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Abstract. This work is concerned with the proof of L, — L, decay estimates for solutions of
the Cauchy problem for the Klein-Gordon type equation uy — A2 (t)b2 (t)(Au— m2u) = 0. The

coefficient consists of an increasing smooth function A and an oscillating smooth and bounded

2

function b which are uniformly separated from zero. Moreover, m*“ is a positive constant. We

study under which assumptions for A and b one can expect as an essential part of the decay rate

the classical Klein-Gordon decay rate %(% - %)

1. Introduction. To prove global existence results for the solutions of the Cauchy
problem for nonlinear wave equations so-called L, — L, decay estimates for the solutions
of the linear wave equation play an essential role [7],[8],[11]. That is the following estimate
for the solution u = u(t, x) of the Cauchy problem

Utt — Au = Oa U(O,LE) = 07 Ut(o,llf) = ul(x)’

where u; = uq(z) belongs to C§°(R™) (see [16]): there exist constants C and M depending
on p and n such that

_n—-1¢1_ 1
e (t, o, @y + Vet Mo, @y <CA+E) 2 ")||U1||W34(Rn)7 (1.1)
where 1 <p<2and1/p+1/q=1.
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In a series of papers [12],[13],[14],[15] the authors considered the question if a similar
estimate holds for the solution of a strictly hyperbolic Cauchy problem, where the strictly
hyperbolic operator is homogeneous, of second order and has time-dependent coefficients.
To explain the results let us choose the Cauchy problem for the model equation

ug — N2(O)B2() Au =0, u(ty,z) = uo(x), usto, r) = us (), (1.2)

where A = \(¢) is an increasing function (improving influence on L, — L, decay estimates)
and b = b(t) is a 1-periodic, non-constant, smooth, and positive function (deteriorating
influence on L, — L, decay estimates). There exists an interesting action and reaction
between both influences. If the growth of A dominates the oscillating part, then we can
prove inequalities similar to (1.1). In opposite to this, if the oscillating part dominates
the growth, then we can only prove uniformly for all smooth data with compact support
estimates which are very near to the energy inequality for the solution of (1.2) which is
obtained by Gronwall’s inequality.

EXAMPLE 1.1. Let us consider the Cauchy problem
ugy — exp(2t*)b2(t) Au =0, u(ty, ) = uo(x), us(to, ) = ui(x),
where b = b(t) is a 1-periodic, non-constant, smooth and positive function. Then we have:
e in general no L, — L, decay estimates if o < 1/2,
e L, — L, decay estimates if o > 1/2,

e the critical case: L, — L, decay estimates if & = 1/2 and the spatial dimension n is
large enough.

Now let us turn to the Cauchy problem for the Klein-Gordon equation (wave equation
with a non-vanishing constant mass m)

gy — Au+m?u =0, u(0,z) =0, u(0,2) = uy (). (1.3)

The term m?u guarantees a %(1% - %) higher decay-rate in (1.1). We can explain this
improvement as follows. One can use the representation of the solution of (1.3) by the
aid of Fourier multipliers including the mass in the phase functions (see [5]). After partial

Fourier transformation we obtain (v = @)
v + (J€]7 + m?)v =0, v(0,z) =0, v,(0,x) = 1.
For the solution v = v(t,£) we have the explicit representation

v =(t,€) = - (e‘““mal(f) _ itEm ﬂ1(§)> :

uw=u(tx) = L o it{E)m () eit(QmL(f)
()= (e T )

respectively, where (£),, := (|¢|> +m?)!/2. For the Fourier multiplier

i)

we get the L, — L, decay estimate
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e (ts o, @ny + IVult, )L,y < C(+ t)f%(%ﬁ)\|ul||wy(ﬂen)> (1.4)
where 1 <p <2 1/p+1/qg=1and M is suitably chosen.
The goal of the present paper is to study L, — L, decay estimates for the solutions of
the Cauchy problem for Klein-Gordon type equations with time-dependent coefficients.
More precisely, we will consider the Cauchy problem

gy — NV () A u+ N2 ()mPu = 0, u(0, ) = up(x), us(0,2) = uy () (1.5)

with C*°-data having compact support while m? is positive and constant. On the one

hand we are interested in the interplay oscillations via growth, that is, the influence of

A = A(t) and b = b(t). Do we have a similar example to Example 1.1. On the other hand
n(l 1

we are interested if the mass term guarantees the better decay rate (5(5 - 5)).

We will call an equation of Klein-Gordon type if in the decay rate of the solution

to (1.5) there appears the term 2(% — 1) (see (1.4)). Thus we can formulate the main

) 2 p ¢
question:

Under which conditions for A\ = A(t) and b = b(t) is the differential equation from
(1.5) of Klein-Gordon type?

The main results of this paper lead to the following example (compare with Exam-
ple 1.1).

ExaMPLE 1.2. Let us consider the Cauchy problem
ugy — exp(2t*)b% (1) (Au — m?u) = 0, u(0,z) = ug(z), us(0,2) = uy (),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function and m? is a positive
constant. Then we have:

e in general no L, — L, decay estimates if o <0,
e L, — L, decay estimates if a > 0 (see Example 2.2).

Before we begin to derive L, — L, decay estimates for the solutions of the Cauchy
problem (1.5) we formulate a result which shows that oscillations in the coefficients may
destroy L, — L, decay estimates. The statement of this theorem can be proved as in [12].

THEOREM 1.1. Consider the Cauchy problem
wgy — b2(t) A u+m?b? () u = 0, u(0,2) = ug(x), u(0,z) = uy (),

where b = b(t) defined on R is a 1-periodic, non-constant, smooth, and positive function.
Then for every given b(t) there is positive constant m such that there are no constants
q,p,C, L, and a nonnegative function f defined on N such that for every initial data
ug,u1 € C§°(R™) the estimate

e (s )y ey + Vulks Y p, @y < CFE)(luolly e @y + [luallwz @)
is fulfilled for all k € N while f(k) — oo, In f(k) = o(k) as k — oc.

