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Abstract. The subject of this paper is the notion of the connection in a regular Poisson
manifold M, defined as a splitting of the Atiyah sequence of its Lie algebroid. In the case
when the characteristic foliation F' is an R-Lie foliation, the fibre integral operator along the
adjoint bundle is used to define the Euler class of the Poisson manifold M. When M is oriented
3-dimensional, the notion of the index of a local flat connection with singularities along a closed
transversal is defined. If, additionally, F' has compact leaves (then F is a fibration over S 1), an
analogue of the Euler-Poincaré-Hopf index theorem for flat connections with singularities along
closed transversals is obtained.

1. Introduction. A Poisson manifold is a couple (M, {-,-}) consisting of a C'* man-
ifold M equipped with an R-Lie algebra structure {-,-} in the vector space C* (M) of
smooth functions, such that {f1- f2, 9} = f1-{fe,9} + {f1,9} - f2, fi,g € C(M). If
(M,{-,-}) is a Poisson manifold, then, for f € C° (M), there exists a vector field X, on
M, called a hamiltonian of f, such that X, (g) ={f,9}, g€ C>® (M).

To each Poisson manifold (M, {-,-}) A. Coste, P. Dazord and A. Weinstein assigned
in 1987 [C-D-W] a Lie algebroid with the total space T*M and the structures:

e the anchor v : T*M — TM defined in such a way that
v(df) =Xy, de. v (df)(9) ={f g},
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e the bracket [, -] in SecT*M = Q' (M) for which

[df, dg] = d{f,g} .
In general, the Lie algebroid (T* M, 7, [-, -]) is not regular, which means that F' := Im~y
may not be a constant rank distribution (always, the characteristic foliation generated
by F', i.e. by hamiltonian vector fields, is a foliation with singularities in the sense of

P. Stefan, see [K4], [D-S]). The regular case was examined, for example, by P. Dazord,
D. Sondaz, G. Hector, F. A. Cuesta and I. Vaisman in [D-S], [He], [C-H], [V1], [V2].

THEOREM 1.1 ([D-S]). In the regular case, the Lie algebroid T*M of a Poisson ma-
nifold (M, {-,-}) has the following properties:
(1) the Atiyah sequence is as follows

0 —v'F-T'M-F—0 (1.1)

where F'=1Im~, and v*F C T*M is the transverse bundle of F,
(2) the isotropy Lie algebras (v*F),, are abelian.

Assume in the sequel that M is a regular Poisson manifold with a characteristic folia-
tion F. A splitting A : F' — T* M of the vector bundle sequence (1.1) is called a connection
in the regular Lie algebroid T* M. The definition of a connection is due to M. Atiyah [A],
K. Mackenzie [M], J. Kubarski [K1], [K2]. Connections in transitive Lie algebroids were
examined by many authors (see, for example, J. Pradines [P1], [P2], K. Mackenzie [M],
[M2], J. Kubarski [K3]) and, in nontransitive regular ones, by J. Kubarski [K1], [K2],
[K5]. We add that the definition suggested by K. Mackenzie [M, Def. 5.1 p. 140; 142] fails
in nontransitive cases. Each connection A in T*M determines two classical objects:

1. the curvature form Q € Q2 (M;v*F) = Sec(\* F* @ v*F),
QX,Y)=Xo[X,Y]-[AoX,AoY], X,Y € Sec(F)
(which a tangential 2-form on the foliated manifold (M, F)),
2. the adjoint partial covariant derivative
Vxv=[ o X,v], X €Sec(F), v e Secv*F.

Since isotropy Lie algebras are abelian, V is flat: Vv = —[Q,v] = 0, and to all
connections A the same V corresponds.

THEOREM 1.2 ([D-S]). The adjoint partial covariant derivative V in v*F is equal to
the Bott connection

Vxw=1tx (dw). (1.2)

2. Connections in Poisson manifolds over R-Lie foliations. Assume that the
characteristic foliation F' of the Poisson manifold (M, {-,-}) is an R-Lie foliation, i.e.
that F is of codimension 1 and F = kerw for a closed non-singular 1-form w € Q! (M).
According to (1.2), the form w is a global V-constant cross-section of the adjoint bundle
v*F. Each F-tangential form © with values in v*F' determines an F-tangential real form
© (and vice versa)—called a modified one—such that

@x (vla"'vvk) :éz (vlv"~avk)'wm~
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Let
dimM =m

and let x = (x1,...,2,,) be a distinguished chart of F on U C M such that dz; = wiy-
The anchor vy : T* M|y — Fjy is given by

v(dz1) =0, ~(dz;) = Z {zi 2;}

j>2

i, i> 2.
3xj

In particular, for m = 3,

0 0
v (dw2) = {72, 23} T (dz3) = —{z2, 23} e

Clearly,

W = det [{z;, 2;}]; ;5 # 0 (2.1)
(in particular, for m = 3, {x2, 235} # 0), and the Poisson tensor P on U is given by

0 0
Py = T N5
v Z . {l' xj} 8581 8$j
2<i<yj

in particular, for m = 3, Py = {x2, 23} 8%2 A 6%3.

