R,R) and a.e. in (—R, R).

Since

R R R
/ |gn, — g|P dz < sup |gn, — g\p‘l/ \Gn, — gldz < (QCM)’H/ |9n, — gl dz,
R (—R,R) —R R

the result follows. m
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