2. Klein-Gordon type model equations. We have in mind the functions A =
A(t) = exp(t*) and b = b(t) from Example 1.1, o € (0,1]. Then b = b(t) satisfies for
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large ¢
IDEb(H)] < Cr (ABAD) D), k=12, (2.1)

where § < 1 while A(t) := fot A(7)dr. We will consider as a model Cauchy problem of
Klein-Gordon type the following one:

uge — A2 (V) (Au — m*u) = 0, u(0,z) = uo(z), us(0,2) = uy(z). (2.2)
Then we make the assumptions
(A1): the functions b = b(t) and A = A(t) belong to C*°(]0, 00));
(A2): the functions b = b(t) and A = A(t) are bounded from below by a positive constant;
(A3): there exist positive constants dj, k € N, such that for ¢t € (0, 00)

A\
N(t) >0, |DFX)| < dy (A((t))> A1), t >0, (2.3)
where A(t) := fot A(7)dT;
(A4): the function b = b(t) is not necessarily periodic, there exist positive constants cy,
k € Ng, and a nonnegative constant 1/2 < 8 < 1 such that for ¢ € (0, 00)

co <BA(t) <1, [DEB(E)| < o ABA®) D), k> 1,

Under these assumptions we prove L, — L, decay estimates for the solutions to (2.2).
THEOREM 2.1. Assume that the conditions (A1) to (A4) are satisfied, in (A4) we
suppose B € (1/2,1], for the Cauchy problem
ugy — NV () (Au — mPu) = 0, u(0,z) = ug(x), u(0,2) = uy(x).
2

Here m~ is a positive constant and ug, u1 are compactly supported smooth data. Then we

get with L = [n(% - %)} +1,1<p<2, % + % =1, the L, — L4 estimate

lue(t, )z, @) + ANV ult, )L, @y
,ﬁ(i,l)
<OV A+A®) =7 ([luollyr+r @y + luallwe wey)-
THEOREM 2.2. Assume that the conditions (A1) to (A4) are satisfied, in (A4) we
suppose 3 = 1/2, for the Cauchy problem
uge — A (V) (Au — m*u) = 0, u(0,z) = uo(z), us(0,2) = uy(z).
Then we get with L = [n(% - %)] +1,1<p<2, % + % =1, the L, — L, estimate
e (t, M, @y + AONVult, )z, @&
0,0
Tiii(p q)
< CVA)(1+ A1) ’ (lwollyy 241 @y + I llwz @)
The constant Cy g is introduced in Corollary 5.1. It depends on the behaviour of A and 3
and its first two derivatives on the interval [0,00).

1

REMARK 2.1. If in Theorem 2.2 the spatial dimension n is large enough, namely
n > 2Cy 0/m, then there exist p and ¢ such that L, — L, decay estimates hold for ut/ﬁ
and for v/ AVu. In opposite to the case § = 1/2 we obtain in the case 3 € (1/2, 1] without
restrictions L, — L, decay estimates for u;/v/A and for v AVu.
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ExaMPLE 2.1. Let us consider the Cauchy problem
uge — (14 6)202(t) (Au — m?u) = 0, u(0,2) = ug(z), us(0,2) = up(z),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function and m? is a positive
constant. Then we have:

e L, — L, decay estimates if [ > 1,
e the critical case: L, — L, decay estimates if [ = 1 and the spatial dimension n is
large enough.

EXAMPLE 2.2. Let us consider the Cauchy problem
ugy — exp(2t*)b2 (1) (Au — m?u) = 0, u(0,2) = ug(z), us(0,2) = uy (),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function and m? is a positive
constant. Then we have:

e in general no L, — L, decay estimates if oo <0,
e L, — L, decay estimates if o > 0.

REMARK 2.2. In a forthcoming paper we will study Example 2.1 for [ < 1. We expect
that in general there are no L, — L, decay estimates for the solutions of

ugy — (146202 (t) (Au — m?u) = 0, u(0,2) = ug(z), us(0,2) = uy ()
(compare Examples 1.1 and 2.1).

3. Tools of the approach

3.1. Zones. We split the set [0,00) x (R™\ {0}) in subdomains which will be called
zones. To do this we define for £ € R™ the function ¢ = ¢y (t(e) = t({({)m)) by

At (€)m = N, (3.1)

where (3 is from assumption (A4) while N > 1 is a positive constant to be determined
later. We define the pseudodifferential zone

Zpa(N) = {(t,£) € [0,00) x R"\ {0} :  0<t <t} (3.2)
and the hyperbolic zone
Znyp(N) == {(t,€) € ]0,00) x R" \ {0} : ¢y < t}. (3.3)
It is evident that if N7 < N5 then Zhyp(NQ) C Zhyp(Nl) while Zpd(Nl) C Zpd(Ng).
LEMMA 3.1. Define the function t = t(p) as a solution to A(t))°(p)m = N. Then

e A)
" Altp)
for all p > 0 and k > 0, where the constants Cy, are independent of N.

[DEt ()| < Ci(p)

(3.4)

PrOOF. We have
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Thus we get the estimate
dtp) 1 Aly) )
dp m )\(t<p>)
By induction we can prove the statement for all £ > 0. The constants C}, are independent
of N. m

< Ci(p)

3.2. Classes of symbols. For the further considerations we need suitable classes of
symbols which are defined only in the hyperbolic zone Zp,, (V).

DEFINITION 3.1. For real numbers r1,72,73; 8 € (0,1]; we denote by Sy, g{r1,r2,73}

the set of all symbols a = a(t,§) € C°°(Zpy,(N)) satisfying
IDLDZa(t, )] < Col€) AW (ME)(A®) ) (3.5)

for all (¢t,€) € Zpyp(N), all multi-indices o and all [ with constants C,; independent
of N.

Let us summarize some simple rules of the symbolic calculus.