LEMMA 2.1. The general form of a local connection on U, X : Fjy — T My, is

0 j .
/\(axi>:ai-daﬁ1—2)\g-d$]’, i>2, (2.2)

Jj=2

where a; € C* (U) are arbitrary and

WY
N =
¢ W

(W7 being the algebraic complement of the (i, j)-entry of the matriz [{zx, 1}], j5,)- In

(2.3)

particular, /\z = —A;-, and for m = 3,

0 1 0 1
ML) magdey — ——— dwg, M) —ag - dey + ———— - das.
(3562) 2 e,z (3353) H N P

PROOF. Since A is a connection if and only if v o A = id, we obtain that (2.2) is a
connection if and only if, for each i > 2, the coefficients \] satisfy the following system
of algebraic equations

N Az, + N {as, a4 AT T, k) = 0k, E=2,3,...,m,
equivalent to
N o Azg, wa} + N {zg, w3+ AN {ag, ) = i, E=2,3,...,m.

According to (2.1), this system is a Cramer system and (2.3) is its solution. The rest is
easy. m

Ify = (y1,...,ym) is a second distinguished chart of F' on U C M such that dy; =
wjy = dxy and 8%” =Y, AL (Al =6}) and )‘(8%7:) =a;-dy1 — Y59 N - dyj, 0> 2,

i Ox;
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then
=it T A=A (4
j=>2 j>2
Now, we calculate the curvature form € of A. After simple algebraic calculations we
obtain, for 7,5 > 2,

0 0
9] R
<8£81 A 8%)

o 0 0 0
S\ R N W W
{8:1:,-’ 8IJ:| 81:1-’ 893]]]
= —[a; - dzq — Z)\f ~dxg,a; - dry — Z)\g - dx,]
k>2 r>2
da; Oda; a{wk xr}
k J k k r )
<Z {(zr 2} (/\ Aj-aw) PR R
k,r>2 k,r>2
da;  da; Wf : W; O {xn, z,}
= - - . d
<8xj 8.’11‘1‘ Z W2 8371 ) T

k,r>2
ie.

N ) VV’C WT
O = Z (8“1 ~ Oay Z = 8{$k)$r}>dei/\dF$j.

x x x
2§i<jaj 9z; ke >2 Oz,

In particular, for m = 3,

A 8a2 (90,3 0 1
O=(22 -84 % (— .
(81'3 8x2 + 8%1 ({1’2,1’3})) de2 A de3

Let M be oriented and odd dimensional. The question:

e does there exist, for any symplectic R-Lie foliation F' = kerw and F-tangential
closed 2-form €2, a Poisson structure on M with the characteristic foliation F, for
which 2 is the curvature form of some connection A?

is open, see [K8].

Fix a connection X : F — T*M and let () be a modified curvature form of . Another
connection A; differs from A by a tensor t : F — v*F, A\ —\ = t. The connection ), is flat
if and only if d (f) = . Indeed, \; = A+t is flat if and only if A\ (X, Y]-[MX, Y] =0,
but

A XY= X, Y]
=A+) XY -2+ X, (A +18)Y]
=AX,Y]+¢[X, Y] = [AX, Y] — [t X, \Y] — [AX,tY] — [tX,tY]
=Q(X,Y)+t[X,Y] - [{X -w, \Y] — [\X, 1Y - o]
=QX,Y) wHiX, Y] w+Y (iX) w—- X (fY) w
= (QX,Y)—dp ({) (X)) w
We also observe that the cohomology class [Q] is independent of the choice of a

connection and T*M admits a flat connection if and only if [Q] = 0. The class [(] is the
Pontryagin class of the regular Lie algebroid 7™M, corresponding to the Ad-invariant
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cross-section €* € Sec (v*F)* for which (¢*,w) = 1. Indeed, let h : I — Hp (M) be the
Chern-Weil homomorphism of the regular Lie algebroid T*M; then h (¢*) = [(*,Q)] =
[Q)] (for the construction of h, see [K5]).

As an example, consider a 3-manifold M and assume that the foliation F' is a fibration
with non-compact leaves; then H2 (M) = 0, which means that [(] = 0, therefore T*M
is a flat algebroid.

