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Abstract. We show that a modular class arises from the existence of two generating oper-
ators for a Batalin-Vilkovisky algebra. In particular, for every triangular Lie bialgebroid (A,P )
such that its top exterior power is a trivial line bundle, there is a section of the vector bundle A
whose dP -cohomology class is well-defined. We give simple proofs of its properties. The modular
class of an orientable Poisson manifold is an example. We analyse the relationships between gen-
erating operators of the Gerstenhaber algebra of a Lie algebroid, right actions on the elements
of degree 0, and left actions on the elements of top degree. We show that the modular class
of a triangular Lie bialgebroid coincides with the characteristic class of a Lie algebroid with
representation on a line bundle.

1. Introduction. We present the definition and properties of the modular class of
a triangular Lie bialgebroid such that its top exterior power is a trivial line bundle.
This is only a slight generalization of the theory of modular vector fields of orientable
Poisson manifolds. However, we believe that it is important to show that the existence
of a modular field is due to the existence of two different generating operators for a
Batalin-Vilkovisky algebra. The main features of the construction are valid in the more
general algebraic framework of Lie-Rinehart algebras and their associated Gerstenhaber
algebras [9] [10]. The modular field is then an element of the dual over the base ring
of the Lie-Rinehart algebra. To simplify, we restrict most of our remarks to the case of
Gerstenhaber algebras associated to Lie algebroids.

The modular vector field of a Poisson manifold was introduced, without a name, by
Koszul in [15]. In [5], Dufour and Haraki called it the “curl” (“rotationnel”) of a Poisson
structure. They showed that it preserves the Poisson structure, and used it to classify the
quadratic Poisson structures on a 3-dimensional vector space. It was also used by Liu and
Xu in [16], and by Grabowski, Marmo and Perelomov in [8]. In [24], Weinstein showed
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in what sense the modular vector field is the infinitesimal generator of the analogue
in Poisson geometry of the modular automorphism group of a von Neumann algebra,
and he introduced the modular class. See also [25]. In [6], Evens, Lu and Weinstein
defined the modular class of a Lie algebroid and proved that the modular class of a
Poisson manifold (M,P ) is one-half the modular class of T ∗M , the cotangent bundle
of M with the Lie algebroid structure defined by P , according to formula (3) below. In
[26], Xu related the study of modular vector fields on Poisson manifolds to the notion
of a Gerstenhaber algebra, more precisely to that of a Batalin-Vilkovisky algebra (BV-
algebra). A full algebraic theory was developped by Huebschmann in [10] [11] and [12].

Here, we show (Section 4) that the existence of a closed (in the Lie algebroid coho-
mology) section of the dual E∗ of a Lie algebroid E follows from the existence of two
distinct generating operators of square zero for the Gerstenhaber bracket on the sections
of

∧
E. When E = A∗, where (A,P ) is a triangular Lie bialgebroid such that its top

exterior power is a trivial line bundle, we obtain (Section 5) the definition of its modular
field, which is a section of the Lie algebroid A. In the particular case of the triangular Lie
bialgebroid (TM,P ) of an orientable Poisson manifold (M,P ), we recover the modular
vector field of the Poisson manifold, a section of TM . Section 6 deals with the notion of
“Laplacian”.

We then show how the notions of representations and right actions connect our results
with those in the literature. We show (Section 7) that it is possible to modify the right
action of the Lie algebra of the elements of degree 1 on the elements of degree 0 in a
Batalin-Vilkovisky algebra by the addition of the cocycle defined by the restriction of the
generating operator of the bracket, and we recover the right action of differential 1-forms
on functions on a Poisson manifold discovered by Huebschmann in [10]. More precisely, as
shown in [11], there is a one-to-one correspondence between generating operators and right
actions on the elements of degree 0. In Section 8, we explain the one-to-one correspondence
between generating operators of the Gerstenhaber algebra of a Lie algebroid, E, and left
actions on the elements of top degree. If, in particular, the top exterior power of the
Lie algebroid is a trivial line bundle, the choice of a nowhere vanishing section λ of this
bundle uniquely determines both a left action ∇λ of the sections of the Lie algebroid on
the line bundle and a generator ∂λ of the Gerstenhaber algebra of the Lie algebroid. In
fact, ∇λλ = 0 and ∂λ is nothing but the Lie algebroid differential transported to the
sections of the exterior powers of the Lie algebroid itself by means of the isomorphism
defined by λ between sections of

∧
E and sections of

∧
E∗. We show (Section 9) that the

modular class considered here coincides with the characteristic class of a Lie algebroid
with a representation on its top exterior bundle in the sense of Evens, Lu and Weinstein
[6], and therefore, when the triangular Lie bialgebroid is the one associated to a Poisson
manifold (M,P ), it is also one-half the modular class of the Lie algebroid T ∗M , which
is itself one-half the modular class, in the sense of Huebschmann [10], of the associated
Lie-Rinehart algebra.

2. Gerstenhaber algebras, Batalin-Vilkovisky algebras and Lie algebroid
cohomology. We first recall some definitions. A Gerstenhaber algebra is a graded com-
mutative, associative algebra, A, equipped with a bracket, [ , ], of degree −1, which makes
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A[1] a graded Lie algebra, where A[1]k = Ak+1, and such that, for a ∈ A[1]k, [a, . ] is a
derivation of degree k of A.

A Batalin-Vilkovisky algebra (hereafter, BV-algebra) is a graded commutative, asso-
ciative algebra, A, equipped with an operator ∂ of degree −1 and of square 0 such that

[a, b] = (−1)|a|(∂(ab)− (∂a)b− (−1)|a|a(∂b)) , (1)

for a ∈ A|a|, b ∈ A|b|, defines a Gerstenhaber algebra structure on A (see [15]). In this
case we say that ∂ generates the bracket [ , ] of A, or that ∂ is a generating operator for
the bracket. BV-algebras are also called exact Gerstenhaber algebras [13] because, in the
preceding fundamental formula, the bracket, seen as a 2-cochain on A with coefficients
in A, is the graded Hochschild coboundary of ∂ with respect to the associative multipli-
cation. It follows from the definition of ∂ that it is a derivation of the bracket of A, thus
(A[1], ∂) is a differential graded Lie algebra. See [15] and, for a recent reference, [19].

One can also introduce a more general notion of a generating operator of a Gersten-
haber algebra, one that satisfies (1) but which is not necessarily of square 0. But in this
paper we shall only consider generating operators of Gerstenhaber algebras of square
zero, which we choose to call “generators”, although they are more often called “exact
generators”. Thus, we adhere here to the following

Convention. The generating operators of Gerstenhaber algebras are assumed to be
of square 0.

A strong differential Gerstenhaber algebra is a Gerstenhaber algebra with a differential,
i.e., a derivation of degree 1 and of square 0 of the associative algebra, which differential
is also a derivation of its bracket. A strong differential BV-algebra is a BV-algebra with
a differential that is also a derivation of the bracket.

Any Lie-Rinehart algebra [9] defines a Gerstenhaber algebra, and conversely. If A
is a Gerstenhaber algebra over a field k, then (A0,A1) is a Lie-Rinehart algebra, more
precisely, A1 is a (k,A0)-algebra, namely, A0 is a commutative k-algebra and A1 is an
A0-module and a k-Lie algebra which acts onA0 by derivations, such that (fa).g = f(a.g)
and [a, fb] = f [a, b] + (a.f)b, for f ∈ A0 and a, b ∈ A1. Conversely, if A1 is a (k,A0)-
algebra, then

∧
A0 A1 is a Gerstenhaber algebra over k. (See [7], Theorem 5.)