1. Smp{ri,ra,rs} C Smp{ri + k,ra + k,rs — k} for k > 0;

2. if a(t,€) € Smp{ri,re,r3} and b(t, &) € Smp{ki, ke, ks}, then a(t,£)b(t,€) €

Sm.p{r1 + k1,72 + ko, rs + ks};
3. if a(t,&) € S p{r1,re,rs}, then Dya(t,§) € Spm p{ri, 2,3+ 1};
4. if a(t,§) € Sm,p{r1,72,73}, then D¢a(t,§) € Spm p{r1 — |, 72,73}

ra+1

4. Consideration in the pseudodifferential zone Z,;(N). Let us consider (2.2).
After partial Fourier transformation we get (keep the same notation for the Fourier
transforms)

1
Dt2u - )‘2(t)b2(t)<§>72nu =0, u(0,€) = uo(§), D:u(0,§) = ;ul(g)
Setting U = (U, Uz)T := (A(£){(€)mu, Dyu)T the last equation can be transformed to the

system of first order
0 A m D) (1 0
DU — U - U=0.
t < A (£)(E)m 0 At) Lo 0
We are interested in the fundamental solution to the Cauchy problem for that system,
this is the matrix-valued solution U = U(t, s,£) to the Cauchy problem

0 A ), DAD (10N,
it ( A () (€)m 0 )L{ Y0 ( 0 0 )u =0 (4.1)
U(s,s,&) =1 (identity matrix). (4.2)

Using the matrizant we obtain for U(t, s, &) the explicit representation

o) t ty tr—1
Ult,s,6) =T + At ) [ Alts,€)... Alty, €)dty, . .. dt1,

where

A= ( AR o ) + D) ( - )
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In contrast to the considerations for the wave equations with m = 0 we can make use of
the advantage that

tiey <ty =i tm,N (4.3)
uniformly for all £ € R™ \ {0}, where we take account of the monotonicity of A(t). The
function A = A(t) is positive. This helps to estimate the norm of the second matrix by a

constant maybe depending on N. The norm of the integral over the first matrix can be
estimated in Z,q(N) by

¢
C [ M) €mdr < CAlti)(€m < CN(A(t))' ™ < ON(A(tmx))!
where we used (4.3). Consequently, ||U(t, s, &)|| < Co(N) for (¢,€) € Zpa(N).
In the same way we estimate HD;?DE‘Z/I(t7 $,8)|
PROPOSITION 4.1. For every k and « the following estimate holds:

1D DEU(E,0,) ]| < Con,n (€)M A (E) )"
for all (t,§) € Z,q(N). The constants Cy i, N depend on N.

5. Consideration in the hyperbolic zone Z,,(N)

5.1. Diagonalization modulo Sy, g{—M,—M, M +1}. We carry out a diagonalization
process to get estimates for the solution of (4.1), (4.2).
Let us define the matrices

1 11 1 [ (b -1
M) = A(t)b(t)(‘b(t) i) MO=3\55 (o 1) 6D

Substituting & = M~V some calculations transform (4.1) into the first-order system

DtV—)\(t)b(t)<§>m<_l 0>V—Dt)\(t)<l O>V—1W<O 1>v:0.

0 1 A(t) \0 1 2 A(®)b(t) 10
We denote
n(6,€) = ~XMOUNEn +
(1€)== AOUEN €D + Doy
With some positive number ¢ we have
|72(t, &) = 71(E,€)] = cA() (E)m- (5-2)

The matrix

o (1)

belongs to Sy, g{1,1,0}. But the matrix
Dy (A(£)b(t))
A()b(t)
belongs even to Sy, 3{0,0,1}. Thus we got the diagonalization mod S,, 3{0,0,1} in the
form
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DY —D(t,£)V + B(t,£)V =0, (5.3)

where

(&) 0 __1D(A®DB(®) (0 1
D(m"( 0 Tg(t,g)>’ B8 = =3 i (1 0)'

We will carry out further steps of perfect diagonalization, namely diagonalization
modulo Sy, g{—M,—M, M + 1} for some given nonnegative integer M. The next propo-
sition shows that this is possible for every nonnegative integer M.

PROPOSITION 5.1. For a monnegative integer M there exist matriz-valued functions
Ny (t,€) € 8,,5{0,0,0}, Far(t, &) € S p{—1,—-1,2}, Rp(t, &) € S p{—M,—M, M+1}
such that the following operator-valued identity holds in Zpy,(N):

where the matriz Fiy is diagonal while the matriz Ny € Sy, 3{0,0,0} is invertible and its
inverse matrix Nﬂ}l (t,€) € Sin,3{0,0,0} too, provided that the parameter N is sufficiently
large.

PROOF. We look for Nj; = Ny (t,€) and Fiy = Far(t,€), M > 1, having the repre-
sentations

M M-1
NM(t’g):ZN(T)(tvg)’ FM(t7£): ZF(T)(t,E),
r=0 r=0

where N(© .= 1, B .= B, F(") .= diag (B™), FO)(¢,¢) =0,
( 0 BYY/(ri — m))
B3 /(r2 = 71) 0 ’
r+1 r+1 r
Bt .— (D, -D+ B)(Z N(H)) — (ZN(N)) (Dt —-D+ Z F(u))
n=0 n=0 pn=1

for r =0,1,..., M — 1. Using (5.1) we have N € S, 3{—1,—1,1}. For B") we obtain
the relation

N+ =

BY =B+ [NW D]+ DNV 4+ BND,

The sum of the first two matrices vanishes, while the last two summands belong to
Sm.p{—1,—1,2} due to the rules of the symbolic calculus from Subsection 3.2. Hence
BW e S, 5{-1,-1,2}.

Supposing B") e S g{—r, —r, 7+ 1} we apply the principle of induction to show the
statement for B"+1) . On the one hand we have from the construction

N e 8 s{—(r+1),—(r+1),r+1} and F© e S, s{—r,—rr+1}.
On the other hand,

B(r+1)
r r+1
= BU) 4 [NUHD, D] - PO 4 DNCHD L BNOHD L NCHD § R0 (ZN("))F(”).
pn=0 pn=0



KLEIN-GORDON TYPE DECAY 197

Moreover, we have B(") + [N+ D] — F(") = 0. The sum of the other terms and
consequently B+ belong to Sy, s{—(r + 1), —(r + 1),r + 2}.
Thus we have shown N € S,, s{—r, —r,7}, that is with Definition 3.3.1

VOO < Cr () <O (%) + O ZupN), 7 =000t

This implies

M M 1 r
ISvoee] < So (L)
r=1 r=1

where C, is independent of N. A sufficiently large N provides |[Npy — I|| < 1/2in
Znyp(N)and consequently the statements concerning Np; and N J\_Jl' Finally let us de-
fine Ry := —NI\_/[lB(M). This matrix belongs obviously to Sy, g{—M,—M,M + 1}. The
proposition is proved. =

5.2. Estimates for the fundamental solution. Let us consider the system (D; — D +
Fry — Ry )W = 0. Let Ey = Es(t,r,€) be the matrix-valued function

o | (z/t {A(s)b(s)@m + 3((5))} ds) 0
- 0 e (i [ Proneen + 135} as)
Hence
exp (=i [ M) Em ds 0
Batinnt) = i((f:)) p < /o exp <i)/rt)\(s)b(s)(§>m ds) >

Let us define the matrix-valued function
Ru(t,r,§) = —Fu(t, &) + Ea(r, t,§) Ry (t, ) Ea(t, 1, §).

