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Abstract. This work is concerned with the proof of Lp−Lq decay estimates for solutions of
the Cauchy problem for the Klein-Gordon type equation utt−λ2(t)b2(t)(4u−m2u) = 0. The
coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded
function b which are uniformly separated from zero. Moreover, m2 is a positive constant. We
study under which assumptions for λ and b one can expect as an essential part of the decay rate
the classical Klein-Gordon decay rate n

2 ( 1
p −

1
q ).

1. Introduction. To prove global existence results for the solutions of the Cauchy
problem for nonlinear wave equations so-called Lp−Lq decay estimates for the solutions
of the linear wave equation play an essential role [7],[8],[11]. That is the following estimate
for the solution u = u(t, x) of the Cauchy problem

utt −4u = 0, u(0, x) = 0, ut(0, x) = u1(x),

where u1 = u1(x) belongs to C∞0 (Rn) (see [16]): there exist constants C and M depending
on p and n such that

‖ut(t, ·)‖Lq(Rn) + ‖∇u(t, ·)‖Lq(Rn) ≤ C(1 + t)−
n−1

2 ( 1
p−

1
q )‖u1‖WM

p (Rn), (1.1)

where 1 < p ≤ 2 and 1/p+ 1/q = 1.
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In a series of papers [12],[13],[14],[15] the authors considered the question if a similar
estimate holds for the solution of a strictly hyperbolic Cauchy problem, where the strictly
hyperbolic operator is homogeneous, of second order and has time-dependent coefficients.
To explain the results let us choose the Cauchy problem for the model equation

utt − λ2(t)b2(t)4 u = 0, u(t0, x) = u0(x), ut(t0, x) = u1(x), (1.2)

where λ = λ(t) is an increasing function (improving influence on Lp−Lq decay estimates)
and b = b(t) is a 1-periodic, non-constant, smooth, and positive function (deteriorating
influence on Lp − Lq decay estimates). There exists an interesting action and reaction
between both influences. If the growth of λ dominates the oscillating part, then we can
prove inequalities similar to (1.1). In opposite to this, if the oscillating part dominates
the growth, then we can only prove uniformly for all smooth data with compact support
estimates which are very near to the energy inequality for the solution of (1.2) which is
obtained by Gronwall’s inequality.

Example 1.1. Let us consider the Cauchy problem

utt − exp(2tα)b2(t)4 u = 0, u(t0, x) = u0(x), ut(t0, x) = u1(x),

where b = b(t) is a 1-periodic, non-constant, smooth and positive function. Then we have:

• in general no Lp − Lq decay estimates if α < 1/2,
• Lp − Lq decay estimates if α > 1/2,
• the critical case: Lp−Lq decay estimates if α = 1/2 and the spatial dimension n is

large enough.

Now let us turn to the Cauchy problem for the Klein-Gordon equation (wave equation
with a non-vanishing constant mass m)

utt −4u+m2u = 0, u(0, x) = 0, ut(0, x) = u1(x). (1.3)

The term m2u guarantees a 1
2 ( 1
p −

1
q ) higher decay-rate in (1.1). We can explain this

improvement as follows. One can use the representation of the solution of (1.3) by the
aid of Fourier multipliers including the mass in the phase functions (see [5]). After partial
Fourier transformation we obtain (v = û)

vtt + (|ξ|2 +m2)v = 0, v(0, x) = 0, vt(0, x) = û1.

For the solution v = v(t, ξ) we have the explicit representation

v = v(t, ξ) =
i

2

(
e−it〈ξ〉m

û1(ξ)
〈ξ〉m

− eit〈ξ〉m û1(ξ)
〈ξ〉m

)
,

u = u(t, x) =
i

2
F−1

(
e−it〈ξ〉m

û1(ξ)
〈ξ〉m

− eit〈ξ〉m û1(ξ)
〈ξ〉m

)
,

respectively, where 〈ξ〉m := (|ξ|2 +m2)1/2. For the Fourier multiplier

F−1

(
e−it〈ξ〉m

û1(ξ)
〈ξ〉m

)
we get the Lp − Lq decay estimate
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‖ut(t, ·)‖Lq(Rn) + ‖∇u(t, ·)‖Lq(Rn) ≤ C(1 + t)−
n
2 ( 1

p−
1
q )‖u1‖WM

p (Rn), (1.4)

where 1 < p ≤ 2, 1/p+ 1/q = 1 and M is suitably chosen.
The goal of the present paper is to study Lp−Lq decay estimates for the solutions of

the Cauchy problem for Klein-Gordon type equations with time-dependent coefficients.
More precisely, we will consider the Cauchy problem

utt − λ2(t)b2(t)4 u+ λ2(t)b2(t)m2u = 0, u(0, x) = u0(x), ut(0, x) = u1(x) (1.5)

with C∞-data having compact support while m2 is positive and constant. On the one
hand we are interested in the interplay oscillations via growth, that is, the influence of
λ = λ(t) and b = b(t). Do we have a similar example to Example 1.1. On the other hand
we are interested if the mass term guarantees the better decay rate

(
n
2 ( 1

p −
1
q )
)
.

We will call an equation of Klein-Gordon type if in the decay rate of the solution
to (1.5) there appears the term n

2 ( 1
p −

1
q ) (see (1.4)). Thus we can formulate the main

question:

Under which conditions for λ = λ(t) and b = b(t) is the differential equation from
(1.5) of Klein-Gordon type?

The main results of this paper lead to the following example (compare with Exam-
ple 1.1).

Example 1.2. Let us consider the Cauchy problem

utt − exp(2tα)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function andm2 is a positive
constant. Then we have:

• in general no Lp − Lq decay estimates if α ≤ 0,
• Lp − Lq decay estimates if α > 0 (see Example 2.2).

Before we begin to derive Lp − Lq decay estimates for the solutions of the Cauchy
problem (1.5) we formulate a result which shows that oscillations in the coefficients may
destroy Lp−Lq decay estimates. The statement of this theorem can be proved as in [12].

Theorem 1.1. Consider the Cauchy problem

utt − b2(t)4 u+m2b2(t)u = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where b = b(t) defined on R is a 1-periodic, non-constant, smooth, and positive function.
Then for every given b(t) there is positive constant m such that there are no constants
q, p, C, L, and a nonnegative function f defined on N such that for every initial data
u0, u1 ∈ C∞0 (Rn) the estimate

‖ut(k, ·)‖Lq(Rn) + ‖∇u(k, ·)‖Lq(Rn) ≤ Cf(k)(‖u0‖WL+1
p (Rn) + ‖u1‖WL

p (Rn))

is fulfilled for all k ∈ N while f(k)→∞, ln f(k) = o(k) as k →∞.

2. Klein-Gordon type model equations. We have in mind the functions λ =
λ(t) = exp(tα) and b = b(t) from Example 1.1, α ∈ (0, 1]. Then b = b(t) satisfies for
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large t

|Dk
t b(t)| ≤ Ck

(
λ(t)(Λ(t))−β

)k
, k = 1, 2, . . . , (2.1)

where β ≤ 1 while Λ(t) :=
∫ t

0
λ(τ)dτ . We will consider as a model Cauchy problem of

Klein-Gordon type the following one:

utt − λ2(t)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x). (2.2)

Then we make the assumptions
(A1): the functions b = b(t) and λ = λ(t) belong to C∞([0,∞));
(A2): the functions b = b(t) and λ = λ(t) are bounded from below by a positive constant;
(A3): there exist positive constants dk, k ∈ N0, such that for t ∈ (0,∞)

λ′(t) ≥ 0, |Dk
t λ(t)| ≤ dk

(
λ(t)
Λ(t)

)k
λ(t), t > 0, (2.3)

where Λ(t) :=
∫ t

0
λ(τ)dτ ;

(A4): the function b = b(t) is not necessarily periodic, there exist positive constants ck,
k ∈ N0, and a nonnegative constant 1/2 ≤ β ≤ 1 such that for t ∈ (0,∞)

c0 ≤ b2(t) ≤ c1, |Dk
t b(t)| ≤ ck

(
λ(t)(Λ(t))−β

)k
, k ≥ 1.

Under these assumptions we prove Lp−Lq decay estimates for the solutions to (2.2).