If A1 is a (k,A0)-algebra, and if A1 is a projective A0-module, the cohomology of A1

with coefficients in A0 is the cohomology of the complex (AltA0(A1,A0), d), where d is
defined by a formula [21] generalizing both that of the de Rham differential and that of
the Chevalley-Eilenberg differential, using the Lie bracket of A1 and the left action of A1

on A0. More generally, one can define the cohomology of A1 with coefficients in a left (A0,
A1)-module, and the homology of A1 with coefficients in a right (A0, A1)-module. See [9].
We recall that an A0-module, M (resp., N), which is also a left (resp., right) A1-module
is called a left (resp., right) (A0, A1)-module if, for each f ∈ A0, a ∈ A1,m ∈ M (resp.,
n ∈ N), (fa).m = f(a.m) and a.(fm) = f(a.m) + (a.f)m (resp., n.(fa) = (nf).a and
(n.a)f = n.(fa) + n(a.f)).

If E is a Lie algebroid with base M and anchor ρ (see [17] [23]), the space of sections
of E is an (R, C∞(M))-algebra, and there are related structures naturally defined on the
sections of the exterior bundle of E and its dual [14] [18].
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(i) The space of sections of
∧
E (the Whitney sum of the exterior powers of the vector

bundle E) is a Gerstenhaber algebra. The Gerstenhaber bracket on Γ(
∧
E), denoted by

[ , ]E and often called the Schouten bracket, extends the Lie bracket of Γ(E) = Γ(
∧1

E) to
Γ(

∧
E), and is such that [a, f ]E = ρ(a)f , for f ∈ C∞(M), a ∈ Γ(E). The Lie derivation

by a ∈ Γ(E) is the derivation LEa = [a, . ]E of Γ(
∧
E).

(ii) The space of sections of
∧
E∗, where E∗ is the dual vector bundle of E, is a

differential graded commutative, associative algebra. The differential on Γ(
∧
E∗), denoted

by dE , is called the de Rham differential. The cohomology of the complex (Γ(
∧
E∗), dE),

called the Lie algebroid cohomology of E with coefficients in C∞(M), is the cohomology
of the Lie-Rinehart algebra A1 = Γ(E) with coefficients in A0 = C∞(M). For a ∈ Γ(E),
the Lie derivation of Γ(

∧
E∗) is the operator La = [ia, dE ], where the bracket is the

graded commutator of operators.

We denote the interior product of a section α of
∧
E∗ by a section a of

∧
E by iaα. Our

convention is that ia = ia1ia2 ...iak−1iak , for a decomposable element a = a1∧a2∧ ...∧ak,
where aj ∈ Γ(E), j = 1, 2, . . . , k. Under this convention (see, e.g., [4]), the Schouten
bracket of multivectors a, b ∈ Γ(

∧
E) satisfies

i[a,b]E = [La, ib] = [[ia, dE ], ib] . (2)

Remark. Many authors, including those of [6], [26] and [20], adopt a different sign
convention for the interior product, namely they define the interior product by a decom-
posable element a = a1∧a2∧...∧ak as iak iak−1 ...ia2ia1 . We shall denote this other interior

product by ı̃a. The two operators are related by ı̃a = (−1)
|a|(|a|−1)

2 ia . In particular, if
P is a bivector, then ı̃P = −iP . This fact explains the sign differences between some of
their formulae and ours.

When E is a vector bundle of rank n, we denote
∧n

E by
∧top

E.
We shall use the notation ∂, with or without a subscript, for operators of degree −1,

and the notation d, with or without a subscript, for operators of degree 1.

3. Triangular Lie bialgebroids. We now recall the definition and main properties
of triangular Lie bialgebroids.

A Lie bialgebroid is a pair (A,A∗) of Lie algebroids in duality such that dA∗ is a
derivation of [ , ]A. Then [18] [13] dA is also a derivation of [ , ]A∗ .

In particular, a triangular Lie bialgebroid is a pair (A,P ), where A is a Lie algebroid
and P is a section of

∧2
A such that [P, P ]A = 0. Then

[α, β]P = LP ]αβ − LP ]βα− dA(P (α, β)) , (3)

for α, β ∈ Γ(A∗), defines a Lie algebroid structure on A∗, with anchor ρ∗ = ρ ◦P ], where
P ](α)(β) = P (α, β), and ρ is the anchor of A. Furthermore, (A,A∗) is a Lie bialgebroid.
We use the same notation for the extension of [ , ]P to the Gerstenhaber bracket on the
algebra Γ(

∧
A∗). In this case, the de Rham differential on Γ(

∧
A) is denoted by dP . It

was proved in [1] and [14] that

dP = [P, . ]A . (4)
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From this property it follows that (Γ(
∧
A), [ , ]A, dP ) is a strong differential Gerstenhaber

algebra.
We also know ([15] [13]) that Γ(

∧
A∗) has a BV-algebra structure, since its Gersten-

haber bracket, [ , ]P , is generated by the generalized Poisson homology operator,

∂P = [dA, iP ] , (5)

where dA is the de Rham differential on Γ(
∧
A∗) coming from the Lie algebroid structure

of A, and iP denotes the interior product by P . In this formula, the bracket is the graded
commutator of operators.

It follows from the general result on BV-algebras recalled in Section 2 that the operator
∂P is a derivation of the bracket [ , ]P . Moreover, the de Rham differential, dA, is a
derivation of the bracket [ , ]P , so that (Γ(

∧
A∗), ∂P , dA) is a strong differential BV-

algebra.
The main example of a triangular Lie bialgebroid is a pair (TM,P ), where TM is the

tangent bundle of a manifold M and P is a Poisson bivector on M . In this case, [ , ]P
is a Lie bracket on the vector space of differential 1-forms on M , and its extension to
Γ(

∧
T ∗M) is a Gerstenhaber bracket on the algebra of differential forms on M , which

was defined by Koszul [15].

Remark. The operator [iP , d] introduced in [15], where it is denoted by ∇, is the
opposite of the operator that we have denoted here by ∂P . (Although the convention for
the interior product is not explicitly stated in [15], it is clear from the context that it is
the one that we have adopted here, iP , and not ı̃P .) It generates the bracket denoted there
by [ , ], which satisfies [df, dg] = −d{f, g}, and is therefore the opposite of the bracket
[ , ]P defined by (3). The operator [iP , d] defined by Koszul, and studied by Brylinski in
[2], is sometimes called the Koszul-Brylinski operator.

Just as Lie bialgebras in the sense of Drinfeld are examples of Lie algebroids (whose
base is a point), triangular Lie bialgebras (g, r) are examples of triangular Lie bialgebroids,
with base a point. Here, r is in

∧2
g. In this case, dA is the Lie algebra coboundary

operator dg defined by the Lie algebra structure of g, and ∂r = [dg, ir] generates the
bracket of g∗. For ξ, η ∈ g∗,

[ξ, η]r = ad∗r]ξη − ad∗r]ηξ = −(∂r(ξ ∧ η)− (∂rξ) ∧ η + ξ ∧ (∂rη)) . (6)

4. Generating operators of Gerstenhaber algebras and modular classes. We
first prove a generalization of formula (2.4) in [15].