LEMMA 5.1. The matriz-valued function Ry = Ras(t, r, &) satisfies for every I and «
the estimate

10,08 (Rar (t,7,€) + Far () | < Cara M) (E)m) A1)
X M) (AE) 7 (AP (#)(Ehm) (5.6)
with constants Cps 1, independent of N.

COROLLARY 5.1. The matriz-valued function Ry (t,7,€) satisfies for every given 1
and o, |a| < B(M —1), in Zp,,(N) the estimate

A(t)

10008 R (1,7 1| < Crra NI (€0 oy

with constants Cyy; independent of N.
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PrOOF. Applying Proposition 5.1 and Lemma 5.1 gives
10108 Raaa (8,7, )| < 110,08 (Rona (¢, €) + Fau(£,€)) || + Hala?FM(t 3l
< Cara(ABE)m) A®)IA®) (A1) (AP () (€)m)

Lolal A 1 :
+ a7 (Aﬁ<t><5>m) '

In Zy,,(N) we can estimate for |a| < (M —1) a part of the first term of the right-hand
side in the following way:

N . ) M-1
= 0w Sz @y, AOEm) (Af’(t)<£>m>

M—1—|al/|8]
—le .
<§>m A25(t) Em <A’8(t)<§>m>

In the last inequality we used the definition of Zj,,(N), especially N > 1. This definition
helps to estimate the second term of the right-hand side, too. The corollary is proved. m

With the aid of R,; we define the matrix-valued function

Qu(t,te), 5)
ti_1
ZJ/ RM tl, f)dtl RM(t27t(£>,€)dt2... RM(tj,t<§>,£)dtj
te) ey e

for ¢ Z t(£>.

LEMMA 5.2. The matriz-valued function Qn(t,te,§) satisfies for all o, |af <
B(M —1), g € (1/2,1], the estimates

108 Quu (1), )| < Car(€)y (5.7)
with a constant Cyy independent of N.

SKETCH OF PROOF. Using Corollary 5.1 for || = 0 and | = 0 we obtain

1Qar(t,teey, )l < exp </ C[)O/\Qﬁ)(\%d8>
ey "

LAY ] A”ﬁ(tw))
Y128 (&)m Y128 (E)m

(
< exp (Cougs o)
(
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This proves the statement for « =0. Now let us form || derivatives, |a| <B(M —1). Then

O Qum(t ey, &)
0 . t tl tj71
:Z@'Jag</ Rar(tr, teey, €) R (to, ey, €) ... Rt teey, €) dtj...dt1>.
j=1 te) te) te)

Straightforward calculations lead to the statement for |a| < S(M —1). But the main point
is that Lemma 3.1 and Corollary 5.1 allow to follow the lines of the proof of Lemmas
3.2.15 and 3.2.16 from [15]. m

Now let us turn to the case § = 1/2. Without new difficulties one can prove the next
result.

LEMMA 5.3. The matriz-valued function Qu(t,t),§) satisfies for all o, |a] <
B(M —1), p=1/2, the estimates
108 Qur (t,te), E)I| < Car(A(2)) 00/ ™ (€)1 (5-8)
with a constant Cys independent of N, where Cy o is the constant from Corollary 5.1.

The matrix-valued function W(t,t),&) = Ea(t,tiey, §)(I + Qu(t, ey, §)) solves the
Cauchy problem
(Dt =D+ Far — Ry )WV =0, W(tey, tey, &) = 1, t > tey.

Applying the transformations which bring the system for the fundamental solution to the
above one, we obtain that

U(t,0,¢)
=M (t)Nar(t, &) Ea(t, ey, )L + Quelt, tiey, €)) Nar(tiey, &) M (te) U (t ey, 0,€)

for ¢ > t(¢).

To es<ti>mate the derivatives of U(t,0,£) with respect to £ we have to estimate all fac-
tors. We get estimates for Na(t, ), and Ny (), £)~! from Proposition 5.1 and Lemma
3.1. Using Lemma 3.1 and condition (A4) it follows that M () belongs to Sy, 5{0,0,0}.
From Lemma 5.2 we have estimates for Qus(, %), §). Finally, derivatives of U(t ¢y, to, &)
can be estimated by Proposition 4.1. Hence it remains to estimate

EQ (t, t(§> 9 5) - E2 (t, 0, g)EQ(Oa t(f) ) E)
For E5(0, t<§>,§) we have the explicit representation
' gy
o (e (l@m /O )\(s)b(s)ds) 0
teey
Alte) 0 o (~it0m [ Mopts)d )
0

A careful calculation shows that [0 E2(0,t ), §)[| < Ca (f};zla‘ . Summarizing we obtain
the next results.

EZ(Oa t(f) ’ f) =

PROPOSITION 5.2. Let us suppose that the assumptions (A1) to (A4) are satisfied with
B € (1/2,1] in (A4). Then the fundamental solution U = U(t,0,E) can be represented as
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follows:

U(t,0,¢)
U (1,0,6) exp ( ~ile)n | t A(s)b(s)ds) T UH(10,6) exp <i<£>m / t A(s)b(s)ds),

where the matriz-valued amplitudes U™ and U™ satisfy for |a| < B(M — 1) the estimates

1O£U (£, 0,9l < Car v/ ADEm ™, (1,6) € Znyp(N).
PROPOSITION 5.3. Let us suppose that the assumptions (A1) to (A4) are satisfied

with 8 =1/2 in (A4). Then the fundamental solution U = U(t,0,£) can be represented
as follows:

U(t,0,¢)
=U(t,0,&) exp < —i{&)m /Ot )\(s)b(s)ds) + UT(t,0,8) exp (i(f)m /Ot /\(s)b(s)ds>,

where the matriz-valued amplitudes U~ and U™ satisfy for |a] < B(M — 1) the estimates
[08U= (2,0, < Caur AW (A®) /™)1, (£,€) € Znyp(N),

where Cy o is the constant from Corollary 5.1.