Theorem 2.1. Assume that the conditions (A1) to (A4) are satisfied, in (A4) we
suppose β ∈ (1/2, 1], for the Cauchy problem

utt − λ2(t)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Here m2 is a positive constant and u0, u1 are compactly supported smooth data. Then we
get with L = [n( 1

p −
1
q )] + 1, 1 < p ≤ 2, 1

p + 1
q = 1, the Lp − Lq estimate

‖ut(t, ·)‖Lq(Rn) + λ(t)‖∇u(t, ·)‖Lq(Rn)

≤ C
√
λ(t)

(
1 + Λ(t)

)−n2 ( 1
p−

1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
.

Theorem 2.2. Assume that the conditions (A1) to (A4) are satisfied, in (A4) we
suppose β = 1/2, for the Cauchy problem

utt − λ2(t)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Then we get with L = [n( 1
p −

1
q )] + 1, 1 < p ≤ 2, 1

p + 1
q = 1, the Lp − Lq estimate

‖ut(t, ·)‖Lq(Rn) + λ(t)‖∇u(t, ·)‖Lq(Rn)

≤ C
√
λ(t)

(
1 + Λ(t)

)C0,0
m −n2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
.

The constant C0,0 is introduced in Corollary 5.1. It depends on the behaviour of λ and β
and its first two derivatives on the interval [0,∞).

Remark 2.1. If in Theorem 2.2 the spatial dimension n is large enough, namely
n > 2C0,0/m, then there exist p and q such that Lp−Lq decay estimates hold for ut/

√
λ

and for
√
λ∇u. In opposite to the case β = 1/2 we obtain in the case β ∈ (1/2, 1] without

restrictions Lp − Lq decay estimates for ut/
√
λ and for

√
λ∇u.
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Example 2.1. Let us consider the Cauchy problem

utt − (1 + t)2lb2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function andm2 is a positive
constant. Then we have:

• Lp − Lq decay estimates if l > 1,
• the critical case: Lp − Lq decay estimates if l = 1 and the spatial dimension n is

large enough.

Example 2.2. Let us consider the Cauchy problem

utt − exp(2tα)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

where b = b(t) is a 1-periodic, non-constant, smooth, positive function andm2 is a positive
constant. Then we have:

• in general no Lp − Lq decay estimates if α ≤ 0,
• Lp − Lq decay estimates if α > 0.

Remark 2.2. In a forthcoming paper we will study Example 2.1 for l < 1. We expect
that in general there are no Lp − Lq decay estimates for the solutions of

utt − (1 + t)2lb2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x)

(compare Examples 1.1 and 2.1).

3. Tools of the approach

3.1. Zones. We split the set [0,∞) × (Rn \ {0}) in subdomains which will be called
zones. To do this we define for ξ ∈ Rn the function t = t〈ξ〉 (t〈ξ〉 = t(〈ξ〉m)) by

Λ(t〈ξ〉)β〈ξ〉m = N, (3.1)

where β is from assumption (A4) while N ≥ 1 is a positive constant to be determined
later. We define the pseudodifferential zone

Zpd(N) := {(t, ξ) ∈ [0,∞)× Rn \ {0} : 0 ≤ t ≤ t〈ξ〉} (3.2)

and the hyperbolic zone

Zhyp(N) := {(t, ξ) ∈ [0,∞)× Rn \ {0} : t〈ξ〉 ≤ t}. (3.3)

It is evident that if N1 ≤ N2 then Zhyp(N2) ⊂ Zhyp(N1) while Zpd(N1) ⊂ Zpd(N2).

Lemma 3.1. Define the function t = t(p) as a solution to Λ(t〈p〉)β〈p〉m = N . Then

|Dk
pt〈p〉| ≤ Ck〈p〉−km

Λ(t〈p〉)
λ(t〈p〉)

(3.4)

for all p ≥ 0 and k ≥ 0, where the constants Ck are independent of N .

Proof. We have
dt〈p〉

dp
= − 2

β

p

〈p〉2m
Λ(t〈p〉)
λ(t〈p〉)

.
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Thus we get the estimate ∣∣∣∣dt〈p〉dp

∣∣∣∣ ≤ C1〈p〉−1
m

Λ(t〈p〉)
λ(t〈p〉)

.

By induction we can prove the statement for all k ≥ 0. The constants Ck are independent
of N .

3.2. Classes of symbols. For the further considerations we need suitable classes of
symbols which are defined only in the hyperbolic zone Zhyp(N).

Definition 3.1. For real numbers r1, r2, r3; β ∈ (0, 1]; we denote by Sm,β{r1, r2, r3}
the set of all symbols a = a(t, ξ) ∈ C∞(Zhyp(N)) satisfying

|Dl
tD

α
ξ a(t, ξ)| ≤ Cα,l〈ξ〉r1−|α|m λ(t)r2

(
λ(t)(Λ(t))−β

)r3+l
(3.5)

for all (t, ξ) ∈ Zhyp(N), all multi-indices α and all l with constants Cα,l independent
of N .

Let us summarize some simple rules of the symbolic calculus.

1. Sm,β{r1, r2, r3} ⊂ Sm,β{r1 + k, r2 + k, r3 − k} for k ≥ 0;
2. if a(t, ξ) ∈ Sm,β{r1, r2, r3} and b(t, ξ) ∈ Sm,β{k1, k2, k3}, then a(t, ξ)b(t, ξ) ∈
Sm,β{r1 + k1, r2 + k2, r3 + k3};

3. if a(t, ξ) ∈ Sm,β{r1, r2, r3}, then Dta(t, ξ) ∈ Sm,β{r1, r2, r3 + 1};
4. if a(t, ξ) ∈ Sm,β{r1, r2, r3}, then Dα

ξ a(t, ξ) ∈ Sm,β{r1 − |α|, r2, r3}.

4. Consideration in the pseudodifferential zone Zpd(N). Let us consider (2.2).
After partial Fourier transformation we get (keep the same notation for the Fourier
transforms)

D2
t u− λ2(t)b2(t)〈ξ〉2mu = 0, u(0, ξ) = u0(ξ), Dtu(0, ξ) =

1
i
u1(ξ).

Setting U = (U1, U2)T := (λ(t)〈ξ〉mu, Dtu)T the last equation can be transformed to the
system of first order

DtU −
(

0 λ(t)〈ξ〉m
λ(t)b2(t)〈ξ〉m 0

)
U − Dtλ(t)

λ(t)

(
1 0
0 0

)
U = 0.

We are interested in the fundamental solution to the Cauchy problem for that system,
this is the matrix-valued solution U = U(t, s, ξ) to the Cauchy problem

DtU −
(

0 λ(t)〈ξ〉m
λ(t)b2(t)〈ξ〉m 0

)
U − Dtλ(t)

λ(t)

(
1 0
0 0

)
U = 0, (4.1)

U(s, s, ξ) = I (identity matrix). (4.2)

Using the matrizant we obtain for U(t, s, ξ) the explicit representation

U(t, s, ξ) = I +
∞∑
k=1

∫ t

s

A(t1, ξ)
∫ t1

s

A(t2, ξ) . . .
∫ tk−1

s

A(tk, ξ)dtk . . . dt1,

where

A(t, ξ) :=
(

0 λ(t)〈ξ〉m
λ(t)b2(t)〈ξ〉m 0

)
+
Dtλ(t)
λ(t)

(
1 0
0 0

)
.
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In contrast to the considerations for the wave equations with m ≡ 0 we can make use of
the advantage that

t〈ξ〉 ≤ t〈0〉 =: tm,N (4.3)

uniformly for all ξ ∈ Rn \ {0}, where we take account of the monotonicity of Λ(t). The
function λ = λ(t) is positive. This helps to estimate the norm of the second matrix by a
constant maybe depending on N . The norm of the integral over the first matrix can be
estimated in Zpd(N) by

C

∫ t

s

λ(τ)〈ξ〉mdτ ≤ CΛ(t〈ξ〉)〈ξ〉m ≤ CN(Λ(t〈ξ〉))1−β ≤ CN(Λ(tm,N ))1−β ,

where we used (4.3). Consequently, ‖U(t, s, ξ)‖ ≤ C0(N) for (t, ξ) ∈ Zpd(N).
In the same way we estimate ‖Dk

tD
α
ξ U(t, s, ξ)‖.