Proposition 1. Let (A, ∂) be a BV-algebra with the Gerstenhaber bracket [ , ] defined
by (1), and let us assume that A =

∧
A0 A1. If ξ is in HomA0(

∧
A0 A1,A0), then

[∂, iξ] = −idξ . (7)

Proof. If ∂ generates the bracket, it satisfies, for f ∈ A0, a ∈ A1, ∂(fa) = f∂a−[a, f ].
Since idfa = (df)(a) = [a, f ], (7) holds for ξ ∈ A0. Let ξ be in (A1)∗ = HomA0(A1,A0).
Using (1), we can compute [∂, iξ](a ∧ b) for a, b ∈ A1 in terms of the bracket of A, and
we obtain

[∂, iξ](a ∧ b) = [a,< ξ, b >]− [b,< ξ, a >]− < ξ, [a, b] >= (dξ)(a, b) = −idξ(a ∧ b) , (8)
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by the definition of the cohomology operator d of A1 with coefficients in A0. Since [∂, iξ]
is A0-linear and of degree −2, formula (7) holds for ξ ∈ A1. It is easy to see, using the
relation iξ∧η = iξiη for ξ, η ∈ A1, that (7) holds for forms of all degrees.

If ∂′ is another operator which generates the same bracket, then ∂′ − ∂ is A0-linear
and therefore its restriction to A1 defines an element ξ in (A1)∗ such that, for any
a ∈ A1, (∂′ − ∂)a =< ξ, a >. Since ∂′ − ∂ is a derivation, it follows that, for any a ∈ A,
(∂′−∂)a = iξa. So, any two generating operators of A define an element ξ in (A1)∗. This
element is in fact closed in the cohomology of A1 with coefficients in A0, as we now show.

Proposition 2. Let ∂ and ∂′ be operators that each generates the Gerstenhaber al-
gebra (

∧
A0 A1, [ , ]). Then the element ξ of (A1)∗ such that ∂′ − ∂ = iξ is a 1-cocycle of

A1 with coefficients in A0. Conversely, if ∂ is a generating operator of A =
∧
A0 A1 and

if ξ ∈ (A1)∗ is a 1-cocycle of A1 with coefficients in A0, then ∂ + iξ is also a generating
operator.

Proof. We assume that ∂′ − ∂ = iξ. The graded commutator [∂′, ∂′] is equal to
[∂, ∂] + 2[∂, iξ]. Since by assumption, ∂2 = ∂′2 = 0, it follows from (7) that dξ = 0.
Conversely, if ∂ is a generating operator of the bracket, and if ∂′ = ∂ + iξ, then, since
iξ is a derivation, ∂′ also satisfies (1). Furthermore, (∂′)2 = 0, since ∂2 = 0 and ξ is a
1-cocycle, and therefore ∂′ is a generating operator.

In Proposition 3.2 of [26], Xu proves this result for the case of the Gerstenhaber algebra
of a Lie algebroid, making use of flat connections as in Section 8. See also Theorem 2.6
in [22], for the case where A1 is the Lie algebra of derivations of a commutative ring and
ξ is an exact 1-form, df .

In the rest of this paper, we shall consider those cases where ∂ is a fixed generating
operator, and where, by varying ∂′, we obtain equivalent 1-cocycles, ξ∂′ . In those cases,
the class of ξ∂′ in the cohomology of A1 with coefficients in A0 is well-defined, and we
shall call it the modular class of the BV-algebra (A, ∂).

5. The modular class of a triangular Lie bialgebroid. Let A be a Lie algebroid
of rank n. We assume that there exists a nowhere vanishing element µ in Γ(

∧top
A∗).

Such a section defines an isomorphism ∗µ of
∧
A onto

∧
A∗ such that, for each degree k,

0 ≤ k ≤ n, ∗µ :
∧k

A→
∧n−k

A∗. This isomorphism is defined by

∗µQ = iQµ , (9)

for Q ∈ Γ(
∧k

A), k > 0, and ∗µf = fµ for f ∈ Γ(
∧0

A) = C∞(M). (We denote by the
same letter a morphism of vector bundles and the map on sections that it defines.)

Let us introduce the operator

∂µ = − ∗−1
µ dA ∗µ (10)

on Γ(
∧
A).

Proposition 3. The operator ∂µ is of degree −1 and of square 0, it generates the
Schouten bracket of Γ(

∧
A) and it is a derivation of the Schouten bracket.
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Proof. We first prove that

LXµ = (−1)k ∗µ (∂µX) , (11)

for X ∈ Γ(
∧k

A). In fact, this equality follows from the fact that, on forms of top degree,
LX = −(−1)kdAiX , and from the definition of ∂µ.

Now, let X be in Γ(
∧k

A) and Y in Γ(
∧l

A). We use the definition of LAX and relation
(2), as well as the relations iX∧Y µ = iX iY µ, for X,Y ∈ Γ(

∧
A), and ∗µeX = iX∗µ, where

eX is the exterior product by X, to obtain first

∂µ(X ∧ Y ) = − ∗−1
µ dA ∗µ eXY = − ∗−1

µ dAiX ∗µ Y ,

then

dAiX ∗µ Y = (−1)k−1LX iY µ+ (−1)kiXdA ∗µ Y ,

whence

∂µ(X ∧ Y ) = (−1)k ∗−1
µ i[X,Y ]Aµ+ (−1)k+(k−1)l ∗−1

µ iY LXµ+ (−1)keX∂µY .

Using relation (11), we obtain

∂µ(X ∧ Y ) = (−1)k[X,Y ]A + (−1)(k−1)leY ∂µX + (−1)keX∂µY ,

or

[X,Y ]A = (−1)k(∂µ(X ∧ Y )− (∂µX) ∧ Y − (−1)kX ∧ (∂µY )) ,

which proves the proposition.

Cf. Lemma 4.6 of [6] (where we see that, taking into account the different conventions
for the definition of the interior product, the operator bµ0 defined in formula (45) is equal
to our ∂µ0) and Theorem 2.3 of [22] (where the sign conventions coincide with ours).

The operator ∂µ, called the divergence with respect to µ, satisfies

LXµ = −(∂µX)µ , (12)

for X ∈ Γ(A). So, if A = TM , for a vector field X ∈ Γ(TM), ∂µX is the opposite of
the usual divergence, divµX, which satisfies LXµ = (divµX)µ. In fact. ∂µ is the unique
generating operator of the Schouten bracket that satisfies (12). Explicitly (see [11], [22]),
for Xj ∈ Γ(A), j = 1, 2, . . . , q,

∂µ(X1 ∧ . . . ∧Xq) =
∑

1≤j<k≤q

(−1)j+k[Xj , Xk]A ∧X1 ∧ . . . ∧ X̂j ∧ . . . ∧ X̂k ∧ . . . ∧Xq

+
q∑
j=1

(−1)j−1(∂µXj)X1 ∧ . . . ∧ X̂j ∧ . . . ∧Xq .

Let us now assume that (A,P ) is a triangular Lie bialgebroid. The operator ∂P defined
by formula (5) generates the bracket [ , ]P of Γ(

∧
A∗).

Remark. In the case of the generating operator, ∂P = [d, iP ], an alternate proof of
relation (7), [∂P , iQ] = −idPQ, forQ ∈ Γ(

∧
A), is obtained by setting E = A, a = P, b = Q

in relation (2).