Using the 1-form w, we can define the integration operator [K6]

/ 0y 1) — 95 (40),

(/ ‘I’k> (@vi A Avge) = (1) OF (3w, ADL AL AT,
*M

where v; € T M, v (9;) = v;. The operator fT* M is an epimorphism and commutes with
exterior derivatives, giving a homomorphism on cohomology

/# cHypny (M) — Hi bt (M)
T*M

We can consider ker fr-y with the differential dpwaz| ker fr«p and obtain the coho-
mology space H (ker fr-yr) . Clearly,

v* L Hp (M) = H <ker/ *M)

is an isomorphism, which is crucial to form the Gysin sequence [K8], [K7]

H
e HE () 25 i ) 2 e ) 5 e ) —

where Da = (—1)%°8**! (’y#)fl (Oa), 0 : Hr (M) — H"‘+2 (ker fr+ar) being the con-
necting homomorphism for the long cohomology sequence corresponding to the short
sequence of graded differential spaces

O—>ker[ — Qe (M
T*M

We notice that 9 [¢*] = (—1 )F Iy (QAQF )] Indeed, pF = fr-p @1 for PFH = (- ¥ An
vk where A € QL. ,, (M) is given by A (z;w,) = 1 and A|Tm ), = 0 (1e A (z; u) =
A (#;u) - w, is the connection form of \); it remains to show that dz«p((—1)F AAy*F) =
(=1)% 4*(Q A ©F), which follows directly from the closedness of ¢* and the equality
dr+ v (A) = v*Q shown below:

drers (A) (- w+ AX, g+ + AY)

=XA(g-w+AY)) =Y (A(f - w+AX)) = A([f - w+ X, -w+A\Y])

=Xg-Yf-AQXY]-QX,Y)+ X (9) - w-Y(f) w)

=Q(X,Y)

:'y*Q(f~w+)\X,g~w—|—)\Y).

fT *M

*_ (M) — 0.

According to this,
Da=—[Aa
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and (conventionally), the class x := D (1) = —[()] is called the Euler class of the Poisson
manifold (M, {-,-}) (or of the Lie algebroid T*M of this Poisson manifold).

Fix two flat connections o1, 0o : FF — T* M and take the tensor t : 0o —0y : F — v*F.
The 1-form ¢ € Q} (M) is closed. Indeed, di is equal to the modified curvature tensor
Q = 0 of the connection . The cohomology class [o1, 03] := [(02 — o1) | is called the
difference class for flat connections o7 and o5. The fundamental property of the FEuler

class is given below.

THEOREM 2.2. Suppose that there are an open covering {U,V} of M and flat con-
nections o1 : Fjy — T* M|y, o2 : Fly — T* M)y . The difference class

[ovunv, oounv] € Hp (UNV)

of the restrictions of o1 and o3 to Fiyny is defined. Let d:Hp (UNV) — Hp (M) denote
the connecting homomorphism for the Mayer-Vietoris sequence of the triple (M,U, V) for
the F-tangential cohomology [M-S]. Then the Euler class of T*M s given by

X = d [Ul\UﬂV702|UﬂV] .

ProOF. Fix an arbitrary global connection A : F' — T*M with the curvature form €.
The form — represents the Euler class. Consider the inclusions j; : Fjyny — Fjy and
J2 : Flunv — Fjv. Take the tensors {1 =01 — Ay : Fly = v Fly, ta =02 — Ay : Fly —
v*Fly. Since o1, o9 are flat,

dpyti=Qu,  dp, b= Q. (2.4)
The form
(02 —01) = (oounv — Aunv — o1junv + )\|UﬂV)A
= bywnv — fyunv
=31 (=) =33 (—2)
represents the difference class [o1, 03] Since d (ffl) = 7Q|U and d (7{2) = fQW, we
obtain 9 [o1junv, o2vav] = [~ =

3. Flat connections with singularities along closed transversals. Since the fo-
liation F given by a closed 1-form w, F' = kerw, is an R-Lie foliation, we have that, for a
compact manifold M [H-H], F' admits a closed transversal, and that any closed transversal
is total (we also have that the Euler characteristic of the clean manifold M is zero).

Assume that M is a compact oriented m-manifold. Given a closed transversal S' =
N — M of F, we can choose a tubular neighbourhood W of N in M [H-H] such that
the components of W in the leaf topology are open disks. The projection p : W — N
along these disks is trivial, W =2 S x D (D the standard open disk in R™~1), since F is
oriented. The neighbourhood W (also the fibration (W, p, N)) is called simple. Orienting
each fibre W, = p~! () by inducing orientation from the leaf L, of L, we obtain an
oriented bundle.

