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Abstract. First as an application of the local structure theorem for Nambu-Poisson ten-
sors, we characterize them in terms of differential forms. Secondly left invariant Nambu-Poisson
tensors on Lie groups are considered.

1. Introduction. In 1994, L. Takhtajan [6] gave geometric formulations of Nambu-
Poisson manifolds, and a lot of papers have followed his work. A Nambu-Poisson manifold
is defined to be a pair of a C°°-manifold and a Nambu-Poisson tensor defined on it. A
Nambu-Poisson tensor is, by definition, a skew-symmetric contravariant tensor field on a
manifold such that the induced bracket operation satisfies the fundamental identity, which
is a generalization of the usual Jacobi identity. It is generally difficult to judge whether
a given tensor field is a Nambu-Poisson tensor or not. This is because a Nambu-Poisson
tensor is written in the form of a contravariant tensor.

We begin with characterizing Nambu-Poisson tensors via differential forms. The cha-
racterization will be done by using contraction of Nambu-Poisson tensors with the volume
form. The local structure theorem [5] for Nambu-Poisson tensors will be very useful to
obtain some results concerning this topic.

Secondly left invariant Nambu-Poisson tensors on Lie groups are considered. And we
shall study when they can be projected on suitable homogeneous spaces. These problems
were studied by Bon-Yao Chu [3] in the case of symplectic structures.

2. Nambu-Poisson manifolds. First we give a definition of a Nambu-Poisson ten-
sor, which is equivalent to that of L. Takhtajan [6]. Let M be an m-dimensional C°°-
manifold, and F its algebra of real valued C'*°-functions. We denote by I'(A"TM) the
space of global cross-sections n : M — A™T'M. Then to each n € I'(A"TM), there
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corresponds the bracket defined by

{fla"wfﬂ}:n(df17"'adfn)7 fla'-wfnej:-

Let A=Y fi, \---A fi,_, be any element of A"~ *F. Since the bracket operation clearly
satisfies the Leibniz rule, we can define a vector field X4 corresponding to A by the
following equation:

XA(g):Z{filv"‘vfin_lag}v ng
Such a vector field is called a Hamiltonian vector field. The space of Hamiltonian vector
fields is denoted by H.

DEFINITION 1. 5 € I'(A™TM) is called a Nambu-Poisson tensor of order n if it
satisfies £(X4)n = 0 for all X4 € H, where £ is the Lie derivative. Then a Nambu-
Poisson manifold is a pair (M, n).

The above definition is clearly equivalent to the following fundamental identity:

{fla"'7fn717{gla"'7gn}} = {{f17"'afnfhgl}agQa"'agn}
+{gla{fla"'7fn—1792}’93a"'agn}
+"‘+{gla"'agn—la{fla---7fn—1agn}}

for all f1,..., fn-1,91,-.-,9n € F. If n = 2, this equation is nothing but the Jacobi
identity, and we have usual Poisson manifolds.

Let n(p) # 0, p € M. Then we say that n is regular at p. Now we can state the
following local structure theorem for Nambu-Poisson tensors [4],[5].

THEOREM 1. Let n € I'(A"TM), n > 3. If n is a Nambu-Poisson tensor of order n,
then for any regular point p, there exists a coordinate neighborhood U with local coordi-

nates (L1, ..., Tn, Lntl,-- -, Tm) around p such that
_9 A0
= 8m1 8mn

on U, and vice versa.

In Theorem 1, the condition n > 3 is essential. If n = 2, as is well-known, A.Weinstein
[8] proved the splitting theorem for Poisson tensors. Comparing Weinstein’s splitting
theorem with our theorem, we know that the local structure of Nambu-Poisson manifolds
is more rigid than that of usual Poisson manifolds.

Some simple applications of Theorem 1 are the following. Informations on the Schou-
ten bracket may be found in [7], for instance.

COROLLARY 1. (1) Let n be a Nambu-Poisson tensor of order n > 3. If f is a
smooth function, then fn is again a Nambu-Poisson tensor.