6. Solutions to the Cauchy problems. Summarizing all the calculations of the
previous sections we arrive at the following results.

THEOREM 6.1. Under the assumptions (A1) to (A4), we suppose 5 € (1/2,1] in (A4),
let us consider the Cauchy problem

ug + N0 () () ru =0, u(0,€) =uo(&), ue(0,8) =uy(€).

Then the solution can be written as

u(t.8) = a5 (1.0. 9@ o ( 1 [ AGs) €D
+ o t0.uale e (i [ AGs)Ems)
+ a0, ew (i [ A6 Ends )
+ a0, 0m© e (i [ A Onds).

where we have
1
:t < I
|a0 (ta07€)| = C)\(t)7 (t,f) € ZPd(N)a

N 1
|a1 (t,O,f)| < Cm
1

|a?a§(t70’§)| S CMW<£>;L|Q|7 (tag) € Zhyp(N)7
1 —(|a
|8§aa1i(t’07€>| < CMW<£>M(| |+1)7 (ta§> € ZhyP(N)a

5 (tvf) € Zpd(N)a
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for all a, |a| < B(M —1). Moreover, we obtain

w(t,6) = b5 1.0, a(€)exp (i [ A €l )
#0500, 9u@ e (i [ X))
# 00, 9@ (i [ AG6)Emds)
+ 0 0.9u @ e ([ A€ ).

where we have

b3 (,0,€)] < C(E)m, (£.€) € Zpa(N),

b7 (£,0,8)] < C, (t,€) € Zpa(N),
10865 (£,0,6)] < Car VAR 141, (£,€) € Ziyp(N),
026 (£,0,6)] < Car v/ A, (£,6) € Znyp(N),

for all a, || < B(M —1).
THEOREM 6.2. Under the assumptions (A1) to (A4), we suppose 8 = 1/2 in (A4),
let us consider the Cauchy problem
uge + A2 (D (1)(€)u =0, u(0,8) = uo(€), u(0,€) = ur(§).
Then the solution u = u(t,§) and its derivative uy = ui(t,£) possess the same representa-

tions as in the previous theorem. The amplitudes satisfy the same estimates if we replace
Cur by Car(A(2))C00/™  where Cy g is the constant from Corollary 5.1.

7. Littman-type lemmas. To derive L, — L, decay estimates for Fourier multipliers
in the next section we need the following two Littman-type lemmas.

PROPOSITION 7.1. Let us suppose that the function a = a(t,&) has uniformly for all
t € [tm,N,00) (we choose ty N from (4.3)) a support (with respect to &) contained in a
compact set I C R™ . Moreover, assume that

02a(t,©)l < CLE) for ol Sn+1, () € [tm,n,00) X K.
Then
|FL O SO o m <CADE forall L€ [tmy,00),  (T.1)
where the constant C' depends on sup{|{| : £ € K} only.
PROOF. We have to estimate

/ i€ m S As)b(s)ds alt, €)de

sup
zeR”

for all t € [ty n,00). There are two unbounded parameters, the scalar ¢ (and, conse-
quently, the function 7 = 7( fo s)ds is unbounded) and the vector € R™ in
the last integral. We are gomg to get an estlmate which is independent of z € R™ and

te [tmyN,OO).
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Let us denote ®(¢,z,€) := z + ﬁr. Then there exist constants J; and d2 such that
|D(t,x,&)| > do7 for |z| > ;7. With

iz EilE)m [ AS)b(s)ds  iz-E+il€)m [ A(s)b(s)ds R 0
pereand = A L= e Y e

we obtain for an arbitrary N < n + 1 the inequality

/ ARSI fo )‘(S)b(s)dsa(t,g)dﬁl < C’NA(t)_N (7.2)

for all {(t,x) : t € [tm,N,0), || > d17}. Here we need N derivatives of a = a(t, §) with
respect to &.
For |z| < ;7 we rewrite with y := z/7 and the inverse function ¢ = #(7)

/ eiﬂf'f-‘ri(@m j; A(s)b(s)dsa(t’ £)d£‘ = sup / eiw-€+i<§>m7a(t(7_)7 f)dﬁ’

sup
|| <617 || <617
= Sup /eiT(y'€+<€>7n)a(t(7—)7g)dé”.
ly|<or I/K

For the stationary points of the phase function we get the relation

y+ ém 0. (7.3)

The Hessian H, of the phase function ¢ = ¢(y,£) = y - £ + (§)m has the elements
(Hyp) i = 01 — &i&k(E) 2. Thus the stationary points are non-degenerate ones. If |y| > 1,
then there is no stationary point. If |y| < 1, then a stationary point is given by

m
fz—ﬁyv ek

Without loss of generality one can choose K as a ball of the radius R. Then one has

M —_—
VR m?
Therefore we choose for y some direction eg = yo/|yo| and consider only points y belong-
ing to the segment [0, R/v/ R? 4+ m?] of this direction. We are going to get an estimate
independent of any direction. To simplify notations we set yo = (—1,0,...,0). Thus we
can restrict ourselves to the consideration of the integral

/ T O (1(r), €)dg, 2 € [0, R/VR2 +m?]
[EI<R

with the critical point

m
&= (mz,o,...ﬁ)
smoothly depending on z € [0, R/v/ R? + m?|. We are going to get an estimate uniform
with respect to z € [0, R/V R? + m?].

The consideration of the asymptotic behaviour of the integral depending on the
large parameter 7 and parameter z is quite standard and follows with the arguments
used in the method of stationary phase (see for instance, [3], [18]). We fix a point
z = z9 € [0,R/VR?+m?] and will get an estimate independent of zp. In the small
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neighbourhood of the non-degenerate critical point £ = (mzp//1 — 23,0, ...,0) we use
Morse lemma. Then there are a neighbourhood U of 0 € R™ (independent of zy) and a ball
V (independent of zp) and a diffeomorphism H,, : V+£° — U (y = H,,(€)) depending
smoothly on the parameter zy € [0, R/v R? 4+ m?] such that for ¢(z0,&) = —2& + (§)m
one has

_ 1
@onol(y):@(207§O)+§(y%+...+y721) forall yeU.