PROPOSITION 3.1. If dim M = 3, then the restricted Lie algebroid T* My is flat.



CONNECTIONS IN POISSON MANIFOLDS 147

PROOF. Indeed, since the fibres W, are contractible, the vector bundle of tangential
vertical 2-cohomologies is a zero bundle; therefore H% (W) = 0 [M-S] which implies that
[Q|W] = 0. This, in turn, is equivalent to the flatness of T M|y . m

DEFINITION 3.2. By a local connection with singularities along a closed transversal
St > N < M we mean a connection o in T*M;; where N C U (U open) and U = U\N.

For an arbitrary flat local connection o in T M, o and a flat connection A\ in T* M U’
N C U’ C U, we define the difference class [)'\,UlU,] € Hi-(U') where A = Agrr-

Let (W,p, N) be a simple fibration for a closed transversal N — M. Choose neigh-
bourhoods V and K of N in W such that N C V C K C W and the components of
V and K in the leaf topology are open and closed disks, respectively. Also take a func-
tion g € C°° (W) such that g > 0, g|V = 0, g|]W\K = 1 and consider the tangential
1-form dp(g|W) € QL (W), W = W\N. Its support in each fibre W, is compact. By the
canonical mapping for W we mean [K8]

aw - HE2(W) — € (N), [g] — /W dr(glW) A g

where ([, ©) (2) := [, (i5%), 4, : W, — W,z € N.
If dim F = 2 (thus dim M = 3), then ayy : Hh(W) — C> (N).

DEFINITION 3.3. If M is a compact oriented 3-manifold and ¢ a local flat connection
with singularities along a closed transversal N and W a simple neighbourhood of N
contained in the domain of o, then the smooth function

Jn (o) == aw[}\,alw],
where A is an arbitrary flat connection in 7™ M)y, is called the local index of o along N.

The function jy (o) is independent of the auxiliary flat connection A and the choice
of the simple neighbourhood W > N.

The group of periods of the foliation F' (F is given by a closed 1-form on a compact
manifold) may be cyclic or dense [H-H]. The first case holds if and only if F' is given by
a fibration M — S! (in the second, all leaves of F are dense in M). Assuming the first
case, for an arbitrary closed transversal N and any leaf L of F, the set N N L is finite.
For a mapping f : N — R, we define f : M — R by the formula

fl@y="> fw),

yeENNL,

where L, is the leaf of ¥ through z. The function f is constant along leaves of F.

If, additionally, dim M = 3, the function aw (3) (for 3 € HL(W)) is a smooth basic
function. This follows from the commutativity of the following diagram

Hp(W) = C=(N)
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where 0 is the connecting homomorphism of the triple (M, W, V) for the F-tangential
differential forms (V = M\N) and ([7* [¢]) () = [, i3, iy : Ly < M.

DEFINITION 3.4. If M is a compact oriented 3-manifold, then the smooth basic func-
tion aw [A, oyy;,] € Oy (M; F) is called the global indez of a local connection o.

The following theorem is an analogue of the classical Euler-Poincaré-Hopf theorem
(from the theory of sphere bundles) in the geometry of Poisson manifolds.

THEOREM 3.5. Let M be a 3-dimensional compact oriented Poisson manifold with the
characteristic R-Lie foliation F having compact leaves. Let N', ..., N* be disjoint closed
transversals of F' and let o : Fjy — T* My, V = M\ U,lle N be a flat connection (such
a connection always exists). If x € Hz (M) is the Euler class of the Lie algebroid T* M,
then

+# k

equivalently,

k
X = ZjNi (0) w
i=1

where wp € H% (M) is the tangential orientation class, i.e. the one for which fﬁ wrp = 1.

ProoOF. For ¢ =1,...,k, choose a simple neighbourhood W?* > N such that W,.
W* are pairwise disjoint. Put W = U WLV = M\ UZ (N Then M = WUV and
wnv = UZ 1 Wi, Take arbltrary flat connect1ons N F|W1 — T*My:. The family
{)\’} determines a flat connection \ : Fyw — T* M)y . Define A= /\|Wm/ and ¢ = ojwny-
According to Theorem 2.2, ¥ = 9|\, 5]. Further, put A\’ = )\TW7 and let 0" = oyyj;. Clearly,
A, 0] =a' (X, o] . According to the commutativity of the diagram

@, HL (W) B, C= (N?)

(f1seeesfr)
| |

[ FitetTr
Hp (M) = O (M, F)

Bayy,i
—_—

we finally obtain

# L L —
/ X:/ d [\, 5] :/ o (&' [N, 0']) = Dlagw: ([N, 07]) Z]NL ..
M M

M
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