Proposition 4.1. For every k and α the following estimate holds:

‖Dk
tD

α
ξ U(t, 0, ξ)‖ ≤ Cα,k,N 〈ξ〉−|α|m (λ(t)〈ξ〉m)k

for all (t, ξ) ∈ Zpd(N). The constants Cα,k,N depend on N .

5. Consideration in the hyperbolic zone Zhyp(N)

5.1. Diagonalization modulo Sm,β{−M,−M,M + 1}. We carry out a diagonalization
process to get estimates for the solution of (4.1), (4.2).

Let us define the matrices

M−1(t) :=
1√

λ(t)b(t)

(
1 1

−b(t) b(t)

)
, M(t) :=

1
2

√
λ(t)
b(t)

(
b(t) −1
b(t) 1

)
. (5.1)

Substituting U = M−1V some calculations transform (4.1) into the first-order system

DtV − λ(t)b(t)〈ξ〉m
(
−1 0
0 1

)
V − Dtλ(t)

λ(t)

(
1 0
0 1

)
V − 1

2
Dt(λ(t)b(t))
λ(t)b(t)

(
0 1
1 0

)
V = 0.

We denote

τ1(t, ξ) := −λ(t)b(t)〈ξ〉m +
Dtλ(t)
λ(t)

,

τ2(t, ξ) := λ(t)b(t)〈ξ〉m +
Dtλ(t)
λ(t)

.

With some positive number c we have

|τ2(t, ξ)− τ1(t, ξ)| ≥ cλ(t)〈ξ〉m. (5.2)

The matrix

−λ(t)b(t)〈ξ〉m
(
−1 0
0 1

)
belongs to Sm,β{1, 1, 0}. But the matrix

Dt(λ(t)b(t))
λ(t)b(t)

I

belongs even to Sm,β{0, 0, 1}. Thus we got the diagonalization mod Sm,β{0, 0, 1} in the
form
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DtV − D(t, ξ)V +B(t, ξ)V = 0, (5.3)

where

D(t, ξ) :=
(
τ1(t, ξ) 0

0 τ2(t, ξ)

)
, B(t, ξ) := − 1

2
Dt(λ(t)b(t))
λ(t)b(t)

(
0 1
1 0

)
.

We will carry out further steps of perfect diagonalization, namely diagonalization
modulo Sm,β{−M,−M,M + 1} for some given nonnegative integer M . The next propo-
sition shows that this is possible for every nonnegative integer M .

Proposition 5.1. For a nonnegative integer M there exist matrix-valued functions
NM (t, ξ) ∈ Sm,β{0, 0, 0}, FM (t, ξ) ∈ Sm,β{−1,−1, 2}, RM (t, ξ) ∈ Sm,β{−M,−M,M+1}
such that the following operator-valued identity holds in Zhyp(N):

(Dt −D(t, ξ) +B(t, ξ))NM (t, ξ) = NM (t, ξ)(Dt −D(t, ξ) + FM (t, ξ)−RM (t, ξ)), (5.4)

where the matrix FM is diagonal while the matrix NM ∈ Sm,β{0, 0, 0} is invertible and its
inverse matrix N−1

M (t, ξ) ∈ Sm,β{0, 0, 0} too, provided that the parameter N is sufficiently
large.

Proof. We look for NM = NM (t, ξ) and FM = FM (t, ξ), M ≥ 1, having the repre-
sentations

NM (t, ξ) =
M∑
r=0

N (r)(t, ξ), FM (t, ξ) =
M−1∑
r=0

F (r)(t, ξ),

where N (0) := I, B(0) := B, F (r) := diag (B(r)),F (0)(t, ξ) ≡ 0,

N (r+1) :=
(

0 B
(r)
12 /(τ1 − τ2)

B
(r)
21 /(τ2 − τ1) 0

)
,

B(r+1) := (Dt −D +B)
( r+1∑
µ=0

N (µ)
)
−
( r+1∑
µ=0

N (µ)
)(
Dt −D +

r∑
µ=1

F (µ)
)

for r = 0, 1, . . . ,M − 1. Using (5.1) we have N (1) ∈ Sm,β{−1,−1, 1} . For B(1) we obtain
the relation

B(1) = B + [N (1),D] +DtN
(1) +BN (1).

The sum of the first two matrices vanishes, while the last two summands belong to
Sm,β{−1,−1, 2} due to the rules of the symbolic calculus from Subsection 3.2. Hence
B(1) ∈ Sm,β{−1,−1, 2} .

Supposing B(r) ∈ Sm,β{−r,−r, r+ 1} we apply the principle of induction to show the
statement for B(r+1) . On the one hand we have from the construction

N (r+1) ∈ Sm,β{−(r + 1),−(r + 1), r + 1} and F (r) ∈ Sm,β{−r,−r, r + 1}.

On the other hand,

B(r+1)

= B(r) + [N (r+1),D]−F (r) +DtN
(r+1) +BN (r+1) +N (r+1)

r∑
µ=0

F (µ) −
( r+1∑
µ=0

N (µ)
)
F (r).
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Moreover, we have B(r) + [N (r+1),D] − F (r) = 0. The sum of the other terms and
consequently B(r+1) belong to Sm,β{−(r + 1),−(r + 1), r + 2}.

Thus we have shown N (r) ∈ Sm,β{−r,−r, r}, that is with Definition 3.3.1

‖N (r)(t, ξ)‖ ≤ Cr
(

1
(Λ(t))β〈ξ〉m

)r
≤ Cr

(
1
N

)r
, (t, ξ) ∈ Zhyp(N), r = 0, . . . ,M.

This implies ∥∥∥ M∑
r=1

N (r)(t, ξ)
∥∥∥ ≤

M∑
r=1

Cr

(
1
N

)r
,

where Cr is independent of N . A sufficiently large N provides ‖NM − I‖ ≤ 1/2 in
Zhyp(N) and consequently the statements concerning NM and N−1

M . Finally let us de-
fineRM := −N−1

M B(M). This matrix belongs obviously to Sm,β{−M,−M,M + 1}. The
proposition is proved.

5.2. Estimates for the fundamental solution. Let us consider the system (Dt − D +
FM −RM )W = 0. LetE2 = E2(t, r, ξ) be the matrix-valued function

E2(t, r, ξ) =

 exp
(
i

∫ t

r

{
−λ(s)b(s)〈ξ〉m +

1
i

λ′(s)
λ(s)

}
d s

)
0

0 exp
(
i

∫ t

r

{
λ(s)b(s)〈ξ〉m +

1
i

λ′(s)
λ(s)

}
d s

)
 .

Hence

E2(t, r, ξ) =
λ(t)
λ(r)

 exp
(
−i
∫ t

r

λ(s)b(s)〈ξ〉m d s
)

0

0 exp
(
i

∫ t

r

λ(s)b(s)〈ξ〉m d s
)

 . (5.5)

Let us define the matrix-valued function

RM (t, r, ξ) = −FM (t, ξ) + E2(r, t, ξ)RM (t, ξ)E2(t, r, ξ).

Lemma 5.1. The matrix-valued functionRM = RM (t, r, ξ) satisfies for every l and α
the estimate

‖∂lt∂αξ (RM (t, r, ξ) + FM (t, ξ)) ‖ ≤ CM,l,α(λ(t)〈ξ〉m)lΛ(t)|α|

× λ(t) (Λ(t))−β
(
Λβ(t)〈ξ〉m

)−M
(5.6)

with constants CM,l,α independent of N .

Corollary 5.1. The matrix-valued function RM (t, r, ξ) satisfies for every given l

and α, |α| ≤ β(M − 1), in Zhyp(N) the estimate

‖∂lt∂αξ RM (t, r, ξ)‖ ≤ CM,l(λ(t)〈ξ〉m)l〈ξ〉−|α|m

λ(t)
Λ2β(t)〈ξ〉m

with constantsCM,l independent of N .
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Proof. Applying Proposition 5.1 and Lemma 5.1 gives

‖∂lt∂αξ RM (t, r, ξ)‖ ≤ ‖∂lt∂αξ (RM (t, r, ξ) + FM (t, ξ)) ‖+ ‖∂lt∂αξ FM (t, ξ)‖

≤ CM,l(λ(t)〈ξ〉m)lΛ(t)|α|λ(t) (Λ(t))−β
(
Λβ(t)〈ξ〉m

)−M
+ CM,l(λ(t)〈ξ〉m)l〈ξ〉−|α|m

λ(t)
Λ2β(t)〈ξ〉m

(
1

Λβ(t)〈ξ〉m

)l
.

