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The coincidence index for fundamentally

contractible multivalued maps with nonconvex values

by Dorota Gabor (Toruń)

Abstract. We study a coincidence problem of the form A(x) ∈ φ(x), where A is a
linear Fredholm operator with nonnegative index between Banach spaces and φ is a mul-
tivalued A-fundamentally contractible map (in particular, it is not necessarily compact).
The main tool is a coincidence index, which becomes the well known Leray–Schauder
fixed point index when A = id and φ is a compact singlevalued map. An application to
boundary value problems for differential equations in Banach spaces is given.

Introduction. When studying boundary value problems for differential
equations or inclusions one usually encounters the question of solvability of
an inclusion

(1) N(x) ∈ G(x),

where N : X → Y is a bounded linear operator between Banach spaces
and G : clU → Y is a single- or multivalued transformation defined on the
closure of an open set U ⊂ X, subject to some “boundary” conditions of
the form

(2) l(x) ∈ B(x),

where l : X → E′ is a bounded linear map into a Banach space E′ and
B : clU → E′ is again a single- or multivalued transformation.

For instance, let C = C1([0, T ], E) be the space of C1-functions defined
on the interval [0, T ] with values in a Banach space E and let f : [0, T ] ×
E × E → E be a continuous map. If we study the existence of solutions to
the general boundary value problem

(3)

{
u′(t) = f(t, u(t), u′(t)),
l1(u(0)) + l2(u(T )) ∈ b(u),
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where l1, l2 : E → E′ are bounded linear maps, and b : C ⊸ E′ is a
multivalued map (E′ is a Banach space), then we reformulate it as

(4)





y(t) = f
(
t, z +

t\
0

y(s) ds, y(t)
)
,

l1(z) + l2

(
z +

T\
0

y(s) ds
)
∈ b

(
z +

.\
0

y(s) ds
)
.

Obviously, if (z, y) ∈ E × C([0, T ], E) is a solution to (4), then u(t) =

z +
Tt
0
y(s) ds is a solution to (3).

If we set

x = (z, y), N(z, y) = y,

G(z, y) = f
(
·, z +

.\
0

y(s) ds, y(·)
)
, l(z, y) = l1(z) + l2(z),

B(z, y) = b
(
z +

.\
0

y(s) ds
)
− l2

( T\
0

y(s) ds
)
,

then problem (4) is equivalent to (1), (2).
Observe that in case E=E′, l1 =idE , l2 =− idE and b ≡ 0, (3) becomes

an ordinary periodic boundary value problem.
It is clear that without suitable assumptions concerning N , G, l and B

it does not make sense to study the solvability of (1), (2). To see what type
of hypotheses are most reasonable, let us further transform the problem
considered. Namely, putting A = (N, l) : X → Y ⊕ E′ and φ = (G,B) :
clU ⊸ Y ⊕ E′, we arrive at a coincidence problem (a generalized fixed
point problem) of the form

(5) A(x) ∈ φ(x).

Problems of this type have been intensively studied by many authors, es-
pecially when φ is a compact map and A is the identity (the Leray–Schauder
fixed point theory) or A is a Fredholm operator of index 0 (e.g. Mawhin [17],
Pruszko [18]) or of nonnegative index (Kryszewski [12]). However, boundary
value problems of the form (3) translated into the form (5) rarely lead to
a compact map φ. Hence, there is a need to develop a framework to study
problem (5) also in the case when A is a Fredholm operator of nonnegative
index and φ belongs to a more general class of nonlinear (single- or multival-
ued) transformations, e.g. condensing, ultimately compact or fundamentally
contractible maps.

The paper is organized as follows. At the end of this section we introduce
some notions and definitions. In Section 1 we describe u-fundamentally con-
tractible maps and give some examples. Section 2 is technical—it prepares
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tools for Section 3, which is devoted to the construction of a coincidence
index in the class of maps considered. Finally, in Section 4 we present an
abstract existence result and illustrate it by a boundary value problem in
Banach spaces.

All topological spaces considered are metric, and all singlevalued maps
are continuous.

Let E, E′ be Banach spaces with norms ‖ · ‖E , ‖ · ‖E′ , respectively, and
let X ⊂ E, Y ⊂ E′. By a multivalued map ϕ from X to Y (denoted by
ϕ : X ⊸ Y ) we understand an upper semicontinuous transformation which
assigns to any x ∈ X a nonempty compact set ϕ(x) ⊂ Y . Recall that ϕ is
upper semicontinuous (u.s.c.) if, for every closed B ⊂ Y ,

ϕ−1(B) = {x ∈ X : ϕ(x) ∩B 6= ∅}

is closed in X. As a general reference for multivalued maps we suggest [8]
or [13].