Moreover, the Jacobian of the diffeomorphism is uniformly bounded, that is there is a
constant C' such that

‘ DH'(y)

Dy ‘SC’ for all zp € [0, R/v/ R? +m?2].

For the integral under consideration we write

/ eiT(—20EHEm) o 4(7), €)dE = / eSOy (€)a(t(r), §)dE
[€I<R

[§I<R
d [ e @n - @)alrlr),
[§I<R
where the cut-off function x € C§°(&o + V) and x(&) = 1 if £ € C§°(&o + V/2). For the

last integral it is easily seen that for every given N < n + 1 there is constant Cy such
that

/ RO (1 — \(€))alt(r),£)dE = Cyr N forall z € [0, R/\/R% +m?].
[EI<R

For the first one we write

[ @alr)

i 20.60)+11y|2 _ — DHz_Ol(y)
:/ eI Co 3Py (1 () a (), Ho () | Pz W) | g
U Dy
iTo(20,£° ird|y|? — — DH?(Z/)
— ime(20,€ )/ eim 3yl X(Hzgl(y))a(t(T),HZOl(y)) ’ Doy ’ dy.

Hence, we obtain for a smooth function u(7,y, z0) having compact support with respect
to y uniformly with z¢ € [0, R/vV R? +m?], T € |19, 00), the representation

N—-1 _
Tk

. k
;. 2 n s TN L
/ e’ ‘yZ‘ U(T, Y, ZO) dy = (271—)56177—_ E k! (;Ay) U(T, 07 ZO) + SN(”v 7Y, 20)7
n o !

|3

where

. 1 \"
Sw(uraoll < )5 (58,) utrieo)

HE+(Ry)

for any € > 0. The special choice N = 1 completes the proof of the proposition. m
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PROPOSITION 7.2. Let ¢ = ¢(s) be a C*°-function having compact support in {s €
R; s € [eco,c1] }, co > 0. Then fort € (0,tm n] and large T

m A(f)

el ¢(\/|£‘2 )/T)) 2o )

iTA(t)|€ 1+
P LA

< C(1+TA(Y)

¢ o(VIEP+ mAD/TP) .

|l <n

PROOF. For 7 > 79, 79 large, we obtain co(19) < |£] < ¢1(70), co(70) > 0, on the
support of function ¢ uniformly for ¢ € (0, ¢,, n]. One can write

iTA®)[€] [ 1+ (T
€

P T (VIER+ m AO/R)

iTAE)]€] (1) 14+(ZAE)
e

T (VR F (m AD/7?)

_ 1 gimAll

It is easy to see that on the support of ¢ for all ¢ € (0, t,, v] and for all 7 > 7

De ez‘m(tm( L) - ) o(VIEE+ m AG/?) || < Con

Then by means of the result of [9] we complete the proof of proposition in the way used
to prove Lemma 4 [1]. m

8. L, — L, decay estimates for Fourier multipliers. The representations for the
solutions from Theorems 6.1 and 6.2 suggest the study of the model Fourier multiplier

-t <ei fot/\(S)b(s)<5>md5a(t,§)F(u0)(£)) , up € CF(R™).

THEOREM 8.1. Suppose that the following assumptions are satisfied for the amplitude
function a = a(t, §):

1
‘a(t7£)| S Cma

o 1
‘65 a(t7 §)| <Cu A(t)

If M > (n+1)/6+ 1, then we have the decay estimate
HF—1< f A(8)b(s)(€)mds (t 5) ( )(g))

(t,f) S Zpd(N)a

<§>’;L‘a|7 |Oé‘ < ﬂ(M - 1)’ (t,f) € Z}LyP(N)'

Lg(R™)

1 _n(i_1
< O s (L A H0™ P uollwg )

~—

where L = [n(% — %)] +1.
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PROOF. a) t € (0,tm,n] : Let x = x(s) € C*®(R!) be a function with x(s) = 0 for
s < N, x(s) =1for s > 2N and 0 < x(s) < 1. We begin to estimate

-l (ei IN AP mds (1 (K (4)(E)m)) alt. ) F(uo)(E)),

(9%
where K (t) := A(t)”. Using the transformations K (t)¢ = n and K (t)z = = we get

= HFI <6i fot ,\(s)b(s)(f)mds(l _ X(K(t)<f>m))a<(€t>,2€) F(u@(f))

izntigds [ AS)b(s)(Inl?+K2(t)m?) "/ 2ds
:K(t)"+<2r—n>q/ / =it b ’
n (In]> +m2K>(¢))"

_ 2 2 2\1/2 n o ’q
x (1= x((In* + K*(t)ym?) ))a<t’ K(t)>F(u0)<K(t))dﬂ N
jot o) fotA(S)b(s)(\n\2+K2(t)m2)l/2ds

< (In? + m2K2(t))"

(1= (I + K02

q

Lq(R™)

n

_ K(t)n+(2r7n)q

q

Lq(R™)

« P (Fluo) (7))

With the notations

i [ A 0P+ K2 (0m) 2 ds

— -1 _ 2 2(1m2)Y 2V ¢
T, F (O RO (1 )

the norm I can be written in the form
q

T, « F! (F(“O) (I(Zt))) Ly(R™)

The distributions F'(73) belong to M, for all 2r < n(% - %) (see [6]). This follows from

the facts that for ¢ € (0, %, n] the functions 1 — x((|n|?> + K2(t)m?)'/2) have a uniformly
compact support with respect to 7, from |a(, %N < C on this support, from

I = K(t)n—i-(?r—n)q

meas {1 (Inf? + m2K3(0) ™" > 1} < meas {1+ [1|>" 2 1)
= meas {n: |n| <17} < Cl™ 3

and from Theorem 1.11 [6]. Consequently,

|7 (@m0 S P )|

1

< CK(t)%_n(E_E)||UOHL,,(]R") (8.1)

for all 2r < n(}% - %) To study

o <€i IN A<s>b<s><s>mdSX(K(t)<£>m)Cg’i)F(Uo)(&))7
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we choose a nonnegative C°°-function ¢ = ¢(s) having compact support in {s € R! :
1/2 < s < 2}. We set ¢, (s) := ¢(27*s) while ¢(s) :=1—> 7 | ¢x(s). One can find such
a function that °,7°° ¢ (s) = 1. Hence, supp ¢ C {s € R' : s < 2}. Using the same
ideas as above one can prove for 0 < k < kg that