In Zhyp(N) we can estimate for |α| ≤ β(M − 1) a part of the first term of the right-hand
side in the following way:

Λ(t)|α|λ(t) (Λ(t))−β
(
Λβ(t)〈ξ〉m

)−M
≤ 〈ξ〉−|α|m

λ(t)
Λ2β(t)〈ξ〉m

(Λ(t)〈ξ〉m)|α|
(

1
Λβ(t)〈ξ〉m

)M−1

≤ 〈ξ〉−|α|m

λ(t)
Λ2β(t)〈ξ〉m

(
1

Λβ(t)〈ξ〉m

)M−1−|α|/|β|

≤ 〈ξ〉−|α|m

λ(t)
Λ2β(t)〈ξ〉m

.

In the last inequality we used the definition of Zhyp(N), especially N ≥ 1. This definition
helps to estimate the second term of the right-hand side, too. The corollary is proved.

With the aid of RM we define the matrix-valued function

QM (t, t〈ξ〉, ξ)

:=
∞∑
j=1

ij
∫ t

t〈ξ〉

RM (t1, t〈ξ〉, ξ)dt1
∫ t1

t〈ξ〉

RM (t2, t〈ξ〉, ξ)dt2 . . .
∫ tj−1

t〈ξ〉

RM (tj , t〈ξ〉, ξ)dtj

for t ≥ t〈ξ〉.

Lemma 5.2. The matrix-valued function QM (t, t〈ξ〉, ξ) satisfies for all α, |α| ≤
β(M − 1), β ∈ (1/2, 1], the estimates

‖∂αξ QM (t, t〈ξ〉, ξ)‖ ≤ CM 〈ξ〉−|α|m (5.7)

with a constant CM independent of N .

Sketch of proof. Using Corollary 5.1 for |α| = 0 and l = 0 we obtain

‖QM (t, t〈ξ〉, ξ)‖ ≤ exp
(∫ t

t〈ξ〉

C0,0
λ(s)

Λ2β(s)〈ξ〉m
ds

)
= exp

(
C0,0

1
1− 2β

Λ1−2β(t)
〈ξ〉m

− C0,0
1

1− 2β
Λ1−2β(t〈ξ〉)
〈ξ〉m

)
≤ exp

(
C0,0

1
2β − 1

1
Λ2β−1(t〈ξ〉)〈ξ〉m

)
≤ exp

(
C0,0

1
2β − 1

1
m

)
.
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This proves the statement for α=0. Now let us form |α| derivatives, |α|≤β(M−1). Then

∂αξ QM (t, t〈ξ〉, ξ)

=
∞∑
j=1

ij∂αξ

(∫ t

t〈ξ〉

RM (t1, t〈ξ〉, ξ)
∫ t1

t〈ξ〉

RM (t2, t〈ξ〉, ξ) . . .
∫ tj−1

t〈ξ〉

RM (tj , t〈ξ〉, ξ) dtj . . . dt1

)
.

Straightforward calculations lead to the statement for |α| ≤ β(M−1). But the main point
is that Lemma 3.1 and Corollary 5.1 allow to follow the lines of the proof of Lemmas
3.2.15 and 3.2.16 from [15].

Now let us turn to the case β = 1/2. Without new difficulties one can prove the next
result.

Lemma 5.3. The matrix-valued function QM (t, t〈ξ〉, ξ) satisfies for all α, |α| ≤
β(M − 1), β = 1/2, the estimates

‖∂αξ QM (t, t〈ξ〉, ξ)‖ ≤ CM (Λ(t))C0,0/m〈ξ〉−|α|m (5.8)

with a constant CM independent of N , where C0,0 is the constant from Corollary 5.1.

The matrix-valued function W(t, t〈ξ〉, ξ) = E2(t, t〈ξ〉, ξ)(I + QM (t, t〈ξ〉, ξ)) solves the
Cauchy problem

(Dt −D + FM −RM )W = 0, W(t〈ξ〉, t〈ξ〉, ξ) = I, t ≥ t〈ξ〉.

Applying the transformations which bring the system for the fundamental solution to the
above one, we obtain that

U(t, 0, ξ)

= M−1(t)NM (t, ξ)E2(t, t〈ξ〉, ξ)(I +QM (t, t〈ξ〉, ξ))NM (t〈ξ〉, ξ)−1M(t〈ξ〉)U(t〈ξ〉, 0, ξ)

for t ≥ t〈ξ〉.
To estimate the derivatives of U(t, 0, ξ) with respect to ξ we have to estimate all fac-

tors. We get estimates for NM (t, ξ), and NM (t〈ξ〉, ξ)−1 from Proposition 5.1 and Lemma
3.1. Using Lemma 3.1 and condition (A4) it follows that M(t〈ξ〉) belongs to Sm,β{0, 0, 0}.
From Lemma 5.2 we have estimates for QM (t, t〈ξ〉, ξ). Finally, derivatives of U(t〈ξ〉, t0, ξ)
can be estimated by Proposition 4.1. Hence it remains to estimate

E2(t, t〈ξ〉, ξ) = E2(t, 0, ξ)E2(0, t〈ξ〉, ξ).

For E2(0, t〈ξ〉, ξ) we have the explicit representation

E2(0, t〈ξ〉, ξ) =
λ(0)
λ(t〈ξ〉)

 exp
(
i〈ξ〉m

∫ t〈ξ〉

0

λ(s)b(s) d s
)

0

0 exp
(
−i〈ξ〉m

∫ t〈ξ〉

0

λ(s)b(s) d s
)
 .

A careful calculation shows that ‖∂αξ E2(0, t〈ξ〉, ξ)‖ ≤ Cα〈ξ〉
−|α|
m . Summarizing we obtain

the next results.

Proposition 5.2. Let us suppose that the assumptions (A1) to (A4) are satisfied with
β ∈ (1/2, 1] in (A4). Then the fundamental solution U = U(t, 0, ξ) can be represented as
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follows:

U(t, 0, ξ)

= U−(t, 0, ξ) exp
(
− i〈ξ〉m

∫ t

0

λ(s)b(s)ds
)

+ U+(t, 0, ξ) exp
(
i〈ξ〉m

∫ t

0

λ(s)b(s)ds
)
,

where the matrix-valued amplitudes U− and U+ satisfy for |α| ≤ β(M − 1) the estimates

‖∂αξ U±(t, 0, ξ)‖ ≤ CM
√
λ(t)〈ξ〉−|α|m , (t, ξ) ∈ Zhyp(N).

Proposition 5.3. Let us suppose that the assumptions (A1) to (A4) are satisfied
with β = 1/2 in (A4). Then the fundamental solution U = U(t, 0, ξ) can be represented
as follows:

U(t, 0, ξ)

= U−(t, 0, ξ) exp
(
− i〈ξ〉m

∫ t

0

λ(s)b(s)ds
)

+ U+(t, 0, ξ) exp
(
i〈ξ〉m

∫ t

0

λ(s)b(s)ds
)
,

where the matrix-valued amplitudes U− and U+ satisfy for |α| ≤ β(M − 1) the estimates

‖∂αξ U±(t, 0, ξ)‖ ≤ CM
√
λ(t)(Λ(t))C0,0/m〈ξ〉−|α|m , (t, ξ) ∈ Zhyp(N),

where C0,0 is the constant from Corollary 5.1.

6. Solutions to the Cauchy problems. Summarizing all the calculations of the
previous sections we arrive at the following results.

Theorem 6.1. Under the assumptions (A1) to (A4), we suppose β ∈ (1/2, 1] in (A4),
let us consider the Cauchy problem

utt + λ2(t)b2(t)〈ξ〉2mu = 0, u(0, ξ) = u0(ξ), ut(0, ξ) = u1(ξ).