(2) If m =n > 3, then every n € I'(A"TM) is a Nambu-Poisson tensor.

(3) For every Nambu-Poisson tensor n, its Schouten bracket satisfies [n,n] = 0. (Of
course the converse is not true.)

3. Characterizations of Nambu-Poisson tensors. Throughout this section, we
assume that (M, n) is a Nambu-Poisson manifold with volume form €, and m > n > 3.
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Put w = i(n)Q), where the right hand side is the interior product of n and . Hence w is
an (m — n)-form.

A differential form « of degree k (locally defined) around p € M is called decomposable
at p if there exist 1-forms aq,...,ax (which are locally defined around p) such that
a=a; A+ Aag. We also define the decomposability of (locally defined) contravariant
tensor fields in the same manner. In the following theorem, we will characterize a Nambu-
Poisson tensor by using the notion of decomposability.

THEOREM 2. Let n € I'(A"TM). Then n is a Nambu-Poisson tensor if and only if n
satisfies the following two conditions around each regular point:

1) w is decomposable, and

2) there exists a locally defined 1-form 6 such that dw = 0 A\ w.

PRrROOF. If n is a Nambu-Poisson tensor and p is its regular point, then by Theorem

1, there exist local coordinates (z1,...,Zn, Tpi1,...,2m) around p such that
0 A A 0
= 81'1 8xn

Suppose that Q = fdzq A -+ A dx,, with respect to these coordinates. Then we have
w= fdxpi1 A Ndxpy,,

and
df
dw=df Ndxpi1 N+ Nday, = 7/\@0
Conversely assume that 7 satisfies above two conditions. Then there exist 1-forms
W1, - - - wWmy such that w = wp41 A -+ A wp,. Note that w41, ...,w,, are linearly inde-
pendent around p since w(p) # 0. Adding n 1-forms wy, .. .,w, to them, we can construct
a basis of 1-forms around p. For n + 1 < i < m, put

dw; = Z gékwj A Wg.

1<j<k<m
Since
dv=0Nw=0ANwpi1 N ANwp
m
= Z (=D Y A Adwy A - A Wi,
l=n+1
we have

0=wiAdw=(=1)"""w Awpr1 A Adwi A Awp,
=dw; Awpy1 A AW

This means that g;-k =0 for 1 <j <k <n, and we have the following expression:

m
dwi = Z Gi]— /\(Uj7
Jj=n+1

where 0;; are 1-forms. By the Frobenius theorem, there exist local functions f;; and g;
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such that
m
wi= Y fidg;, G=det(fi;)#0.
j=n+1
Adding n-local functions 1, ..., Z,, we can adopt (Z1,...,%n, gn+1,---,9m) as local co-

ordinates. With respect to these local coordinates, the volume form ) can be written
as

Q=Fdxi N Ndxy Ndgni1 A - AN dgm,.
If we put y; = f%dwh Yo = T2yeoyYn = TuyYntl = Gntls--->Ym = Gm, then € is
rewritten as
Q=Gdy; A Ndym.-
With respect to these new local coordinates (y1,...,¥m), w has the following expression:
W=Wnt1 A AW = Gdypt1 A+ Adym,

= i(n)(Gdyy A+ A dym).

Thus we obtain that n = aiyl A A %. Using Theorem 1 once again, we know that n

is a Nambu-Poisson tensor. m
REMARK 1. The above criterion for Nambu-Poisson tensors does not depend on the
choice of volume form.

Suppose that m = n + 1. Since every 1-form is clearly decomposable, we have

COROLLARY 2. If m = n+ 1, then n is a Nambu-Poisson tensor if and only if
w A dw = 0.

4. Nambu-Poisson tensors on Lie groups. Let G be an m-dimensional connected
Lie group, m > 3. First we shall determine the form of left invariant Nambu-Poisson
tensors on G. Denote by g the Lie algebra of left invariant vector fields on G.