Throughout the paper we use the following notation: if V is a subset of
a Banach space E, then by clV we denote the closure of V , by bdV the
boundary of V , by conv(V ) the convex hull of V , i.e. the set {x ∈ E : x =∑n

i=1 tivi and vi ∈ V, ti ∈ [0, 1],
∑n

i=1 ti = 1}, and conv(V ) = cl conv(V ).
Moreover, BE(x0, r) = {x ∈ E : ‖x0 − x‖E ≤ r}.

1.u-Fundamentally contractible maps and morphisms. Let E,E′

be Banach spaces, X, V be subsets of E such that X ⊂ V , and Y be a closed
convex subset of E′. Moreover, let u : V → Y be a proper (1) continuous
(singlevalued) map and ϕ : X ⊸ Y be a multivalued map.

Definition 1.1. A nonempty closed convex set K ⊂ Y is called u-fun-

damental for ϕ provided

(i) ϕ(u−1(K) ∩X) ⊂ K,

(ii) if u(x) ∈ conv(ϕ(x) ∪K), then u(x) ∈ K.

Observe that if E = E′ and u = idE is the identity on E, then K is
nothing else but a fundamental set for ϕ in the sense of e.g. [3].

Properties of u-fundamental sets are summarized in the following result.

Theorem 1.2. (i) If K is a u-fundamental set for ϕ, then {x ∈ X :
u(x) ∈ ϕ(x)} ⊂ u−1(K).

(ii) If K1 ∩K2 6= ∅ and K1, K2 are u-fundamental sets for ϕ, then so

is K = K1 ∩K2.

(iii) If P ⊂ K and K is a u-fundamental set for ϕ, then so is K ′ =
conv(ϕ(u−1(K) ∩X) ∪ P ).

(1) That is, u−1(C) is compact for any compact set C ⊂ Y .
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(iv) If K is the intersection of all u-fundamental sets for ϕ, then K =
conv(ϕ(u−1(K) ∩X)).

(v) For any A ⊂ Y , there exists a u-fundamental set K such that K =
conv(ϕ(u−1(K) ∩X) ∪A).

P r o o f. Only part (v) requires a proof. It is obvious that Y is a u-fun-
damental set for ϕ. Put

K =
⋂

L∈K

L,

where K = {L ⊂ Y : L is a u-fundamental set for ϕ and A ⊂ L}. We see at
once that K is a u-fundamental set for ϕ, A ⊂ K and

K ′ = conv(ϕ(u−1(K) ∩X) ∪A) ⊂ K.

But K ′ ∈ K, which follows from part (iii). By the definition of K, K ⊂ K ′,
which completes the proof.

Observe that the set K from (v) of the above theorem is the smallest
u-fundamental set for ϕ containing A.

Definition 1.3. We say that ϕ is a u-fundamentally contractible map if
there exists a compact u-fundamental set for ϕ.

Remark 1.4. Let E′′ be a Banach space. Assume that Z : E′ → E′′

is a continuous linear isomorphism. If ϕ : X ⊸ Y is u-fundamentally con-
tractible, then Z ◦ϕ is (Z ◦u)-fundamentally contractible. Indeed, if K is a
compact u-fundamental set for ϕ, then Z(K) is a compact Z◦u-fundamental
set for Z ◦ ϕ.

It is clear that without additional knowledge about the structure of a
mapping and its values no satisfactory approximation or algebraic meth-
ods are available. Observe that any multivalued map ϕ : X ⊸ Y may be
represented by the formula

ϕ(x) = qϕ(p−1
ϕ (x))

for x ∈ X, where

X
pϕ

←− Gr(ϕ)
qϕ

−→ Y,

Gr(ϕ) = {(x, y) ∈ X × Y : y ∈ ϕ(x)} is the graph of ϕ and pϕ, qϕ are
the projections. Note that, in view of the upper semicontinuity of ϕ, pϕ is
proper as a closed surjection with compact fibers.

Clearly ϕ may admit other factorizations of the form X
p
←W

q
→ Y (i.e.

ϕ(x) = q(p−1(x)), x ∈ X) where p, q are no longer projections, but p is still
a proper surjection.

As usual, we will need some assumptions concerning the values of the
maps considered. In the described situation some additional assumptions on
p (more precisely, on its fibers) imply suitable properties of the values of ϕ.
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Therefore, from now on we will consider only those multivalued maps which
can be factorized by means admissible cotriads (in the sense defined below).