Then the solution can be written as

u(t, ξ) = a−0 (t, 0, ξ)u0(ξ) exp
(
− i
∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ a+
0 (t, 0, ξ)u0(ξ) exp

(
i

∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ a−1 (t, 0, ξ)u1(ξ) exp
(
− i
∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ a+
1 (t, 0, ξ)u1(ξ) exp

(
i

∫ t

0

λ(s)b(s)〈ξ〉mds
)
,

where we have

|a±0 (t, 0, ξ)| ≤ C
1
λ(t)

, (t, ξ) ∈ Zpd(N),

|a±1 (t, 0, ξ)| ≤ C
1

λ(t)〈ξ〉m
, (t, ξ) ∈ Zpd(N),

|∂αξ a±0 (t, 0, ξ)| ≤ CM
1√
λ(t)
〈ξ〉−|α|m , (t, ξ) ∈ Zhyp(N),

|∂αξ a±1 (t, 0, ξ)| ≤ CM
1√
λ(t)
〈ξ〉−(|α|+1)

m , (t, ξ) ∈ Zhyp(N),
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for all α, |α| ≤ β(M − 1). Moreover, we obtain

ut(t, ξ) = b−0 (t, 0, ξ)u0(ξ) exp
(
− i
∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ b+0 (t, 0, ξ)u0(ξ) exp
(
i

∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ b−1 (t, 0, ξ)u1(ξ) exp
(
− i
∫ t

0

λ(s)b(s)〈ξ〉mds
)

+ b+1 (t, 0, ξ)u1(ξ) exp
(
i

∫ t

0

λ(s)b(s)〈ξ〉mds
)
,

where we have

|b±0 (t, 0, ξ)| ≤ C〈ξ〉m, (t, ξ) ∈ Zpd(N),

|b±1 (t, 0, ξ)| ≤ C, (t, ξ) ∈ Zpd(N),

|∂αξ b±0 (t, 0, ξ)| ≤ CM
√
λ(t)〈ξ〉−(|α|−1)

m , (t, ξ) ∈ Zhyp(N),

|∂αξ b±1 (t, 0, ξ)| ≤ CM
√
λ(t)〈ξ〉−|α|m , (t, ξ) ∈ Zhyp(N),

for all α, |α| ≤ β(M − 1).

Theorem 6.2. Under the assumptions (A1) to (A4), we suppose β = 1/2 in (A4),
let us consider the Cauchy problem

utt + λ2(t)b2(t)〈ξ〉2mu = 0, u(0, ξ) = u0(ξ), ut(0, ξ) = u1(ξ).

Then the solution u = u(t, ξ) and its derivative ut = ut(t, ξ) possess the same representa-
tions as in the previous theorem. The amplitudes satisfy the same estimates if we replace
CM by CM (Λ(t))C0,0/m, where C0,0 is the constant from Corollary 5.1.

7. Littman-type lemmas. To derive Lp−Lq decay estimates for Fourier multipliers
in the next section we need the following two Littman-type lemmas.

Proposition 7.1. Let us suppose that the function a = a(t, ξ) has uniformly for all
t ∈ [tm,N ,∞) (we choose tm,N from (4.3)) a support (with respect to ξ) contained in a
compact set K ⊂ Rn . Moreover, assume that

|∂αξ a(t, ξ)| ≤ C〈ξ〉−|α|m for |α| ≤ n+ 1, (t, ξ) ∈ [tm,N ,∞)×K.
Then

‖F−1(ei〈ξ〉m
∫ t

0
λ(s)b(s)ds

a(t, ξ))‖L∞(Rn) ≤ CΛ(t)−
n
2 for all t ∈ [tm,N ,∞), (7.1)

where the constant C depends on sup{|ξ| : ξ ∈ K} only.

Proof. We have to estimate

sup
x∈Rn

∣∣∣∣ ∫
Rn
e
ix·ξ+i〈ξ〉m

∫ t
0
λ(s)b(s)ds

a(t, ξ)dξ
∣∣∣∣

for all t ∈ [tm,N ,∞). There are two unbounded parameters, the scalar t (and, conse-
quently, the function τ = τ(t) :=

∫ t
0
λ(s)b(s)ds is unbounded) and the vector x ∈ Rn in

the last integral. We are going to get an estimate which is independent of x ∈ Rn and
t ∈ [tm,N ,∞).
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Let us denote Φ(t, x, ξ) := x+ ξ
〈ξ〉m τ . Then there exist constants δ1 and δ2 such that

|Φ(t, x, ξ)| ≥ δ2τ for |x| ≥ δ1τ . With

L e
ix·ξ+i〈ξ〉m

∫ t
0
λ(s)b(s)ds = e

ix·ξ+i〈ξ〉m
∫ t

0
λ(s)b(s)ds

, L =
1
|Φ|2

n∑
r=1

Φr
∂

∂ξr
,

we obtain for an arbitrary N ≤ n+ 1 the inequality∣∣∣∣ ∫
Rn
e
ix·ξ+i〈ξ〉m

∫ t
0
λ(s)b(s)ds

a(t, ξ)dξ
∣∣∣∣ ≤ CNΛ(t)−N (7.2)

for all {(t, x) : t ∈ [tm,N ,∞), |x| ≥ δ1τ}. Here we need N derivatives of a = a(t, ξ) with
respect to ξ.

For |x| ≤ δ1τ we rewrite with y := x/τ and the inverse function t = t(τ)

sup
|x|≤δ1τ

∣∣∣∣∫
Rn
e
ix·ξ+i〈ξ〉m

∫ t
0
λ(s)b(s)ds

a(t, ξ)dξ
∣∣∣∣ = sup

|x|≤δ1τ

∣∣∣∣∫
Rn
eix·ξ+i〈ξ〉mτa(t(τ), ξ)dξ

∣∣∣∣
= sup
|y|≤δ1

∣∣∣∣∫
K
eiτ(y·ξ+〈ξ〉m)a(t(τ), ξ)dξ

∣∣∣∣ .
For the stationary points of the phase function we get the relation

y +
ξ

〈ξ〉m
= 0. (7.3)

The Hessian Hϕ of the phase function ϕ = ϕ(y, ξ) = y · ξ + 〈ξ〉m has the elements
(Hϕ)jk = δjk− ξjξk〈ξ〉−2

m . Thus the stationary points are non-degenerate ones. If |y| ≥ 1,
then there is no stationary point. If |y| < 1, then a stationary point is given by

ξ = − m√
1− |y|2

y, ξ ∈ K.

Without loss of generality one can choose K as a ball of the radius R. Then one has

|y| ≤ R√
R2 +m2

.

Therefore we choose for y some direction e0 = y0/|y0| and consider only points y belong-
ing to the segment [0, R/

√
R2 +m2] of this direction. We are going to get an estimate

independent of any direction. To simplify notations we set y0 = (−1, 0, . . . , 0). Thus we
can restrict ourselves to the consideration of the integral∫

|ξ|≤R
eiτ(−zξ1+〈ξ〉m)a(t(τ), ξ)dξ, z ∈ [0, R/

√
R2 +m2]

with the critical point

ξ =
(

m√
1− z2

z, 0, . . . , 0
)

smoothly depending on z ∈ [0, R/
√
R2 +m2]. We are going to get an estimate uniform

with respect to z ∈ [0, R/
√
R2 +m2].

The consideration of the asymptotic behaviour of the integral depending on the
large parameter τ and parameter z is quite standard and follows with the arguments
used in the method of stationary phase (see for instance, [3], [18]). We fix a point
z = z0 ∈ [0, R/

√
R2 +m2] and will get an estimate independent of z0. In the small
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neighbourhood of the non-degenerate critical point ξ0 = (mz0/
√

1− z2
0 , 0, . . . , 0) we use

Morse lemma. Then there are a neighbourhood U of 0 ∈ Rn (independent of z0) and a ball
V (independent of z0) and a diffeomorphism Hz0 : V +ξ0 −→ U (y = Hz0(ξ)) depending
smoothly on the parameter z0 ∈ [0, R/

√
R2 +m2] such that for ϕ(z0, ξ) = −zξ1 + 〈ξ〉m

one has

ϕ ◦ H−1
z0 (y) = ϕ(z0, ξ

0) +
1
2
(
y2

1 + . . .+ y2
n

)
for all y ∈ U.