1 <ei IN A mds (4 V(K (£)(E)m) a<(;>’2r) F(uo)(§)>

Ly(R™) (8.2)

< Cr K@) "6 |ug| 1, ()
To estimate for k > ko the L,-norm of these multipliers we use the transformation
K(t)¢ = 2Fn, derive L1 — Lo, Lo — Lo estimates, respectively, and apply an interpolation
argument (see [10]). We get

LT i [ s 5 ta
Ik = sup / 67'1 §+7/f0 A( )b(S)(@mdS(XQSk)(K(t)<£>m)a( 2&3 dé—‘
zeRn» n <€>m
— K(t)Qr—an(n—Qr)

R T K2(t)m2\1/2
< sup F<2 It J MDD (212 4 2 (ym)1/2)
ye n

k
<o (1ne+ K2<t>m2>”2) alt, #35)
2% (P2 + 220,

With a sufficiently large ko we have |n| € [1/4,2] on supp ¢ and x((22*|n|? + K?2(t)m?)/?)
=1for all k> ko and ¢t € (0,t,, n]. Consequently we are able to apply Proposition 7.2.
Here we use that K (t) = O(A(t)?/?) if t tends to 0. It gives

sup
yeRr

k
cof (s KLY 2t ith)
2% (Jnl? + “5t)r

2 m2 k
o((Inl? + )V 2)a(t, Z2)
(In? + =K@y

iR I =1 [ \(s)b(s K2()ym?y1/2 50
P (e 2 Inl ety [y M@b(s) 1+ o) 2 x((22%[n)? + K2 (t)m?)'/?)

< (1+28A@0)P2) = N D

la|<n

1L ()

Due to Proposition 7.2 we need in Zj,,(N) the assumption for the derivatives d¢a(t, §)
of the amplitude function for |a] < n. This means we have to guarantee that n <
B(M —1). But this follows from the assumption for M. Therefore we have to choose in
Proposition 5.1 the number of steps of perfect diagonalization M > n/8 + 1. Then

2k,,7 2k |0“ 22k‘77|2 ) —|al
o —_— < <
Dﬂ“(’“K(t)) —CM( >) ( +’“> = G

K(t K2(t)
for |a| < n. Using Lemma 3 from [1] leads to
I < CMK<t)2r—n2k(n—2r)

1 (ei I A(s)b<s><f>mds(X¢k)(K(t)<§>m)02(5’;? F(Uo)(ﬁ))

Lo (R™)

X

Lo (Rn)
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< Cy K(t)2r—n2k(n—2r)(1+QkA(t)l—ﬂ)—nT_l”u[)”Ll(Rn)

for t € (0,tm, ] and k > ko. The corresponding Ly — Lo estimate is

| (et (g @) S L) ©))
<£>m Lo (R™)
< C K1) 27 ||ug| Ly men)
for t € (0,t,, n] and k > ko. An interpolation argument leads to
<£>m Lgy(Rm)
2r—n(i—L)gk(n(t—1)—2r) k 1-8\— 25 (-1

< CuK @G DG D(1 4 98 A ()G ug |, gy

< O K0 G0 ug || 1, @y (8.3)
if 2r > n(% - %) The inequalities (8.1) to (8.3) imply together with Lemmas 1 and 2

from [1] the L, — L, estimate

HF_l (ei j‘Ot, A(s)b(s5) (&) mds a<(£t>72€) F(UO)(O)

for t € (0, ) and 2r = n(% - é)
The estimate (8.4) coincides with the estimate from [10] for m =1 and ¢ € (0, ¢, v]-
b) t € [tm.n,00). Let ¢ = (s) € C®°(R') be a function with ¢(s) = 0 for s <
V2m, (s) =1 for s > 2m and 0 < +(s) < 1. We begin to estimate

Pt (O (16, S P ).

We have now the advantage that the amplitude function

N a(t, §)
(1 =9((&m)) G

has a compact support with respect to £ uniformly for ¢ € [¢,, n,00). As a Littman-type
lemma we apply Proposition 7.1. The same approach as in the second part of a) gives

o (ei Ja M) € ms 4 _ w(<£>m))a<g>’2€)F(“0)(£))

< Clluol|z, ®&m (8.4)
Lq(Rm)

Lg(R™) (8.5)

1
A(t)
for r > 0 and all ¢ € [t n,00).
Thus we can use in the following the information that || > m.
To estimate

1

_ncl_ 1
A2 ol @y

r

= (ei IN AB(s) (€ meds g6 ‘?g;? F(%)(f))

we split it into
Ik _ Ffl (ei f(; )\(S)b(S)(deSw“f)m)(ﬁk(K(t)<§>m) a(ta g)

)%

F(”O)(E))ak > Oa
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where ¢ = ¢(s) is a nonnegative function having compact support in {s € R : 20 <
s < 2mot21 9mo > ;. If we consider I for k < ko, in general kg is large, then we are
able to apply Proposition 7.1 and obtain the L, — L, estimates

1 p
Z im0 ) < O A E Dol e (36)
for all » > 0 (pay attention that ¢ > ¢,, v !). Moreover we use here that there exists
a constant tg such that the amplitudes of Iy, k < ko vanish for all ¢ > tg. For the
consideration of Iy, k > ko + 1, we use in opposite to the considerations for ¢ € (0, t,,, n]
the Klein-Gordon type transformation K (t){¢),, = 2¥(n),, which is acting only in the
radial direction. Let us analyze properties of this one to one transformation.

e It can be described by

f(|77|v2k>K(t)) k 22k
fl:—’rll7f /}772 7Kt = 7"77277,_7,’12-
o (11,25 K0) = | 252 )
Here we use & = |¢]gi(¢,01,...,0n—2), m = Ngi(#,01,...,0,_2) and the above
transformation. .
e We have z - E—Wx 7.
e We have
ok n
k _
vnf(‘n|a2 ,K(t)) - K(t) 1 %
I9ES

The additional information |¢| > m implies |V, f(|n], 2%, K(¢))| < C’KQZ).
e In the same way one shows that

k

2
V&l < C’m, where we use |n| € [co(mo), c1(mo)], co(mg) > 0.

Consequently, |det J,(§)] < C’(KZ—Z))"