Definition 1.5. Let W be a space. We say that a cotriad X
p
←W

q
→ Y,

also denoted by (p, q), is admissible if

(i) q is a singlevalued map,
(ii) p is a singlevalued proper map,
(iii) p−1(x) is a cell-like set for every x ∈ X.

Recall that a set A ⊂ W is called cell-like if it is compact and if for
any embedding e : A →֒ Y into an absolute neighborhood retract Y , the set
e(A) is contractible in Y (see [2] and [16]).

Remark 1.6. Condition (iii) may be replaced by

(iii)′ supx∈X dim p−1(x) < ∞ and for each x ∈ X, the fiber p−1(x) is
acyclic with respect to Čech cohomology (2).

Of course, in this way we get a different class of multivalued maps, but it
is also appropriate for all considerations that follow. In both classes, values
of maps may be nonconvex.

Observe that each admissible cotriad (p, q) generates a u.s.c. multivalued
map ϕ(p,q) : X ⊸ Y , ϕ(x) = q(p−1(x)), so we can define the following
notions.

Definition 1.7. (i) A closed convex set K is called u-fundamental for
an admissible cotriad (p, q) if it is u-fundamental for the multivalued map
ϕ(p,q).

(ii) The cotriad (p, q) is called u-fundamentally contractible if so is the
map ϕ(p,q).

Definition 1.8. We denote by D(X,Y, u) the class of all admissible
cotriads

X
p
←W

q
→ Y

such that

(i) (p, q) is u-fundamentally contractible,
(ii) if K, K ′ are two compact disjoint u-fundamental sets for (p, q), then

there exist a finite number of compact u-fundamental sets K1, . . . ,Kn such
that K ∩K1 6= ∅, Kn ∩K

′ 6= ∅ and Ki ∩Ki+1 6= ∅.

Observe that if we know a priori that {x ∈ X : u(x) ∈ q(p−1(x))} 6= ∅,
then any two u-fundamental sets have nonempty intersection (see Theo-
rem 1.2). However we need to impose condition (ii) in Definition 1.8 in

(2) That is, H∗(p−1(x)) = H∗(pt), where pt is a one-point space and H∗ denotes
Čech cohomology.
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order to have a relation between different u-fundamental sets. As shown by
the examples given below, this condition does not restrict generality.

Example 1.9 (Compact cotriads). If (p, q) is compact (i.e. cl q(p−1(X))
is compact), then (p, q) ∈ D(X,Y, u). Indeed, K = conv(q(p−1(X))) is a
compact u-fundamental set for (p, q). If there exists a compact u-fundamen-
tal set K ′ such that K ∩K ′ = ∅, then the set

K ′′ = conv(q(p−1(X)) ∪ {v}),

where v ∈ K ′, is a compact u-fundamental set for (p, q) (because in fact
K ′′ = conv(q(p−1(u−1(Y ) ∩X)) ∪ {v})) and it has nonempty intersections
with K and K ′. We denote by Dc(X,Y, u) the subclass of D(X,Y, u) con-
sisting of the compact cotriads.

Example 1.10 (u-Condensing cotriads). Recall that a measure of non-

compactness in a Banach space E′ is a function µ : B → [0,∞) defined on
the family of all bounded subsets of E′ and having the following properties:

(1) µ(A) = 0 if and only if clA is compact.
(2) µ is a “seminorm”, i.e. µ(λ ·A) = |λ|µ(A) and µ(A1 +A2) ≤ µ(A1)+

µ(A2).
(3) If A1 ⊂ A2, then µ(A1) ≤ µ(A2), µ(A1 ∪A2) ≤ max{µ(A1), µ(A2)}.
(4) µ(convA) = µ(A) and µ(clA) = µ(A).
(5) If a sequence {Ai}

∞
i=1 is decreasing and limi→∞ µ(Ai) = 0, then

A∞ =
⋂∞

i=1 clAi is a compact nonempty set.

Assume that both u and the map determined by (p, q) are bounded and
that (p, q) is u-condensing , i.e. for any A ⊂ X, if µ(q(p−1(A))) ≥ µ(u(A))
then clA is compact. Then (p, q) ∈ D(X,Y, u).