Moreover, the Jacobian of the diffeomorphism is uniformly bounded, that is there is a
constant C such that∣∣∣∣DH−1

z0 (y)
D y

∣∣∣∣ ≤ C for all z0 ∈ [0, R/
√
R2 +m2].

For the integral under consideration we write∫
|ξ|≤R

eiτ(−z0ξ1+〈ξ〉m)a(t(τ), ξ)dξ =
∫
|ξ|≤R

eiτ(−z0ξ1+〈ξ〉m)χ(ξ)a(t(τ), ξ)dξ

+
∫
|ξ|≤R

eiτ(−z0ξ1+〈ξ〉m)(1− χ(ξ))a(t(τ), ξ)dξ,

where the cut-off function χ ∈ C∞0 (ξ0 + V ) and χ(ξ) ≡ 1 if ξ ∈ C∞0 (ξ0 + V/2). For the
last integral it is easily seen that for every given N ≤ n + 1 there is constant CN such
that∫
|ξ|≤R

eiτ(−z0ξ1+〈ξ〉m)(1− χ(ξ))a(t(τ), ξ)dξ = CNτ
−N for all z0 ∈ [0, R/

√
R2 +m2].

For the first one we write∫
|ξ|≤R

eiτ(−z0ξ1+〈ξ〉m)χ(ξ)a(t(τ), ξ)dξ

=
∫
U

eiτ(ϕ(z0,ξ
0)+ 1

2 |y|
2)χ
(
H−1
z0 (y)

)
a
(
t(τ),H−1

z0 (y)
) ∣∣∣∣DH−1

z0 (y)
D y

∣∣∣∣ dy
= eiτϕ(z0,ξ

0)

∫
Rn
eiτ

1
2 |y|

2
χ
(
H−1
z0 (y)

)
a
(
t(τ),H−1

z0 (y)
) ∣∣∣∣DH−1

z0 (y)
D y

∣∣∣∣ dy.
Hence, we obtain for a smooth function u(τ, y, z0) having compact support with respect
to y uniformly with z0 ∈ [0, R/

√
R2 +m2], τ ∈ [τ0,∞), the representation∫

Rn
eiτ
|y|2

2 u(τ, y, z0) dy = (2π)
n
2 ei

πn
4 τ−

n
2

N−1∑
k=0

τ−k

k!

(
i

2
4y
)k

u(τ, 0, z0) + SN (u, τ, y, z0),

where

|SN (u, τ, y, z0)| ≤ Cε(N !)−1τ−
n
2−N

∥∥∥∥(1
2
4y
)N

u(τ, y, z0)
∥∥∥∥
H
n
2 +ε(Rny )

for any ε > 0. The special choice N = 1 completes the proof of the proposition.
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Proposition 7.2. Let φ = φ(s) be a C∞-function having compact support in {s ∈
R ; s ∈ [c0, c1] }, c0 > 0. Then for t ∈ (0, tm,N ] and large τ

‖F−1

eiτΛ(t)|ξ|
√

1+(
m Λ(t)
τ|ξ| )2

φ
(√
|ξ|2 + (m Λ(t)/τ)2

) ‖L∞(Rn)

≤ C(1 + τΛ(t))−
n−1

2

∑
|α|≤n

‖Dα
ξ φ
(√
|ξ|2 + (m Λ(t)/τ)2

)
‖L∞(Rn).

Proof. For τ ≥ τ0, τ0 large, we obtain c0(τ0) ≤ |ξ| ≤ c1(τ0), c0(τ0) > 0, on the
support of function φ uniformly for t ∈ (0, tm,N ]. One can write

F−1

eiτΛ(t)|ξ|
√

1+(
m Λ(t)
τ|ξ| )2

φ
(√
|ξ|2 + (m Λ(t)/τ)2

)
= F−1

eiτΛ(t)|ξ|

eiτΛ(t)|ξ|(
√

1+(
m Λ(t)
τ|ξ| )2−1)

φ
(√
|ξ|2 + (m Λ(t)/τ)2

)
 .

It is easy to see that on the support of φ for all t ∈ (0, tm,N ] and for all τ ≥ τ0∣∣∣∣∣∣Dα
ξ

eiτΛ(t)|ξ|
(√

1+(
m Λ(t)
τ|ξ| )2−1

)
φ
(√
|ξ|2 + (m Λ(t)/τ)2

)∣∣∣∣∣∣ ≤ Cα.
Then by means of the result of [9] we complete the proof of proposition in the way used
to prove Lemma 4 [1].

8. Lp−Lq decay estimates for Fourier multipliers. The representations for the
solutions from Theorems 6.1 and 6.2 suggest the study of the model Fourier multiplier

F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsa(t, ξ)F (u0)(ξ)

)
, u0 ∈ C∞0 (Rn).

Theorem 8.1. Suppose that the following assumptions are satisfied for the amplitude
function a = a(t, ξ):

|a(t, ξ)| ≤ C
1
λ(t)

, (t, ξ) ∈ Zpd(N),

|∂αξ a(t, ξ)| ≤ CM
1√
λ(t)
〈ξ〉−|α|m , |α| ≤ β(M − 1), (t, ξ) ∈ Zhyp(N).

If M ≥ (n+ 1)/β + 1, then we have the decay estimate∥∥∥F−1
(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsa(t, ξ)F (u0)(ξ)

)∥∥∥
Lq(Rn)

≤ C 1√
λ(t)

(1 + Λ(t))−
n
2 ( 1

p−
1
q )‖u0‖WL

p (Rn),

where L = [n( 1
p −

1
q )] + 1 .
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Proof. a) t ∈ (0, tm,N ] : Let χ = χ(s) ∈ C∞(R1) be a function with χ(s) = 0 for
s ≤ N, χ(s) = 1 for s ≥ 2N and 0 ≤ χ(s) ≤ 1. We begin to estimate

F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(1− χ(K(t)〈ξ〉m))

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)
,

where K(t) := Λ(t)β . Using the transformations K(t)ξ = η and K(t)z = x we get

I =
∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(1− χ(K(t)〈ξ〉m))

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥q

Lq(Rn)

= K(t)n+(2r−n)q

∫
Rn

∣∣∣∣ ∫
Rn

e
iz·η+i 1

K(t)

∫ t
0
λ(s)b(s)(|η|2+K2(t)m2)1/2ds

(|η|2 +m2K2(t))r

× (1− χ((|η|2 +K2(t)m2)1/2))a
(
t,

η

K(t)

)
F (u0)

(
η

K(t)

)
dη
∣∣∣qdz

= K(t)n+(2r−n)q

∥∥∥∥F−1

(
e
i 1
K(t)

∫ t
0
λ(s)b(s)(|η|2+K2(t)m2)1/2ds

(|η|2 +m2K2(t))r

×(1− χ((|η|2 +K2(t)m2)1/2))a
(
t,

η

K(t)

))
∗ F−1

(
F (u0)(

η

K(t)
)
)∥∥∥∥q

Lq(Rn)

.

With the notations

Tt := F−1

ei 1
K(t)

∫ t
0
λ(s)b(s)(|η|2+K2(t)m2)1/2ds

(|η|2 +m2K2(t))r
(1− χ((|η|2 +K2(t)m2)1/2))a

(
t,

η

K(t)

)
the norm I can be written in the form

I = K(t)n+(2r−n)q

∥∥∥∥Tt ∗ F−1

(
F (u0)

(
η

K(t)

))∥∥∥∥q
Lq(Rn)

.

The distributions F (Tt) belong to Mq
p for all 2r ≤ n( 1

p −
1
q ) (see [6]). This follows from

the facts that for t ∈ (0, tm,N ] the functions 1−χ((|η|2 +K2(t)m2)1/2) have a uniformly
compact support with respect to η, from |a(t, η

K(t) )| ≤ C on this support, from

meas {η : (|η|2 +m2K2(t))−r ≥ l} ≤ meas {η : |η|−2r ≥ l}
= meas {η : |η| ≤ l− 1

2r } ≤ Cl− n
2r

and from Theorem 1.11 [6]. Consequently,∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(1− χ(K(t)〈ξ〉m))

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

≤ CK(t)2r−n( 1
p−

1
q )‖u0‖Lp(Rn) (8.1)

for all 2r ≤ n( 1
p −

1
q ). To study

F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsχ(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)
,



206 M. REISSIG AND K. YAGDJIAN

we choose a nonnegative C∞-function φ = φ(s) having compact support in {s ∈ R1 :
1/2 ≤ s ≤ 2}. We set φk(s) := φ(2−ks) while φ0(s) := 1−

∑∞
k=1 φk(s). One can find such

a function that
∑+∞
k=−∞ φk(s) = 1. Hence, supp φ0 ⊂ {s ∈ R1 : s ≤ 2}. Using the same

ideas as above one can prove for 0 ≤ k ≤ k0 that∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(χφk)(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

Lq(Rn)

≤ Ck K(t)2r−n( 1
p−

1
q )‖u0‖Lp(Rn).