116 Y. KOSMANN-SCHWARZBACH

We shall now show that to any choice of a nonvanishing section µ in Γ(
∧top

A∗), there
corresponds another generating operator of this same bracket. Let us set

∂P,µ = − ∗µ dP ∗−1
µ . (13)

By definition, the operator ∂P,µ on Γ(
∧
A∗) satisifies

∂P,µ(iQµ) = −idPQµ , (14)

for any Q ∈ Γ(
∧
A).

Proposition 4. The operator ∂P,µ is of degree −1 and of square 0, it generates the
Gerstenhaber bracket [ , ]P of Γ(

∧
A∗), and is a derivation of the bracket [ , ]P .

Proof. We first choose a nowhere vanishing section λ of Γ(
∧top

A), and we introduce
the operator ∂̃P,λ = − ∗−1

λ dP ∗λ, where ∗λα = iαλ, for α ∈ Γ(
∧
A∗). Proceeding as

in the proof of Proposition 3, we see that ∂̃P,λ generates the bracket [ , ]P . Now, for
λ ∈ Γ(

∧top
A), µ ∈ Γ(

∧top
A∗), and α ∈ Γ(

∧k
A∗),

∗µ(iαλ) = (−1)k(n−k) < µ, λ > α . (15)

Indeed, for X ∈ Γ(
∧k

A),

< ∗µ(iαλ), X >= µ(iαλ ∧X) = (−1)k(n−k)µ(X ∧ iαλ)

and

µ(X ∧ iαλ) = µ(eX ∗λ α) = µ(∗λiXα) =< α,X > µ(∗λ1) =< µ, λ >< α,X > .

Choosing λ and µ such that < λ, µ >= 1, we obtain that the operator ∂P,µ defined by
(13) coincides with ∂̃P,λ, thus proving that it generates the bracket [ , ]P . The rest of the
proposition is clear.

Remark. We give an alternate proof of Proposition 4, based on Propositions 2 and
3. Since ∂µ generates the Schouten bracket, we obtain

[∂µ, eP ]− dP = e∂µP , (16)

whence
∂P,µ − [dA, iP ] = i∂µP .

Since ∂µ is a derivation of the Schouten bracket,

dP (∂µP ) = [P, ∂µP ]A =
1
2
∂µ[P, P ]A = 0 ,

thus ∂µP is dP -closed. Since ∂µP is a 1-cocycle and since ∂P = [dA, iP ] generates the
bracket [ , ]P , so does ∂P,µ = ∂P + i∂µP .

Definition 1. The modular field of the triangular Lie bialgebroid (A,P ), associated
with the nowhere vanishing section µ of

∧top
A∗, is the section Xµ of A satisfying

∂P,µ − ∂P = iXµ . (17)

We now derive the properties of the modular field.

Proposition 5. The modular field Xµ associated with µ satisfies the equivalent rela-
tions iXµµ = −∂Pµ, iXµµ = dA(iPµ) and

Xµ = − ∗−1
µ (∂Pµ) . (18)
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Proof. We must prove that iXµµ = −∂Pµ . This equality follows from Definition 1
and the fact that ∂P,µµ = 0, since ∗−1

µ µ = 1. The rest of the proposition follows from the
definitions.

Proposition 6. The modular field Xµ associated with µ satisfies

Xµ = ∂µP . (19)

Proof. By definition, i∂µQµ = −dA(iQµ) = (−1)q[iQ, dA] µ, for any section Q of∧q
A. If, in particular, Q = P , then i∂µPµ = −∂Pµ, or ∂µP = − ∗−1

µ (∂Pµ). The result
now follows from Proposition 5.

This proposition means that the modular field associated with µ is the divergence
of P with respect to µ. As an obvious consequence of the preceding result, we see that
∂µXµ = 0. The main result of this section is

Theorem 7. The modular fields Xµ of a triangular Lie bialgebroid (A,P ) satisfy

dPXµ = 0 , (20)

and, for nowhere vanishing f ∈ C∞(M),

Xfµ = Xµ +
1
f
dP f . (21)

Proof. Formula (20) is a special case of Proposition 2. We give a direct proof.
By assumption, [P, P ]A = 0. Using the fact that the operator ∂µ is a derivation of
the Schouten bracket, and the skew-symmetry of the Schouten bracket, it follows that
[P, ∂µP ]A = 0. By formula (4) and Proposition 6, we obtain dPXµ = 0.

Let µ′ = fµ. Then ∗µ′ = f∗µ, and using the relations iX∧Y µ = iX iY µ, for X,Y in
Γ(A), and ∗µeX = iX∗µ, we see that

∂P,µ′α = ∂P,µα+ f−1 ∗µ (dP f ∧ ∗−1
µ α) = ∂P,µα+ f−1idP fα , (22)

for any α ∈ Γ(
∧
A∗).

Formula (20) means that Xµ leaves P invariant,

LXµP = 0 . (23)

Corollary 8. For each nowhere vanishing section µ of
∧top

A∗, the modular field
Xµ is dP -closed, and its class in the Lie algebroid cohomology of A with coefficients in
C∞(M) is independent of µ.

Proof. In fact, Xfµ = Xµ + dP (log|f |).

Definition 2. The class of the modular fields of a triangular Lie bialgebroid (A,P )
is called the modular class of (A,P ). A triangular Lie bialgebroid is called unimodular if
its modular class vanishes.

It follows from Proposition 5 that, when (A,P ) is unimodular, iPµ is closed, and
conversely. This is the answer to question 1 in [26].

Proposition 9. The Lie derivation on Γ(
∧
A) with respect to the modular field Xµ

associated with µ is the operator

LXµ = [Xµ, . ]A = [∂µ, dP ] , (24)
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where the first bracket is a Schouten bracket, while the second is a graded commutator.
The Lie derivation on Γ(

∧
A∗) with respect to Xµ is the operator

LXµ = [∂P,µ, dA] . (25)

In particular, as derivations of C∞(M),

Xµ = ∂µ ◦ dP = ∂P,µ ◦ dA . (26)

If XP
f = P ](dAf) = −[P, f ]A = −dP f is the Hamiltonian field with Hamiltonian f in

C∞(M), then

LXµf = −∂µXP
f . (27)

Proof. Using the fact that ∂µ is a derivation of the Schouten bracket and formula
(4), we find that, for any Q ∈ Γ(

∧
A),

L∂µPQ = [∂µP,Q]A = ∂µ[P,Q]A + [P, ∂µQ]A = (∂µdP + dP∂µ)Q , (28)

whence relation (24). To prove (25), we recall that LXµ = [iXµ , dA]. Since iXµ = ∂P,µ−∂P ,
and since ∂P commutes with dA, relation (25) follows. If, in particular f ∈ Γ(

∧0
A), then

∂µf = ∂P,µf = 0, and therefore we obtain (26), and (27) follows from the definitions.

Corollary 10. The modular field Xµ, associated with µ, satisfies

LXµµ = 0 . (29)

Proof. From Proposition 5, we see that LXµµ = dA(iXµµ) = (dA)2(iPµ) = 0 .

We collect various formulae in the following proposition.

Proposition 11. For f ∈ C∞(M), [f, µ]P = ∂P,µ(fµ) = −idP fµ and for α ∈ Γ(A∗),

[α, µ]P = (∂P,µα)µ . (30)

In particular, [dAf, µ]P = (Xµ.f)µ.