Now we have all tools to follow the lines from the second part of a). We have

sup / eimf-‘rifo"A(s)b(5)<§>mdsw(<£>m)¢k(K(t)<£>m)Cl<(£t>,2§r)d

TEIR™ n m

_ 2r y-n+i /\(s)b(s)2 <’7>mds 2k<77>m

= K sup | [ e ()

< 0(0h) s et 7€)

< CZk(n—2r)K(t)2r—n Suﬂg ! (6 f A(S)b(5)21<<n2)md QZJ(Q’;ZE)W)
yelk™

UBE ”)\.
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But Do‘d)(2 <"t)’”) 0 for 2 (t) [v/2m, 2m]. Moreover, 7 takes values from a compact
set. Hence, due to Proposition 7.1 we have

-1 eifot)\(s)b(s)%ds 2k<77>m a(tag(n))
= o)) LS )|

sup K(t)

y GRH

k -3
<c (2 A(t)) 1 .
K(t) A(t)
Using (8.6) and the assumptions for a = a(t, £) we finally obtain as in the second part
of a)

HF (e ©mt i), ) Fa©)

Ly(Rm)
1 n(l 1 n (1
<Oy K0 3G DA0) 2~ Juol 1, e
NG
< OuA) ™25 ol 1, ), (8.7)

it 2 (5 - 5) < 2r. Here we need all derivatives d¢a(t,§) with |a| <n + 1. This gives the
condltlon of the theorem for M.

c¢) Let us summarize the information given from the estimates (8.4), (8.5) and (8.7).
In (8.4) we choose 2r = n(l - 7) and obtain

HF( oA @, 6 Plan)©))

L- [(%— L] 41, ¢ € (0, ],

(% — 5) and obtain with the same L

(8.7
|7 (e @mtate g roe) )
{

for t €

| (om0, )

< CHUOHWPL(R"),
Lq(R™)

we choose 2r = 4
<ot
Ly(R") At)

m,N,00). Both these inequalities imply together with (8.5)

A(t)_% pa ||UO||WL(R")

Lq(Rn)

1 _n(1_1
< C———(1+A(t) 26 )HUOHWL (Rn)

VA

for t € (0,00), where L = [n(% - %)] + 1. The statement of the theorem is proved. m

9. Klein-Gordon type decay rates. Summarizing the results from the previous
sections we are able to prove Theorems 2.1 and 2.2 and can discuss Examples 2.1 and 2.2.

Proof of Theorem 2.1. After application of Theorem 8.1 to the explicit representations
for Vu and u; obtained from Theorem 6.1 we get immediately the L, — L, estimates

(1+A(t) ®

G- )
[Vu(t, ), @&y < C (lwollyy 241 @y + llullwz @) ;

1
A(t)
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,ﬂ(;,,
et gy < CVAD L+ A®) ™ (uollyyor oy + s s )
Here L = [n(; - a)] + 1. But this implies the statement of the theorem. m

Proof of Theorem 2.2. After application of Theorem 8.1 to the explicit representations
for Vu and u; obtained from Theorem 6.2 we get immediately the L, — L, estimates

Co,0

“m _ﬁ(l_7
17, Yy < e (1 AD) 258 (gl sy + 1 )

1
A(t)
&vo_g(%_,
[ue(t, )z, @) < CVAB (L +AD) ™ 2 (lwollyy 2+t @y + llutllwr @n))-
Here L = [n(; - E)] + 1. But this implies the statement of the theorem. m

We are able to describe classes of differential equations of Klein-Gordon type. If we
compare our results with those for m? = 0, then the decay functions coincide, but the
11

essential part of the decay rates is 5(5 — %) higher in the Klein-Gordon case.

Discussion of Example 2.1. Let us consider for [ > 1 the Cauchy problem
uge — (14 8)202 (1) (Au — m?u) = 0, u(0,z) = ug(x), ue(0,z) = uy ().

Here b = b(t) is a l-periodic, non-constant, smooth and positive function. Then the
conditions (A1) to (A4) are satisfied, where § = /(I + 1) in (A4). Thus we have to
distinguish two cases.

Case | > 1: Applying Theorem 2.1 we have

n

— _n l_,
IVu(t, Yz, @ey < C (14197204 85 FGD (fugl gy es gy + s g ey

n(l 1

e (8, )l oy ey < C (1) 2 L+ TEETD ((luglly 21 oy + [l lwp re))-
Case | = 1: Applying Theorem 2.2 we have

_ €00 _n l_,
IVt Yy < C 1+ ) Y2(1+ )T 7B G0 (lug |l yros gy + it ez o)),

Jur(t, )L, @ny < C (141 W21 4 g R G (luollwr+r gny + llurllwe @))-
Pay attention that in the case m = 0 corresponding L, — L, decay estimates cannot hold
for all I > 0, see [13].

Discussion of Example 2.2. Let us consider for a € (0, 1] the Cauchy problem
ugy — exp(2t*)b2(t) (Au — m2u) = 0, u(0,z) = ug(x), us(0,2) = uy(x).

Here b = b(t) is a 1-periodic, non-constant, smooth and positive function. All assumptions
(A1) to (A4) are satisfied. The condition (A4) is satisfied for each § < 1. Applying
Theorem 2.1 we have

n(l__1y_1
19t Yy < C (1463 (1 + AW 2D (Juo s oy + s llip @)

1 1

loae(t, Mgy < € U+ 0T (L AW F D (luolyes oy + i lwp o).

Here we use ?‘\Eg ~ %5 for large t. Pay attention that in the case m = 0 corresponding

L, — Ly decay estimates cannot hold for o < 1/2,see [13].
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REMARK 9.1. At the end of this paper we want to remember different constants

appearing in our approach. First we determine for our given Cauchy problem (1.5) the
constant § € [1/2, 1] from (2.2). Then we determine the natural number M > (n+1)/8+1.
The number M determines the number of steps of perfect diagonalization carried out in
Proposition 5.1. Finally we have to choose N > 1 large enough, such that the matrix Ny,
from Proposition 5.1 is invertible. In this way one can choose all constants needed for our
approach and follow all considerations. In Theorems 2.1 and 2.2 we need the constant L
to describe the regularity of the data ug and w; which we have to suppose.
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