(8.2)

To estimate for k ≥ k0 the Lq-norm of these multipliers we use the transformation
K(t)ξ = 2kη, derive L1−L∞, L2−L2 estimates, respectively, and apply an interpolation
argument (see [10]). We get

Ik = sup
x∈Rn

∣∣∣∣ ∫
Rn
e
ix·ξ+i

∫ t
0
λ(s)b(s)〈ξ〉mds(χφk)(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

dξ

∣∣∣∣
= K(t)2r−n2k(n−2r)

× sup
y∈Rn

∣∣∣∣∣F−1

(
e
i2k|η| 1

K(t)

∫ t
0
λ(s)b(s)(1+

K2(t)m2

22k|η|2
)1/2ds

χ((22k|η|2 +K2(t)m2)1/2)

× φ

((
|η|2 +

K2(t)m2

22k

)1/2) a(t, 2kη
K(t) )

(|η|2 + m2K2(t)
22k )r

)∣∣∣∣∣.
With a sufficiently large k0 we have |η| ∈ [1/4, 2] on supp φ and χ((22k|η|2 +K2(t)m2)1/2)
≡ 1 for all k ≥ k0 and t ∈ (0, tm,N ]. Consequently we are able to apply Proposition 7.2.
Here we use that K(t) = O(Λ(t)β/2) if t tends to 0. It gives

sup
y∈Rn

∣∣∣∣∣F−1

(
e
i2k|η| 1

K(t)

∫ t
0
λ(s)b(s)(1+

K2(t)m2

22k|η|2
)1/2ds

χ((22k|η|2 +K2(t)m2)1/2)

× φ

((
|η|2 +

K2(t)m2

22k

)1/2) a(t, 2kη
K(t) )

(|η|2 + m2K2(t)
22k )r

)∣∣∣∣∣
≤ (1 + 2kΛ(t)1−β/2)−

n−1
2

∑
|α|≤n

‖Dα
η

φ((|η|2 + K2(t)m2

22k )1/2)a(t, 2kη
K(t) )

(|η|2 + m2K2(t)
22k )r

 ‖L∞(Rn).

Due to Proposition 7.2 we need in Zhyp(N) the assumption for the derivatives ∂αξ a(t, ξ)
of the amplitude function for |α| ≤ n. This means we have to guarantee that n ≤
β(M − 1). But this follows from the assumption for M . Therefore we have to choose in
Proposition 5.1 the number of steps of perfect diagonalization M ≥ n/β + 1. Then∥∥∥∥Dα

η a

(
t,

2kη
K(t)

)∥∥∥∥
L∞(Rn)

≤ CM
(

2k

K(t)

)|α|(22k|η|2

K2(t)
+m2

)−|α|
≤ CM

for |α| ≤ n. Using Lemma 3 from [1] leads to

Ik ≤ CMK(t)2r−n2k(n−2r)

×
∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(χφk)(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

L∞(Rn)
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≤ CM K(t)2r−n2k(n−2r)(1 + 2kΛ(t)1−β)−
n−1

2 ‖u0‖L1(Rn)

for t ∈ (0, tm,N ] and k ≥ k0. The corresponding L2 − L2 estimate is∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(χφk)(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

L2(Rn)

≤ C K(t)2r2−2kr‖u0‖L2(Rn)

for t ∈ (0, tm,N ] and k ≥ k0. An interpolation argument leads to∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(χφk)(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

Lq(Rn)

≤ CMK(t)2r−n( 1
p−

1
q )2k(n( 1

p−
1
q )−2r)(1 + 2kΛ(t)1−β)−

n−1
2 ( 1

p−
1
q )‖u0‖Lp(Rn)

≤ CMK(t)2r−n( 1
p−

1
q )‖u0‖Lp(Rn) (8.3)

if 2r ≥ n( 1
p −

1
q ). The inequalities (8.1) to (8.3) imply together with Lemmas 1 and 2

from [1] the Lp − Lq estimate∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds a(t, ξ)

〈ξ〉2rm
F (u0)(ξ)

)∥∥∥∥
Lq(Rn)

≤ C‖u0‖Lp(Rn) (8.4)

for t ∈ (0, tm,N ) and 2r = n( 1
p −

1
q ).

The estimate (8.4) coincides with the estimate from [10] for m = 1 and t ∈ (0, tm,N ].
b) t ∈ [tm,N ,∞). Let ψ = ψ(s) ∈ C∞(R1) be a function with ψ(s) = 0 for s ≤√

2m, ψ(s) = 1 for s ≥ 2m and 0 ≤ ψ(s) ≤ 1. We begin to estimate

F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(1− ψ(〈ξ〉m))

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)
.

We have now the advantage that the amplitude function

(1− ψ(〈ξ〉m))
a(t, ξ)
〈ξ〉2rm

has a compact support with respect to ξ uniformly for t ∈ [tm,N ,∞). As a Littman-type
lemma we apply Proposition 7.1. The same approach as in the second part of a) gives∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mds(1− ψ(〈ξ〉m))

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

Lq(Rn)

≤ Cr
1√
λ(t)

Λ(t)−
n
2 ( 1

p−
1
q )‖u0‖Lp(Rn)

(8.5)

for r ≥ 0 and all t ∈ [tm,N ,∞).
Thus we can use in the following the information that |ξ| ≥ m.
To estimate

F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsψ(〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)

we split it into

Ik = F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsψ(〈ξ〉m)φk(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)
, k ≥ 0,
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where φ = φ(s) is a nonnegative function having compact support in {s ∈ R1 : 2m0 ≤
s ≤ 2m0+2}, 2m0 > m . If we consider Ik for k ≤ k0, in general k0 is large, then we are
able to apply Proposition 7.1 and obtain the Lp − Lq estimates

k0∑
m=0

‖Im(t, ·)‖Lq(Rn) ≤ Cr
1√
λ(t)

Λ(t)−
n
2 ( 1

p−
1
q )‖u0‖Lp(Rn) (8.6)

for all r ≥ 0 (pay attention that t ≥ tm,N !). Moreover we use here that there exists
a constant t0 such that the amplitudes of Ik, k ≤ k0 vanish for all t ≥ t0. For the
consideration of Ik, k ≥ k0 + 1, we use in opposite to the considerations for t ∈ (0, tm,N ]
the Klein-Gordon type transformation K(t)〈ξ〉m = 2k〈η〉m which is acting only in the
radial direction. Let us analyze properties of this one to one transformation.

• It can be described by

ξl =
f(|η|, 2k,K(t))

|η|
ηl, f(|η|, 2k,K(t)) =

√
22k

K(t)2
〈η〉2m −m2.

Here we use ξl = |ξ|gl(φ, θ1, . . . , θn−2), ηl = |η|gl(φ, θ1, . . . , θn−2) and the above
transformation.

• We have x · ξ = f(|η|,2k,K(t))
|η| x · η.

• We have

∇ηf(|η|, 2k,K(t)) =
2k

K(t)
η√

1− m2

〈ξ〉2m

.

The additional information |ξ| ≥ m implies |∇ηf(|η|, 2k,K(t))| ≤ C 2k

K(t) .
• In the same way one shows that

|∇ηξl| ≤ C
2k

K(t)
, where we use |η| ∈ [c0(m0), c1(m0)], c0(m0) > 0.

Consequently, |det Jη(ξ)| ≤ C( 2k

K(t) )n.