Proof. These formulae follow from Proposition 4 and the fact that ∂P,µµ = 0.
Moreover, ∂P,µdAf = ∂P dAf + iXµdAf = Xµ.f , since ∂P commutes with dA.

If we now introduce the operator of degree 1 and of square 0 on Γ(
∧
A),

dP,µ = − ∗−1
µ ∂P ∗µ , (31)

using (5) and the relation iP ∗µ = ∗µeP , where eP denotes the exterior product by P , we
see that

dP,µ = [∂µ, eP ] . (32)

Thus, equation (16) can be written as

dP,µ − dP = e∂µP . (33)

By formula (19), this equation coincides with formula (43) of [6], where the operator dP,µ
is denoted δ′π,µ0

. This operator plays the role of a twisted cohomology operator of A∗.

Example 1 (The modular class of a Poisson manifold). Let (M,P ) be an orientable
Poisson manifold, where P denotes the Poisson bivector, and let µ be a volume element
on M , i.e., a nowhere vanishing section of Γ(

∧top
T ∗M).
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The triangular Lie bialgebroid (TM,P ) of the Poisson manifold (M,P ) was studied
in [18]. If A = TM , and P ∈ Γ(

∧2
TM) is a Poisson structure on M , then the modular

section is a vector field Xµ on M , and, by formula (27), Xµ.f = −∂µXP
f = divµXP

f .
Therefore we recover Weinstein’s definition [24], adopted in [6],

LXP
f
µ = (Xµ.f)µ . (34)

Proposition 12. The modular class of the triangular Lie bialgebroid (TM,P ) of the
Poisson manifold (M,P ) is equal to the class of the modular vector field of (M,P ), defined
by LP ]dfµ = (Xµ.f)µ.

The case of a symplectic manifold. If, in particular, the bivector P on a manifold M

of dimension n = 2m is of maximal rank, so that the Poisson structure, P, is actually
associated with a symplectic structure ω, then the modular class of (M,P ) vanishes.
In fact, taking the Liouville form ωm

m! as the volume form µ on M , we see that any
Hamiltonian vector field leaves µ invariant and therefore, for any function f , ∂µXP

f = 0.
By (27), the modular vector field associated with µ vanishes. So, when µ is the Liouville
form,

[d, iP ] = ∂P = ∂P,µ . (35)

Since, when (M,P ) is symplectic, the modular vector field ∂µP vanishes, formula (33)
reduces to dP,µ = dP . Using formula (32), we obtain

[∂µ, eP ] = dP = dP,µ . (36)

In the symplectic case, there is a formula dual to (4),

d = [ω, . ]P . (37)

(See [14].) In fact, this formula holds for any f ∈ C∞(M), since it follows from the Leibniz
rule that [ω, f ]P = −iP ]dfω = df . Using the derivation property of the differential d with
respect to the bracket [ , ]P and the Leibniz rule again, we find [ω, df ]P = 0, and for any
g ∈ C∞(M), [ω, gdf ]P = d(gdf), and therefore (37) holds for any form.

Since ∂P generates the bracket [ , ]P and since ∂Pω = 0 , we obtain, using (37),

[∂P , eω] = d , (38)

where eω denotes the exterior product by ω. This, in turn, implies, using the relation
∗µiω = eω∗µ, and (35),

[dP , iω] = ∂µ . (39)

Thus, the operator [dP , iω] on fields of multivectors generates the Schouten bracket and
coincides with ∂µ when µ is the Liouville form.

Remark. It follows from relation (39) that, in the symplectic case, an alternate proof
of relation (7), [∂µ, iξ] = −idξ, for any form ξ, is obtained by setting E = T ∗M , a = ω,
b = ξ in relation (2).

Example 2 (The linear case; see [15]). If g is a finite-dimensional real Lie algebra,
then M = g∗ is a linear Poisson manifold, and conversely. The fields of multivectors on
g∗ are maps from g∗ to

∧
g∗, and the linear fields of multivectors on g∗ are vector-valued

forms on g∗. Their Schouten bracket coincides with the Nijenhuis-Richardson bracket
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of vector-valued forms on the vector space g∗. If P is the linear Poisson structure on
g∗ defined by the Lie algebra structure of g, then the operator dP is the Lie algebra
cohomology operator on the cochains of g with coefficients in C∞(g∗).

To compute the modular vector field Xµ of (g∗, P ) associated with the standard
Lebesgue measure µ on the vector space g∗, we choose a basis in g, and we let (xk) be
the coordinates on g and (ξk) be the dual coordinates on g∗. Let Ckij be the structure
constants of g in the chosen basis. Then Pij(ξ) = Ckijξk, and

(Xµ)i = (∂µP )i = −∂jPji = Cjij . (40)

This is a constant vector field on g∗, i.e., an element of g∗ which is equal to the linear
1-form on g, tr(ad) : x ∈ g 7→ tr(adx), where tr denotes the trace. Thus, Xµ is equal to
the character of the adjoint representation of g, which is called the infinitesimal modular
character of g.

Proposition 13. If M = g∗, the modular vector field associated with the standard
Lebesgue measure is the infinitesimal modular character of g.

Thus, the linear Poisson manifold g∗ is unimodular if and only if the Lie algebra g

is unimodular in the usual sense. This is one of the justifications for the use of the term
“modular” in the context of Poisson geometry.

We now state the consequences of the preceding results for the homology-cohomology
duality of Lie algebroids. See [26], and, for more general results concerning Lie-Rinehart
algebras, see [10] and [11]. Let E be a Lie algebroid of rank n, such that there exists a
nowhere vanishing section µ of its top exterior power. Set ∂E,µ = − ∗−1

µ dE∗µ. Then the
homology H•(E, ∂E,µ) of the complex (Γ(

∧
E), ∂E,µ) is isomorphic to the cohomology

Hn−•(E, dE) of the complex (Γ(
∧
E∗), dE). In particular, if (A,P ) is a triangular Lie

bialgebroid, then for E = A∗, dE = dA∗ = dP is the cohomology operator on Γ(
∧
E∗), and

therefore (i) the homology H•(A∗, ∂P,µ) of the complex (Γ(
∧
A∗), ∂P,µ) is isomorphic to

the Poisson cohomology Hn−•(A∗, dP ) of the complex (Γ(
∧
A), dP ), and (ii) the Poisson

homology H•(A∗, ∂P ) of the complex (Γ(
∧
A∗), ∂P ) is isomorphic to the twisted Poisson

cohomology Hn−•(A∗, dP +eXµ) of the complex (Γ(
∧
A), dP +eXµ). This last fact follows

from (33) and the definition of dP,µ. If the triangular Lie bialgebroid is unimodular, then
∂P,µ = ∂P . So, both statements reduce to the fact that, in the unimodular case, the
Poisson homology H•(A∗, ∂P ) is isomorphic to the Poisson cohomology Hn−•(A∗, dP ).
Thus, in the case of a unimodular triangular Lie bialgebroid, in particular an orientable
Poisson manifold with vanishing modular class, the Poisson homology is isomorphic to
the Poisson cohomology.