PROPOSITION 3. Let n be a (non-zero) left invariant Nambu-Poisson tensor of order
n > 3 on a Lie group G. Then n is globally decomposable.

PROOF. Let e be the unit element of G. By Theorem 1, 1 has the following expression
around e € G : n = 8%1 ARRRWAN %, where (z1,...,%,,) is some coordinate neighborhood
around e. Then there exist uniquely n elements Xi,...,X, of g such that (X;). =
(a%i)e’ 1 <4 < n. Since 7 is left invariant, we immediately have n = X1 A --- A X,
onG. m

By the above proposition, any left invariant Nambu-Poisson tensor n of order n can
be written as a decomposable element of A™g.

PROPOSITION 4. Let G be an m-dimensional Lie group.

(i) Let b be an n-dimensional Lie subalgebra of g, m > 3. For a basis < Xq,...,X, >
of b, put n = X1 N---ANX,,. Then n is a left invariant Nambu-Poisson tensor of order n
on G.

(ii) Conversely given a left invariant Nambu-Poisson tensorn = X1 A---NX,, € A"g
on G, then h=< X1,...,X,, > is a Lie subalgebra of g.
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PrROOF. (i) Let < X1,...,Xpn, Xnt1,... X;n > be a basis of g obtained by extending
a basis of h, and let < wy,...,w, > be the dual basis of < X1,...,X,, >. Put Q =
w1 A+ A wp. Then Q is a left invariant volume form on G. Define a left invariant
(m —n)-form w by w = i(N)Q = wpy1 A Awp. Let {C,} be the structure constants
of g. Since b is a Lie subalgebra, C},, =0 (n+1<i<m, 1<p,qg<mn). Then

dw; = — Z C’;qu ANwg — Z Z C’f;swr A Ws.

n+1<p<q<m 1<r<nn+1<s<m
Thus we have
m—n
dw = (—l)t_lwnH/\--~/\dwn+t/\~-~/\wm

t=1
m—n

_ t—1 n-+t

= E (1) wn+1/\~~/\< g Cpy "wp AN wy
t=1 n+1<p<g<m

— Z C’fjtwr A ws> A AW,

1<r<nn+1<s<m
n

- (1 s A+ A (0 M) A+ A

t=1 1<r<n
m—n
_ n—+t
= (— C’T’n+twr> ANWnt1 A A wp,
t=1 1<r<n

and we can write dw as dw = 6 A w. Hence by Theorem 2, we know that n is a Nambu-
Poisson tensor.

(i) We use the same notations as (7). Then by writing down the condition dw = § Aw,
we can get easily that Cziiq =0 (n+1<i<m, 1<p,q<n). This means that b is a
Lie subalgebra of g. =

By Proposition 4, to each Lie subalgebra of g, there corresponds a left invariant
Nambu-Poisson tensor of order n up to constant multiple. Conversely if a left invariant
Nambu-Poisson tensor n has two expressions: n = X1 A--- A X, = Y1 A---AY,, then by
E.Cartan’s lemma, we know that < X3,...,X,, >=<Y3,...,Y, >. Thus we have

COROLLARY 3. There is a one to one correspondence up to constant multiple be-
tween the set of left invariant Nambu-Poisson tensors of order n on G and the set of
n-dimensional Lie subalgebras of g.

Let G be an m-dimensional connected Lie group and H an n- dimensional closed
subgroup of G. Denote by g and b the Lie algebras of G and H respectively. Let 7 : G —
G/H be the natural projection. The mapping @ — 7*@ establishes a 1-1 correspondence
between the G-invariant p-forms on G/H and the left invariant p-forms w on G which
satisfy

(a) i(X)w =0 for all X € b,

(b)L(X)w =0 for all X € b [2].
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If @ is a G-invariant (m — n)-form (i.e. G-invariant volume form) on G/H. Then
w = m*® is a left invariant (m — n)-form on G. Since w is closed and decomposable, w in-
duces a left invariant Nambu-Poisson tensor 1 of order n on G by the equation i(n)Q2 = w.
It is clear that n is equal to the left invariant Nambu-Poisson tensor corresponding to
the Lie algebra  of H up to constant multiple. Define h,, = {X € g |i(X)w = 0}.
Then b, is a Lie subalgebra of g and h, = h. The maximal integral submanifold H,,
through e is the identity component of H. Since H is closed, H,, is also a closed subgroup
of G.