Indeed, let y ∈ q(p−1(X)). By Theorem 1.2(v), there exists a u-fun-
damental set K such that K = conv(q(p−1(u−1(K)) ∩X) ∪ {y}). Observe
that K is bounded. Assume that K is not compact. Then

µ(K) = µ(conv(q(p−1(u−1(K) ∩X)) ∪ {y}))

= µ(q(p−1(u−1(K) ∩X)) ∪ {y})

= µ(q(p−1(u−1(K) ∩X))) < µ(u(u−1(K) ∩X)) ≤ µ(K),

a contradiction.
Now, for any two compact u-fundamental sets K1, K2 and x ∈ K1,

y ∈ K2, there exists a u-fundamental set K3 such that

K3 = conv((q(p−1(K3) ∩X)) ∪ {x, y}).

As above we prove that K3 is compact.

Example 1.11 (u-Set contractions). A cotriad (p, q) is called a u-set
contraction if there exists k ∈ (0, 1) such that for any bounded A ⊂ X,
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µ(q(p−1(A))) ≤ kµ(u(A)). Then, clearly, (p, q) is u-condensing and hence
(p, q) ∈ D(X,Y, u).

Example 1.12 (u-Limit compact cotriads). Let Y = u(X) and K1 =
conv(q(p−1(X))), Ki = conv(q(p−1(u−1(Ki−1)∩X))) for i > 1. The cotriad
(p, q) is u-limit compact if the set

K =

∞⋂

i=1

Ki

is nonempty and compact. Obviously, K is a u-fundamental set for (p, q).
Assume that L0 ⊂ Y is another compact u-fundamental set for (p, q). Of
course u−1(L0) ∩X 6= ∅. For i = 1, 2, . . . , put

Li = conv(q(p−1(u−1(Li−1) ∩X))), i ∈ N \ {0},

and observe that

∅ 6= L1 ⊂ conv(q(p−1(X))) = K1

and, for i > 1,

∅ 6= Li ⊂ conv(q(p−1(u−1(Ki−1) ∩X))) = Ki ⊂ u(X).

Moreover Li ⊂ L0 ∩Ki, hence L0 ∩K 6= ∅.

Example 1.13. If u = idX and E = E′, then every u-condensing cotriad
is condensing, every u-set contraction is a k-set contraction and every u-limit
compact map is limit compact.

Example 1.14. First we generalize the definition of Kn-operators (cf. [1]).
Let A ⊂ 2E′

. A multivalued map ϕ : X ⊸ Y is called an (u,A)-operator if
for any T ∈ A and Z ⊂ Y , the following condition holds:

if conv(ϕ(u−1(Z) ∩X) ∪ T ) = Z, then Z is compact.

Let Kn denote the family of all n-element subsets of Y , and K∞, Kc the
families of all finite and all compact subsets of Y , respectively.

If A is an arbitrary family among K2, . . . ,Kn, . . . ,K∞,Kc, and ϕ(p,q) is
a (u,A)-operator, then (p, q) ∈ D(X,Y, u). The proof is easy if one recalls
properties of u-fundamental sets (Theorem 1.2).

As mentioned earlier, a multivalued map can be factorized by different
cotriads. To reduce this freedom we define the following equivalence relation
in D(X,Y, u).

Definition 1.15. We say that cotriads

X
pi
←−Wi

qi
−→ Y, i = 1, 2,
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from D(X,Y, u) are equivalent (written (p1, q1) ≈ (p2, q2)) if there exists a
homeomorphism f : W1 → W2 such that the following diagram is commu-
tative:

W1

X Y

W2

p1

}}|||||| q1

BBBBBB   
f

��

p2

aaBBBBBB q2|||||| >>
Define

M(X,Y, u) = D(X,Y, u)/≈ .

Elements of M(X,Y, u) will be called u-fundamentally contractible mor-

phisms and will be denoted by Greek capital letters Φ,Ψ, . . .

Any morphism Φ ∈ M(X,Y, u) determines a multivalued map ϕΦ :
X ⊸ E′ by ϕΦ(x) = q(p−1(x)), where (p, q) ∈ Φ. The definition does
not depend on the choice of (p, q), so ϕΦ is well defined. From now on we
write Φ(x) for ϕΦ(x).

Remark 1.16. Assume that (p1, q1) ≈ (p2, q2). Then

(i) {x ∈ X : u(x) ∈ q1(p
−1
1 (x))} = {x ∈ X : u(x) ∈ q2(p

−1
2 (x))},

(ii) if K is a u-fundamental set for (p1, q1), then it is a u-fundamental
set for (p2, q2), so we can call K a u-fundamental set for the morphism
Φ = [(p1, q1)] and, of course, K is a u-fundamental set for ϕΦ.