6. The Laplacian of a strong differential BV-algebra. The case of a tri-
angular Lie bialgebroid. If (A, ∂, d) is a strong differential BV-algebra, the operator,
∆ = [∂, d], on A is called the Laplacian of (A, ∂, d). It is a derivation of degree 0 of both
the bracket and the associative multiplication, and it is a differential operator of order
1 which vanishes on the unit of A0. If A is the Gerstenhaber algebra of a Lie algebroid
E with base M , then A0 = C∞(M), and the restriction of ∆ to A0 is therefore a vector
field on M .
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Using the fact that ∂ is a derivation of the Gerstenhaber bracket, we see that, if d
is the interior derivation by an element P ∈ A2, then ∆ is the interior derivation by
∂P ∈ A1. This remark partly answers question 4 of [26].

If (A,P ) is a triangular Lie bialgebroid, then (Γ(
∧
A∗), ∂P , dA) is a strong differential

BV-algebra, but, in this case, ∆ = [∂P , dA] vanishes identically. If moreover µ is a nowhere
vanishing section of Γ(

∧top
A∗), the operator ∂µ generates the Gerstenhaber bracket of

Γ(
∧
A), and dP is an interior derivation of the Gerstenhaber bracket. Therefore the

Laplacian of the strong differential BV-algebra, (Γ(
∧
A), ∂µ, dP ), is

∆ = [∂µ, dP ] = [∂µP, . ]A = L∂µP , (41)

where the second bracket is the Gerstenhaber bracket of Γ(
∧
A). In view of Proposition

6, this result coincides with the first statement of Proposition 9, which can be restated as:

Proposition 14. Let (A,P ) be a triangular Lie bialgebroid, and let µ be a nowhere
vanishing section of Γ(

∧top
A∗). Then (Γ(

∧
A), ∂µ, dP ) is a strong differential BV-algebra,

whose Laplacian is the Lie derivation with respect to the modular field of (A,P ) associated
with µ.

Remark. In [19], a strong differential BV-algebra which is unimodular is called a
dGBV-algebra.

For a Poisson manifold (M,P ) with a nowhere vanishing section µ of Γ(
∧top

T ∗M),
the Laplacian is that of the strong differential BV-algebra (Γ(

∧
TM), ∂µ, dP ), and it is

equal to the derivation LXµ of Γ(
∧
TM). This result was already in Koszul [15].

7. BV-algebras and modified actions. The restriction of the generating operator
of a BV-algebra to A1 is an A0-valued derivation of the Lie algebra A1. Therefore

Proposition 15. Let (A, ∂) be a BV-algebra. Then ∂|A1 : A1 → A0 is a 1-cocycle of
A1 with coefficients in A0, and the map (a, f) ∈ A1 × A0 7→ [a, f ] + κ(∂a)f ∈ A0, for
any scalar κ, is an action of the Lie algebra A1 on A0.

Thus to each generating operator of the Gerstenhaber bracket of A, there corresponds
a modified left A1-module structure on A0. However, it is easy to see that this action
does not make A0 a left (A0,A1)-module in the sense of [9]. On the other hand, as has
been shown by Huebschmann [11], [10], A0 has a right (A0,A1)-module structure:

Proposition 16. Let (A, ∂) be a BV-algebra. The map (f, a) ∈ A0×A1 7→ f.a ∈ A0

defined by

f.a = −[a, f ] + (∂a)f (42)

is a right (A0,A1)-module structure on A0, and f.a = ∂(fa) .

Proof. We have to show that

(fg).a = f(g.a)− [a, f ]g = g.(fa) , (43)

for f, g ∈ A0, a ∈ A1. In view of

∂(fa) = f∂a− [a, f ] , (44)

this is straightforward.
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Conversely, if (f, a) 7→ f.a is a right (A0,A1)-module structure on A0, then there
exists a unique generating operator ∂ of

∧
A0 A1 such that (42) holds. In particular, if

we let 1 be the unity of A0, then ∂a = 1.a, for a ∈ A1. In [11], Huebschmann states and
proves the following theorem. (He actually proves a more general result dealing with the
generating operators which are not necessarily of square 0).

Theorem 17. There is a one-to-one correspondence between right (A0,A1)-module
structures on A0 and generating operators of

∧
A0 A1.

Proof. The proof consists of showing that any 1-cocycle ∂ : A1 → A0 satisfying (44)
can be uniquely extended to a generating operator of

∧
A0 A1. This, in turn, is proved by

means of the explicit formula given in Section 5.

In particular, if E is a Lie algebroid, there is a one-to-one correspondence between
right (C∞(M),Γ(E))-module structures on C∞(M) and generating operators of Γ(

∧
E).

For example, if M is a manifold and µ is a volume element on M , then the modified
right action of Γ(TM) on C∞(M) is X ∈ Γ(TM) 7→ −X + (∂µX)Id ∈ End(C∞(M)),
where Id is the identity endomorphism of C∞(M). Thus, in any orientable manifold
(M,µ), there is a right action of the Lie algebra of vector fields on the space of functions,
defined by

f.X = −LXf + f∂µX . (45)

If (A,P ) is a triangular Lie bialgebroid, then α ∈ Γ(A∗) 7→ −P ]α + (∂Pα)Id ∈
End(C∞(M)), where ∂Pα = iP dAα, defines the modified right action of Γ(A∗) on
C∞(M). If, in particular, (M,P ) is a Poisson manifold, then (Γ(

∧
T ∗M), ∂P ) is a BV-

algebra, and we obtain a modified right action of Γ(T ∗M) on C∞(M) making C∞(M) a
right (C∞(M),Γ(T ∗M))-module. Thus, in any Poisson manifold (M,P ), there is a right
action of the Lie algebra of differential 1-forms on the space of functions defined by

f.α = −LP ]αf + f∂Pα . (46)

In particular, for functions f, g, h ∈ C∞(M), f.dh is the Poisson bracket {f, h} and

f.(gdh) = {fg, h} . (47)

Therefore, this is the structure defined in [10], formula (7.3). Another right action of
differential 1-forms on functions is defined by

f.(gdh) = {fg, h}+ fg(Xµ.h) . (48)

8. Representations and generating operators. We now explain the one-to-one
correspondence between generating operators and left structures on the top exterior power
of projective, finite-rank Lie-Rinehart algebras. In [11], Huebschmann states the following
theorem which follows from Theorem 17.

Theorem 18. Let A1 be a (k,A0)-algebra which is a projective, finite rank A0-module.
There is a one-to-one correspondence between generating operators for the Gerstenhaber
algebra

∧
A0 A1 and left (A0,A1)-module structures on

∧top
A0 A1.

Recall that a representation of the Lie algebroid E with base M and anchor ρ on the
vector bundle F is an R-linear map ∇ from Γ(E)×Γ(F ) to Γ(F ) which is C∞(M)-linear
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in the first argument and such that ∇a(fu) = f∇au + (ρ(a)f)u, and ∇[a,b] = [∇a,∇b],
for a, b ∈ Γ(E), f ∈ C∞(M), u ∈ Γ(F ).

Representations of E on F are called flat E-connections on F in [26]. They coincide
with left (A0,A1)-module structures on Γ(F ), for A0 = C∞(M) and A1 = Γ(E).

Corollary 19. Let E be a Lie algebroid. There is a one-to-one correspondence be-
tween generating operators for the Gerstenhaber algebra of E, Γ(

∧
E), and representa-

tions of E on
∧top

E.