Conversely let us give a left invariant Nambu-Poisson tensor 1 of order n > 3. Then
as we have seen in Proposition 4, 1 determines an n-dimensional Lie subalgebra b, and
7 also induces the left invariant (m — n)-form w on G by i(n)Q = w. In the following
theorem, we give a sufficient condition for w to be projected down to the G-invariant
volume form of G/H. This is essentially due to S.S.Chern [1].

THEOREM 5. Let G be an m-dimensional connected unimodular Lie group, and n a
left invariant Nambu-Poisson tensor of order n > 3 on G. Then there corresponds an
n-dimensional Lie subalgebra . Denote by H the connected Lie subgroup corresponding
to h. If H is closed and unimodular, then w is projected down to the G-invariant volume
form of G/H.

PRrROOF. It is clear that i(X)w = 0 for all X € §. Since G and H are unimodular, it
holds that Trady(X) = Trady(X) = 0 for all X € . Let C}, be the structure constants
of g. Then this implies that ZZZWH C2 =0,(6 =1,...,n). In view of the proof of
Proposition 4, we know that dw = 0. Hence two conditions (a) and (b) are satisfied so
that w is projectable. m

Another easy sufficient condition for w to be projectable is the following. If § is an
ideal of g, then ad(X) is h-valued for X € h, and we easily obtain that dw = 0. Thus we
have

PROPOSITION 6. Let n be a left invariant Nambu-Poisson tensor of order n on G.
Suppose that b induced by n is an ideal of g and the connected Lie group H which cor-
responds to § is a closed subgroup of G. Then w is projected down to the G-invariant
volume form of G/H.

Here let us give one example of the pair of Lie groups (G, H) such that w cannot be
projected down to any G-invariant volume form of G/H. In this case, of course, H is not
unimodular. Let g = s[(3,R) and let g = a + n + ¢ be the usual Iwasawa decomposition.
Take a +n as h. Then § is not an ideal but a Lie subalgebra of g. Let A and N be the
connected Lie groups corresponding to a and n respectively. Then A and N are closed Lie
subgroups of SL(3,R), and H is diffeomorphic to A x N. Hence H is a closed subgroup
of SL(3,R). Now we can find a basis < Xi,...,Xs > of g such that a =< X, X5 >
and n =< X3, X4, X5 > Put n = X; A--+- A X5. Then w = i(n)Q can be written as
w = wg A wr Awg with respect to the dual basis < wq,...,wg > of < Xq,..., Xg >. Then
we know that i( h )dw # 0. Hence w cannot be projected down to any G-invariant form

of G/H.
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Let w be a left invariant closed form on a Lie group G. Put h , = {X € g |i(X)w = 0}.
Then b,, is a Lie subalgebra of g. Denote by H,, the connected Lie subgroup corresponding
to h,,. Bon-Yao Chu [3] proved the following:

PROPOSITION 7. On a simply connected Lie group, if a left invariant 2-form w is
closed, the corresponding connected Lie subgroup H,, is closed in G.

Applying the above result to our cases, we can easily obtain:

PROPOSITION 8. Let G be an (n + 2)-dimensional simply connected Lie group and n
a left invariant Nambu-Poisson tensor of order n on G. Denote by b the Lie subalgebra
induced by n. Put w = i(n)S), where Q is a left invariant volume form of G. If dw = 0,
then the connected Lie subgroup H corresponding to b is closed in G. In particular if b
is an ideal of g, then H is a closed normal subgroup of G.
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