If f : X → Y is a u-fundamentally contractible singlevalued map, then
we can identify f with a morphism [(idX , f)] from M(X,Y, u). Let Φ be

represented by the cotriad Y
p
← W

q
→ Z. The composition Φ ◦ f is the

morphism represented by the cotriad

X
p̃
← X ⊗W

q◦f̃
−→ Z,

where X ⊗ W = {(x,w) ∈ X × W : p(w) = f(x)}, p̃(x,w) = x and

f̃(x,w) = w.

Let I = [0, 1], ij : X → X × I, j = 0, 1, be the embeddings given by
ij(x) = (x, j), x ∈ X, and v : X × I → Y be defined by v(x, t) = u(x). For
any fixed t ∈ I we may identify v(·, t) and u.

Definition 1.17. Let K be a compact convex subset of Y . Morphisms
Φ0, Φ1 ∈ M(X,Y, u) are (u,K)-homotopic (written Φ0 ≃K Φ1) if there
exists a morphism Φ ∈M(X×I, Y, v) such that for every t ∈ I and (P,Q) ∈
Φ, K is a u-fundamental set for Q(P−1(·, t)) and Φ ◦ ij = Φj , j = 0, 1.
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Definition 1.18. Morphisms Φ0, Φ1 ∈ M(X,Y, u) are u-homotopic

(written Φ0 ≃ Φ1) if there exist a finite number of compact convex sets
K1, . . . ,Kn ⊂ Y and morphisms Ψ1, . . . , Ψn−1 such that

Φ0 ≃K1
Ψ1 ≃K2

. . . ≃Kn−1
Ψn−1 ≃Kn

Φ1.

We end this section with the notion of compact u-homotopy. Let
Mc(X,Y, u) ⊂ M(X,Y, u) be the set of compact morphisms, i.e. such
that Mc(X,Y, u) = Dc(X,Y, u)/≈ (see 1.9).

Definition 1.19. Morphisms Φ0, Φ1 ∈ Mc(X,Y, u) are compactly

u-homotopic if there exists a morphism Φ ∈ Mc(X × I, Y, v) such that
Φ ◦ ij = Φj .

Of course, if morphisms are compactly u-homotopic, then they are
(u,K)-homotopic with K = conv(ϕΦ(X × I)), hence simply u-homotopic.

2. Associated compact cotriads. Let E, E′, X, Y , u be as in the

previous section. Take Φ ∈ M(X,Y, u) and a cotriad X
p
← W

q
→ Y such

that (p, q) ∈ Φ.

Definition 2.1. Let K be a compact u-fundamental set for (p, q). A

cotriad X
p
←W

q
→ K such that q is a compact map and q|p−1(u−1(K)∩X) =

q|p−1(u−1(K)∩X) is said to be associated with (p, q) with respect to K.

Obviously, the set K is u-fundamental for (p, q), and (p, q) ∈ Dc(X,Y, u).
It is easily seen that for any (p, q) ∈ Φ ∈ M(X,Y, u) there exists a

compact associated cotriad. Indeed, if K is a u-fundamental set for (p, q),
then the map

q|p−1(u−1(K)∩X) : p−1(u−1(K) ∩X)→ K

admits a compact extension q′ : W → K and (p, q′) satisfies the above
definition.

Let us collect some properties of associated cotriads.

Lemma 2.2. (i) Let (p, q) ∈ D(X,Y, u), K ⊂ Y be a compact u-fun-

damental set for (p, q), and (p, q) be a compact cotriad associated with (p, q)
with respect to K. Then {x ∈ X : u(x) ∈ q(p−1(x))} = {x ∈ X : u(x) ∈
q(p−1(x))}.

(ii) Let K1,K2 be compact u-fundamental sets for (p, q) and K1 ⊂ K2.

If (p, q) is a cotriad associated with (p, q) with respect to K2, then K1 is a

u-fundamental set for (p, q).
(iii) Morphisms [(p, q)] and [(p, q)] are u-homotopic. If , additionally ,

{x ∈ X : u(x) ∈ q(p−1(x))} ∩ bdX = ∅, then the multivalued map de-

termined by the u-homotopy joining these cotriads also has no coincidence

points with u on bdX.
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P r o o f. Parts (i) and (ii) are obvious.

To prove (iii), let r : E′ → K be a retraction. Consider the cotriad

X × I
P
←W × I

Q
→ Y given by

P (w, t) = (p(w), t),

Q(w, t) =

{
(1− 2t)q(w) + 2t(r ◦ q)(w) for t ∈ [0, 1/2],
(2− 2t)(r ◦ q)(w) + (2t− 1)q(w) for t ∈ (1/2, 1].