Explicitly, if ∂ is a generating operator of the Gerstenhaber bracket of Γ(
∧
E), then

∇ defined by

∇aλ = a.λ− (∂a)λ , (49)

for a ∈ Γ(E), λ ∈ Γ(
∧top

E), is a representation of E on
∧top

E. Here a.λ = Laλ = [a, λ]E .
Conversely, given a representation ∇ of E on

∧top
E, there exists a unique generating

operator, ∂, of the Gerstenhaber bracket satisfying the condition that, for any section λ

of
∧top

E, and for any section a of E,

(La −∇a)λ = (∂a)λ , (50)

or equivalently,

∇aλ = −a ∧ ∂λ . (51)

Both conditions are equivalent since Laλ = [a, λ]E = −∂(a ∧ λ) + (∂a)λ− a ∧ ∂λ.
This corollary states that to each representation of E on

∧top
E, there corresponds a

BV-algebra structure on the Gerstenhaber algebra of E, and conversely.
The analogue of this theorem is proved in [22] in the framework of schemes: there are

mutually inverse bijections between the sets of “Calabi-Yau (CY) data on a scheme X”
and “Batalin-Vilkovisky (BV) data on X”. CY data correspond to representations of the
tangent bundle of a complex manifold on the canonical bundle (holomorphic forms of top
degree), while BV data correspond to generating operators of the Gerstenhaber algebra
of holomorphic fields of multivectors. For the holomorphic case, see also [3].

Remark. The above corollary was proved by Koszul [15] when E = TM , and gene-
ralized to arbitrary Lie algebroids by Xu [26]. The results proved by Koszul and Xu are
actually more general. The one-to-one correspondence of Corollary 19 is the restriction
to the flat E-connections of a one-to-one corespondence between generating operators,
not necessarily of square zero, of the Gerstenhaber algebra of E and E-connections on∧top

E which are not necessarily flat.

Combining the one-to-one correspondences in Theorems 17 and 19, one obtains a one-
to-one correspondence between right (A0,A1)-module structures on A0 and left (A0,A1)-
module structures on

∧top
A0 A1. Given a left structure ∇ on

∧top
A0 A1, the corresponding

right structure on A0 is such that

(f.a)λ = f(a.λ)−∇a(fλ) , (52)

where a.λ = Laλ. Conversely, if the right structure on A0 is given, then the left structure
∇ on

∧top
A0 A1 is such that

∇aλ = a.λ− (1.a)λ . (53)
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In fact the correspondence established in Corollary 19 between∇ and ∂ is the composition
of the map ∇ 7→ {right structure on A0} which we have just described with the map
{right structure on A0} 7→ ∂ of Theorem 17.

Using results of [10], Huebschmann shows in [11] that, if ∂ is the generating operator of∧
A0 A1 associated to a left (A0,A1)-module structure ∇ on

∧top
A0 A1, then the homology

of A1 with coefficients in the right (A0,A1)-module A0 defined by ∂ and the cohomology
of A1 with coefficients in the left (A0,A1)-module

∧top
A0 A1 defined by ∇ are isomorphic.

9. The modular class of a triangular Lie bialgebroid as the characteristic
class of a Lie algebroid with a representation. If ∇ and ∇′ are representations of
a Lie algebroid E on

∧top
E, there is a section ξ of E∗ such that, for any λ ∈ Γ(

∧top
E),

and for any section a of E,

(∇a −∇′a)λ =< ξ, a > λ . (54)

If ∂ and ∂′ are the generating operators associated with ∇ and ∇′, respectively, as in
Corollary 19, then this relation is equivalent to

∂′ − ∂ = iξ . (55)

It follows from Proposition 2 that ξ is then dE-closed in the Lie algebroid cohomology of
E with coefficients in C∞(M). Of course this 1-cocycle can be trivial, in which case the
representations ∇ and ∇′ are called homotopic [26], and their associated operators ∂ and
∂′ are also called homotopic.

Let the representation ∇ be fixed. If, for a class of representations ∇′, the 1-cocycles,
ξ, defined by (54), for various ∇′ or, equivalently, (55), for various ∂′, are equivalent, we
can call their cohomology class the modular class of the Lie algebroid with representation
(E,∇). The modular class vanishes if and only if all representations of E on

∧top
E in

the class ∇′ are homotopic to ∇. If ∂ is the generating operator of Γ(
∧
E) corresponding

to ∇ by Corollary 19, we can also call this cohomology class the modular class of the
BV-algebra (Γ(

∧
E), ∂).

The fundamental remark is the following. Assume that there is a well-defined gen-
erating operator ∂ for the Gerstenhaber algebra of a Lie algebroid E. To any nowhere
vanishing section, λ, of

∧top
E, there corresponds an isomorphism ∗λ from

∧
E∗ to

∧
E,

and a generating operator, ∂λ, of the bracket of Γ(
∧
E), defined by ∂λ = − ∗λ dE ∗−1

λ .
In this case, the correspondence of Corollary 19 is given as follows. (Cf [26].)

Proposition 20. The representation ∇λ of E on
∧top

E associated with the gener-
ating operator of the bracket of Γ(

∧
E), ∂λ = − ∗λ dE ∗−1

λ , is defined by ∇λλ = 0.

This follows from (51) since, in this case, ∂λλ = 0. It follows from (55) and from
a computation analogous to (22), that the class of the 1-cocycles ξ associated with the
pairs (∇,∇λ), for various choices of λ, is independent of the choice of λ.

According to Evens, Lu and Weinstein [6], for any Lie algebroid E with a represen-
tation ∇ on a line bundle L, the characteristic class is the class of the section ξ̂ of E∗

satisfying

∇aλ =< ξ̂, a > λ , (56)
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for a ∈ Γ(E) and λ a nowhere vanishing section of
∧top

E. (If
∧top

E is not trivial, define
the characteristic class as one-half of that of the square of this bundle with the associated
representation.) The section ξ̂ ∈ Γ(E∗) depends on ∇ and λ, but it is dE-closed and its
dE-cohomology class depends only on ∇.

On the other hand, in view of the definition of ∇λ, the modular section ξ defining the
modular class of the Lie algebroid with representation (E,∇) has to satisfy

(∇a −∇λa)λ =< ξ, a > λ . (57)

In view of the characterization of ∇λ given in Proposition 20, this condition coincides
with (56), in other words, ξ = ξ̂. Moreover, for the associated BV-algebra (Γ(

∧
E), ∂),

the modular class is defined as the class of ξ ∈ Γ(E∗) satisfying

∂λ − ∂ = iξ , (58)

where ∂ is the fixed generating operator associated with ∇, and ∂λ is the generating
operator corresponding to ∇λ. Therefore,

Proposition 21. The modular class of the Lie algebroid with representation (E,∇)
coincides with the characteristic class defined in [6], and it is the class of the section ξ of
Γ(E∗) satisfying (58).

The case of a triangular Lie bialgebroid. Let (A,P ) be a triangular Lie bialgebroid.
Then, there is a well-defined generating operator, ∂P = [dA, iP ], for the Gerstenhaber
bracket of Γ(

∧
A∗). What is the corresponding representation ∇P of A∗ on

∧top
A∗?