Now we have all tools to follow the lines from the second part of a). We have

sup
x∈Rn

∣∣∣∣ ∫
Rn
e
ix·ξ+i

∫ t
0
λ(s)b(s)〈ξ〉mdsψ(〈ξ〉m)φk(K(t)〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

dξ

∣∣∣∣
= K(t)2r sup

y∈Rn

∣∣∣∣ ∫
Rn
e
iy·η+i

∫ t
0
λ(s)b(s)

2k〈η〉m
K(t) ds

ψ

(
2k〈η〉m
K(t)

)
× φ(〈η〉m)

a(t, ξ(η))
(2k〈η〉m)2r

|det Jη(ξ)|dη
∣∣∣∣

≤ C2k(n−2r)K(t)2r−n sup
y∈Rn

∣∣∣∣F−1

(
e
i
∫ t

0
λ(s)b(s)

2k〈η〉m
K(t) ds

ψ

(
2k〈η〉m
K(t)

)
× φ(〈η〉m)

a(t, ξ(η))
〈η〉2rm

)∣∣∣∣.
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But Dα
ηψ( 2k〈η〉m

K(t) ) = 0 for 2k〈η〉m
K(t) 6∈ [

√
2m, 2m]. Moreover, η takes values from a compact

set. Hence, due to Proposition 7.1 we have

sup
y∈Rn

∣∣∣∣F−1

(
e
i
∫ t

0
λ(s)b(s)

2k〈η〉m
K(t) ds

ψ(
2k〈η〉m
K(t)

)φ(〈η〉m)
a(t, ξ(η))
〈η〉2rm

)∣∣∣∣
≤ Cr

(
2kΛ(t)
K(t)

)−n2 1√
λ(t)

.

Using (8.6) and the assumptions for a = a(t, ξ) we finally obtain as in the second part
of a) ∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsψ(〈ξ〉m)

a(t, ξ)
〈ξ〉2rm

F (u0)(ξ)
)∥∥∥∥

Lq(Rn)

≤ CM
1√
λ(t)

K(t)2r−n2 ( 1
p−

1
q )Λ(t)−

n
2 ( 1

p−
1
q )‖u0‖Lp(Rn)

≤ CMΛ(t)−
n
2 ( 1

p−
1
q )‖u0‖Lp(Rn), (8.7)

if n
2 ( 1

p −
1
q ) ≤ 2r. Here we need all derivatives ∂αξ a(t, ξ) with |α| ≤ n+ 1. This gives the

condition of the theorem for M .

c) Let us summarize the information given from the estimates (8.4), (8.5) and (8.7).
In (8.4) we choose 2r = n( 1

p −
1
q ) and obtain∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsa(t, ξ)F (u0)(ξ)

)∥∥∥∥
Lq(Rn)

≤ C‖u0‖WL
p (Rn),

L = [n( 1
p −

1
q )] + 1, t ∈ (0, tm,N ].

In (8.7) we choose 2r = n
2 ( 1

p −
1
q ) and obtain with the same L∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsa(t, ξ)F (u0)(ξ)

)∥∥∥∥
Lq(Rn)

≤ C 1√
λ(t)

Λ(t)−
n
2 ( 1

p−
1
q )‖u0‖WL

p (Rn)

for t ∈ [tm,N ,∞). Both these inequalities imply together with (8.5)∥∥∥∥F−1

(
e
i
∫ t

0
λ(s)b(s)〈ξ〉mdsa(t, ξ)F (u0)(ξ)

)∥∥∥∥
Lq(Rn)

≤ C 1√
λ(t)

(1 + Λ(t))−
n
2 ( 1

p−
1
q )‖u0‖WL

p (Rn)

for t ∈ (0,∞), where L = [n( 1
p −

1
q )] + 1. The statement of the theorem is proved.

9. Klein-Gordon type decay rates. Summarizing the results from the previous
sections we are able to prove Theorems 2.1 and 2.2 and can discuss Examples 2.1 and 2.2.

Proof of Theorem 2.1. After application of Theorem 8.1 to the explicit representations
for ∇u and ut obtained from Theorem 6.1 we get immediately the Lp − Lq estimates

‖∇u(t, ·)‖Lq(Rn) ≤ C
1√
λ(t)

(
1 + Λ(t)

)−n2 ( 1
p−

1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
;
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‖ut(t, ·)‖Lq(Rn) ≤ C
√
λ(t)

(
1 + Λ(t)

)−n2 ( 1
p−

1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
.

Here L = [n( 1
p −

1
q )] + 1. But this implies the statement of the theorem.

Proof of Theorem 2.2. After application of Theorem 8.1 to the explicit representations
for ∇u and ut obtained from Theorem 6.2 we get immediately the Lp − Lq estimates

‖∇u(t, ·)‖Lq(Rn) ≤ C
1√
λ(t)

(
1 + Λ(t)

)C0,0
m −n2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
;

‖ut(t, ·)‖Lq(Rn) ≤ C
√
λ(t)

(
1 + Λ(t)

)C0,0
m −n2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)

)
.

Here L = [n( 1
p −

1
q )] + 1. But this implies the statement of the theorem.

We are able to describe classes of differential equations of Klein-Gordon type. If we
compare our results with those for m2 ≡ 0, then the decay functions coincide, but the
essential part of the decay rates is 1

2 ( 1
p −

1
q ) higher in the Klein-Gordon case.

Discussion of Example 2.1. Let us consider for l ≥ 1 the Cauchy problem

utt − (1 + t)2lb2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Here b = b(t) is a 1-periodic, non-constant, smooth and positive function. Then the
conditions (A1) to (A4) are satisfied, where β = l/(l + 1) in (A4). Thus we have to
distinguish two cases.

Case l > 1: Applying Theorem 2.1 we have

‖∇u(t, ·)‖Lq(Rn) ≤ C (1 + tl)−1/2(1 + tl+1)−
n
2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)),

‖ut(t, ·)‖Lq(Rn) ≤ C (1 + tl)1/2(1 + tl+1)−
n
2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)).

Case l = 1: Applying Theorem 2.2 we have

‖∇u(t, ·)‖Lq(Rn) ≤ C (1 + tl)−1/2(1 + tl+1)
C0,0
m −n2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)),

‖ut(t, ·)‖Lq(Rn) ≤ C (1 + tl)1/2(1 + tl+1)
C0,0
m −n2 ( 1

p−
1
q )(‖u0‖WL+1

p (Rn) + ‖u1‖WL
p (Rn)).

Pay attention that in the case m ≡ 0 corresponding Lp−Lq decay estimates cannot hold
for all l ≥ 0, see [13].

Discussion of Example 2.2. Let us consider for α ∈ (0, 1] the Cauchy problem

utt − exp(2tα)b2(t)(4u−m2u) = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Here b = b(t) is a 1-periodic, non-constant, smooth and positive function. All assumptions
(A1) to (A4) are satisfied. The condition (A4) is satisfied for each β < 1. Applying
Theorem 2.1 we have

‖∇u(t, ·)‖Lq(Rn) ≤ C (1 + t)
1−α

2 (1 + Λ(t))−
n
2 ( 1

p−
1
q )− 1

2 (‖u0‖WL+1
p (Rn) + ‖u1‖WL

p (Rn)),

‖ut(t, ·)‖Lq(Rn) ≤ C (1 + t)
α−1

2 (1 + Λ(t))−
n
2 ( 1

p−
1
q )+ 1

2 (‖u0‖WL+1
p (Rn) + ‖u1‖WL

p (Rn)).

Here we use
√

λ(t)
Λ(t) ∼ t

α−1
2 for large t. Pay attention that in the case m ≡ 0 corresponding

Lp − Lq decay estimates cannot hold for α < 1/2, see [13].
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Remark 9.1. At the end of this paper we want to remember different constants
appearing in our approach. First we determine for our given Cauchy problem (1.5) the
constant β ∈ [1/2, 1] from (2.2). Then we determine the natural numberM ≥ (n+1)/β+1.
The number M determines the number of steps of perfect diagonalization carried out in
Proposition 5.1. Finally we have to choose N ≥ 1 large enough, such that the matrix NM
from Proposition 5.1 is invertible. In this way one can choose all constants needed for our
approach and follow all considerations. In Theorems 2.1 and 2.2 we need the constant L
to describe the regularity of the data u0 and u1 which we have to suppose.
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