An easy computation shows that [(P,Q)] ◦ i0 = [(p, q)], [(P,Q)] ◦ i1 =
[(p, q)] and for every t ∈ I, K is a u-fundamental set for Q(P−1(·, t)) and
{x ∈ X : u(x) ∈ Q(P−1(x, t))} ∩ bdX = ∅.

Moreover, observe that if (p, q) and u have no coincidence points on X,
then also (P,Q) has no coincidence points with v(x, t) := u(x) on X × I.

From the above lemma it follows, in particular, that if

{x ∈ X : u(x) ∈ q(p−1(x))} ∩ bdX = ∅,

then also

{x ∈ X : u(x) ∈ q(p−1(x))} ∩ bdX = ∅.

Let Φ ∈ M(X,Y, u) and K be a u-fundamental set for Φ (see Re-
mark 1.16). One can define a compact morphism Φ associated with Φ with
respect to K by putting Φ = [(p, q)], where (p, q) is a compact cotriad asso-
ciated with (p, q) ∈ Φ with respect to K. The following theorems show that
any two compact morphisms associated with Φ are compactly u-homotopic.

Theorem 2.3. Let (p, q0), (p, q1) be compact cotriads associated with

(p, q) ∈ D(X,Y, u) with respect to compact u-fundamental sets K0,K1, re-

spectively. Assume that (p, q) and u have no coincidence points on bdX.

Then the morphisms [(p, q0)], [(p, q1)] are compactly u-homotopic and the

map determined by the homotopy has no coincidence points with u on bdX.

P r o o f. Without loss of generality assume that K2 = K0 ∩K1 6= ∅ (cf.
Definition 1.8). Of course, K2 is a compact u-fundamental set for (p, q). Let

ri : E′ → Ki, i = 0, 1, 2, be retractions. Consider the cotriad X × I
P
←

W × I
Q
→ K0 ∪K1 defined by

P (w, t) = (p(w), t),

Q(w, t) =





(1− 4t)q0(w) + 4t(r0 ◦ q)(w) for t ∈ [0, 1/4],
(2− 4t)(r0 ◦ q)(w) + (4t− 1)(r2 ◦ q)(w) for t ∈ (1/4, 1/2],
(3− 4t)(r2 ◦ q)(w) + (4t− 2)(r1 ◦ q)(w) for t ∈ (1/2, 3/4],
(4− 4t)(r1 ◦ q)(w) + (4t− 3)q1(w) for t ∈ (3/4, 1].

Obviously, (P,Q) ∈ Dc(X × I, Y, v), where, as above, v : X × I → Y is
given by v(x, t) = u(x). We prove that, for any t ∈ I, {x ∈ bdX : u(x) ∈
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Q(P−1(x, t))} = ∅. Assume that u(x) ∈ Q(P−1(x, t)) = Q({(w, s) ∈W×I :
p(w) = x, s = t}).

If t ∈ [0, 1/4], then there exists w ∈W such that

u(x) = (1− 4t)q0(w) + 4t(r0 ◦ q)(w) and p(w) = x.

By the above, u(x) ∈ K0 and hence x ∈ u−1(K0) ∩X. Since p(w) = x, we
have w ∈ p−1(u−1(K0)∩X). This gives q0(w) = q(w), and q(w) = r0 ◦q(w),
because q(w) ∈ K0. Therefore, Q(w, t) = q(w) and, consequently, x 6∈ bdX.

The proof for t ∈ (3/4, 1] is similar.

If t ∈ (1/4, 1/2], then there exists w ∈W such that

u(x) = (2− 4t)(r0 ◦ q)(w) + (4t− 1)(r2 ◦ q)(w) and p(w) = x.

As above, u(x) ∈ K0, so w ∈ p−1(u−1(K0) ∩X). Hence q(w) ∈ K0. This
gives r0 ◦ q(w) = q(w) ∈ q(p−1(x)). From this it follows that u(x) ∈
conv(q(p−1(x)) ∪K2), because r2 ◦ q(w) ∈ K2. Since K2 is a u-fundamen-
tal set for (p, q), u(x) ∈ K2. It follows that x ∈ u−1(K2) and hence w ∈
p−1(u−1(K2)∩X), which implies that q(w) ∈ K2, and finally, that r2◦q(w) =
q(w). Therefore u(x) ∈ q(p−1(x)), and x 6∈ bdX.

The same proof works for t ∈ (1/2, 3/4].