According to formula (51), it is defined by

∇Pαλ = −α ∧ ∂Pλ = −α ∧ dA(iPλ) , (59)

for α a section of A∗ and λ a section of
∧top

A∗. Now let ∇µ be the representation of A∗

in
∧top

A∗ defined by ∇µµ = 0, where µ is a nowhere vanishing section of Γ(
∧top

A∗).
Then the characteristic class of the Lie algebroid with representation in a line bundle
(A∗,∇P ) is the class of the section X̂µ, depending on µ, defined by

∇Pαµ =< X̂µ, α > µ , (60)

for α ∈ Γ(A∗). In view of Proposition 20, and of the equivalence of (54) and (55), condition
(60) is equivalent to

∂P,µ − ∂P = iX̂µ . (61)

Therefore, the section X̂µ is equal to the modular field Xµ defined in Section 5, and
∇Pαµ = ((∂P,µ − ∂P )α)µ.

Proposition 22. If (A,P ) is a triangular Lie bialgebroid, its modular class is equal
to the characteristic class of the Lie algebroid with representation (A∗,∇P ).

The case of a Poisson manifold. We can apply the preceding analysis to the case of a
Poisson manifold (M,P ).

In [6], it is proved that, if (M,P ) is a Poisson manifold, there is a well-defined rep-
resentation of the Lie algebroid T ∗M on

∧top
T ∗M . In our approach, this follows from

the fact [15] [13] that there is a well-defined generating operator for the Gerstenhaber
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bracket of Γ(
∧
T ∗M), the Koszul-Brylinski homology operator, ∂P = [d, iP ], combined

with Corollary 19.
Applying our previous results to the triangular Lie bialgebroid (TM,P ), and combi-

ning them with Proposition 12, we obtain the following result.

Proposition 23. Let (M,P ) be a Poisson manifold. The modular class of the trian-
gular Lie bialgebroid (TM,P ) coincides with the modular class of the Poisson manifold
and with the characteristic class of the Lie algebroid with representation (T ∗M,∇P ).

Remark. Formula (59) in the case of a Poisson manifold does coincide with formulae
(36) of [6] and (18) of [26], although there is an apparent difference in the sign. This is
due to the fact that the interior product used in [6] and [26] is the one that we have
denoted by ı̃ (see the Remark in Section 2), which is such that ı̃P = −iP . To summarize,
in [6], the characteristic class of (T ∗M,∇P ) is the class of X̂µ, where

df ∧ d(̃ıPµ) =< X̂µ, df > µ .

The modular class of the Poisson manifold (M,P ) is the class of Xµ, where by definition,

diP ]dfµ =< Xµ, df > µ ,

while, here, the modular class of the triangular Lie bialgebroid (TM,P ) is the class of
Xµ where, by definition,

−df ∧ d(iPµ) =< Xµ, df > µ .

Since iP ]dfµ = df ∧ iPµ = −df ∧ ı̃Pµ, we see that all three definitions agree.

In general, any Lie algebroid E has a well-defined representation ∇QE on the line
bundle QE =

∧top
E ⊗

∧top
T ∗M . If (M,P ) is a Poisson manifold, the characteristic

class of (T ∗M,∇P ) is that of (T ∗M,∇QT∗M ) divided by 2. See [6].
If (A,P ) is a triangular Lie bialgebroid, we have to compare its modular class, defined

here, to the characteristic class of (QA∗ ,∇QA∗ ), where QA∗ =
∧top

A∗ ⊗
∧top

T ∗M , and

∇QA∗α (µ⊗ ν) = Lαµ⊗ ν + µ⊗ Lρ(P ]α)ν . (62)

The modular class of (A,P ) is the class of the section Xµ of A such that

∇Pαµ =< Xµ, α > µ ,

where ∇Pαµ = Lαµ− (∂Pµ)α, while the characteristic class of (QA∗ ,∇QA∗ ) is the class of
the section X̃µ⊗ν of A such that

∇QA∗α (µ⊗ ν) =< X̃µ⊗ν , α > µ⊗ ν .

Here µ is a section of
∧top

A∗ and ν is a section of
∧top

T ∗M .
Let us assume that α = dAf , f ∈ C∞(M). To evaluate the first term in the right-hand

side of (62), we use Proposition 11, and we obtain

LdAfµ = [dAf, µ]P =< Xµ, dAf > µ =< ρ(Xµ), df > µ ,

where d is the de Rham differential on the base manifold M .
The Lie bialgebroid structure of (A,A∗) defined by P induces a Poisson structure,

PM , on M [18] [13] satisfying

< P ]M (df), dg >=< dAf, dA∗g > ,
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for f, g ∈ C∞(M). Using dA∗g = dP g = −P ](dAg), the skew-symmetry of P ] and the
definition of dA, we obtain P ]M (df) = ρ(P ](dAf)) . Therefore, we can evaluate the second
term in the right-hand side of (62) by means of the modular vector field of the Poisson
manifold (M,PM ) with volume form ν, defined by

Lρ(P ](dAf))ν =< XM
ν , df > ν .

Therefore,

< X̃µ⊗ν , dAf >=< Xµ, dAf > + < XM
ν , df > (63)

and

ρ(X̃µ⊗ν) = ρ(Xµ) +XM
ν . (64)

In the particular case of a Poisson manifold (M,P ), we consider the tangent bundle
TM = A, with anchor the identity of TM . Then PM = P , and XM

µ = Xµ, and we
recover the relation

X̃µ⊗µ = 2Xµ . (65)

To complete our discussion, we sketch the approach to the definition of the modular
class of a Lie-Rinehart algebra given in [10]. There, Huebschmann defines the modular
class of a Lie-Rinehart algebra (A0,A1) satisfying certain regularity conditions as the
isomorphism class of the left (A0,A1)-module, QA1 = HomA0(

∧top
A0 (A1)∗, ωA0), where

ωA0 = Hom(
∧top
A0 (DerA0),A0). He further shows that

∧top
A0 (A1)∗, called the dualizing

module of the Lie-Rinehart algebra (A0,A1), as well as ωA0 have a canonically defined
right (A0,A1)-module structure, and that QA1 is therefore a left (A0,A1)-module. The
module QA1 generalizes the space of sections of the line bundle with a representation
QE . In fact, if E is a Lie algebroid with base M , and if A0 = C∞(M), and A1 = Γ(E),
then QA1 = HomC∞(M)(Γ(

∧top
E∗),Γ(

∧top
T ∗M)) = Γ(

∧top
E ⊗

∧top
T ∗M) = Γ(QE) .

As a projective, rank one, left A0-module, the tensor square of QA1 is free, so its
class is in the kernel of the forgetful map from the abelian group (introduced in [10])
of isomorphism classes of left (A0,A1)-modules, which are projective and of rank one
as A0-modules, to the Picard group of isomorphism classes of projective, rank one A0-
modules. This kernel is precisely the space of derivations of A1 with values in A0 modulo
the action of nowhere vanishing functions, and the isomorphism class of QA1⊗QA1 maps
to a cohomology class of A1 with coefficients in A0. In fact, if E is the free A0-module
of rank 1 with basis λ, setting ∇aλ =< ξ, a > λ, for a ∈ A1, where ξ is a 1-cocycle
of A1 with coefficients in A0, defines a left (A0,A1)-module structure on E , and two
such structures are isomorphic if and only if the corresponding 1-cocycles are equivalent.
Taking A1 = Γ(E) and E = Γ(QE ⊗ QE) yields a cohomology class of E with values
in C∞(M). The modular class of the Lie algebroid E in the sense of Evens, Lu and
Weinstein may be identified with this cohomology class divided by two.
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