It is easy to verify that the morphism [(P,Q)] is a u-homotopy join-
ing [(p, q0)] to [(p, q1)] with K2 being a u-fundamental set for all maps
Q(P−1(·, t)), t ∈ I.

Theorem 2.4. Let X
p0

←−W0
q0

−→ E′, X
p1

←−W1
q1

−→ E′, (p0, q0), (p1, q1)
∈ D(X,Y, u) and (p0, q0), (p1, q1) be cotriads associated with (p0, q0) and

(p1, q1), respectively. If (p0, q0), (p1, q1) are equivalent , then the morphisms

[(p0, q0)], [(p1, q1)] are compactly u-homotopic.

P r o o f. Since (p0, q0) and (p1, q1) are equivalent, there exists a homeo-
morphism f : W0 →W1 such that p1 ◦f = p0 and q1 ◦f = q0 (see Definition
1.15) and we can assume that (p0, q0), (p1, q1) are associated with (p0, q0)
and (p1, q1) with respect to the same u-fundamental set K (cf. Remark
1.16). Observe that (p1, q1), (p0, q1 ◦ f) are equivalent in Dc(X,Y, u). The
morphism [(P,Q)] ∈ Mc(X × I, Y, v), where v : X × I → Y , v(x, t) = u(x)
and

X × I
P
←W0 × I

Q
→ K0,

defined by

P (w, t) = (p0(w), t), Q(w, t) = (1− t)(q1 ◦ f)(w) + tq0(w),

gives a compact u-homotopy between [(p0, q1◦f)] and [(p0, q0)]. But we have
[(p0, q1 ◦ f)] = [(p1, q1)] and the proof is complete.
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Remark 2.5. If (p0, q0) and (p1, q1) are as in the above theorem, then
{x ∈ X : u(x) ∈ q0(p

−1
0 (x))} ∩ bdX = ∅ if and only if {x ∈ X : u(x) ∈

q1(p
−1
1 (x))} ∩ bdX = ∅. Moreover, the homotopy defined in the proof of

Theorem 2.4 and v have no coincidence point on bdX.

3.The coincidence index. Let E, E′ be Banach spaces and F : E→E′

be a Fredholm linear operator of nonnegative index k = ind(F ).
Recall that a bounded linear operator F : E → E′ is called a Fred-

holm operator if dim Ker(F ) <∞ and dim Coker(F ) <∞. Here, Ker(F ) =
{x ∈ E : F (x) = 0} is the null space of F and Coker(F ) = E′/R(F ) where
R(F ) := F (E) is the range of F . Note that R(F ) is a closed subspace of E′

(see IV.2.6 of [7]). The index of a Fredholm operator F is the number

ind(F ) := dim Ker(F )− dimCoker(F ).

Definition 3.1. We denote byMF (E,E′) the collection of pairs (Φ,U)
such that U is an open bounded subset of E, Φ ∈ M(clU,E′, F |cl U ) and
F (x) 6∈ Φ(x) for all x ∈ bdU .

To simplify the notation, from now on, if (Φ,U) ∈ MF (E,E′), then an
F |cl U -fundamental set for Φ (resp. for (p, q) ∈ Φ or for ϕΦ) will be called an
F -fundamental set for Φ (resp. for (p, q) ∈ Φ or for ϕΦ).

We say that the pairs (Φ0, U), (Φ1, U) are F -homotopic (resp. compactly

F -homotopic) if they are u-homotopic (resp. compactly u-homotopic) with
u=F |cl U (see 1.18 and 1.19), and the u-homotopy has no coincidence points
with F on the boundary of U .

In this section we construct a general coincidence index, which is a ho-
motopy invariant count of coincidence points of F and multivalued maps
determined by a morphism fromMF (E,E′).

Definition 3.2. By a coincidence index we understand a function indF

which assigns to any pair (Φ,U) (Φ is a single- or multivalued map or mor-
phism) an element of the kth stable homotopy group of spheres Πk and has
the following properties:

(i) (Existence) If indF (Φ,U) 6= 0, then there is x0 ∈ U such that
F (x0) ∈ Φ(x0).

(ii) (Localization) If U ′ ⊂ U is open and F (x) 6∈ Φ(x) for x ∈ clU \ U ′,
then indF (Φ,U) = indF (Φ|cl U ′ , U ′).

(iii) (Additivity) If U1, U2 are open disjoint subsets of U and F (x) 6∈ Φ(x)
for x∈clU \(U1∪U2), then indF (Φ,U)=indF (Φ|cl U1

, U1)+indF (Φ|cl U2
, U2).

(iv) (Homotopy) If (Φ1, U) is F -homotopic to (Φ,U), then indF (Φ,U) =
indF (Φ1, U).

(v) (Restriction) Let G : E′ → E′ be a bounded linear projection with
Ker(G) = R(F ). Suppose that Φ(clU) ⊂ T , where T is a closed subspace
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of E′. Then indF (Φ,U) = indF ′(Φ′, U ∩ T ′), where T ′ = F−1(T + R(G)),
Φ′ = Φ|cl U∩T ′ and F ′ = F |T ′ .

In order to provide a construction of an index on MF (E,E′), we first
recall it briefly in the case of compact maps (following [12]). Similar homo-
topy invariants (in a less general situation) were studied earlier in [17], [6],
[4], [10], [9].

First, let E = R
m, E′ = R

n, where n ≤ m ≤ 2n−2, and let f : clU → R
n

be a continuous (singlevalued) map such that {x ∈ bdU : F (x) = f(x)} = ∅.
We identify the unit sphere Sn with the one-point compactification of R

n,
where 0 ∈ R

n is identified with the south pole s−1 of Sn. Since Sn \{s−1} is
an absolute retract, there exists a continuous map g : Sm \U → Sn \ {s−1}
such that g|bd U = (F − f)|bd U . Define g′ : Sm → Sn by the formula

g′(x) =

{
g(x) for x ∈ Sm \ U ,
F (x)− f(x) for x ∈ U .

Take the homotopy class [g′] of g′ in the mth homotopy group of Sn, denoted
by πm(Sn).

Let k = m− n. If k + 2 ≤ n, then we have the suspension isomorphism
πn+k(Sn) ∼= πn+k+1(S

n+1), hence the kth stable homotopy group of spheres
Πk defined by

Πk = lim−→
n≥0

πn+k(Sn)

is isomorphic to πn+k(Sn) for sufficiently large n. The index indF (f, U) is
the element of Πk corresponding to [g′] by an appropriate isomorphism.

The above procedure was suggested by [6] and introduced in [9]. It may
be formulated in the language of cohomotopy groups (see [12]).

This index has all the standard properties (i)–(v) from 3.2. The proofs
can be found in [12] and [6].

Now, let E be an arbitrary Banach space, E′ be a Banach space with
a given orientation (3) and let f : clU → E′ be a compact map with
f(x) 6= F (x) for x ∈ bdU . Using much more complex arguments, based
on Gȩba’s infinite-dimensional cohomotopy theory (see [5]) with suitable
modifications, Kryszewski [12] has defined an index

indF (f, U) ∈ Πk,

which has all properties from 3.2 and additionally the following one:

Property 3.3 (Boundary dependence). If f, g : clU → E′ and f |bd U =
g|bd U , then indF (f, U) = indF (g, U).

(3) An orientation in an infinite-dimensional Banach space E′ is a family O =
{OL}L∈Λ, where Λ is the family of all finite-dimensional linear subspaces of E′ and OL
is a fixed orientation on L ∈ Λ (cf. [5]).
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Remark 3.4. If E = E′ and F = idE , then indidE
(g, U) ∈ Π0 = Z is

the Leray–Schauder fixed point index of g on U .

Now we can describe the multivalued situation starting with the compact
case (cf. [12], [14], [15]). We obtain the following theorem, which is a corollary
of Theorem 4.51 and Remark 4.52 of [12].

Theorem 3.5. Let Φ ∈ Mc(clU,E
′, F |cl U) be such that {x ∈ bdU :

F (x) ∈ Φ(x)} = ∅ and let i : bdU → clU be the inclusion. Then there exists

a (unique up to F |bd U -homotopy) compact singlevalued map g : bdU → E′

such that the morphism [(idbd U , g)] is F |bd U -compactly homotopic to the

morphism Φ◦i and the map determined by the homotopy has no coincidence

points with F .

The above theorem and Property 3.3 allow us to define a generalized
coincidence index for compact morphisms.

Definition 3.6.Assume that Φ satisfies the assumptions of Theorem 3.5.
The generalized coincidence index of Φ on U with respect to F is defined by

indF (Φ,U) := indF (g, U),

where g : clU → E′ is an arbitrary compact extension of g.

Theorem 3.7 (see [12]). The index defined above has properties (i)–(v)
of 3.2.

Now, we are in a position to define a generalized coincidence index for
morphisms fromMF (E,E′).

Definition 3.8. Assume that (Φ,U) ∈ MF (E,E′). The coincidence

index of Φ on U with respect to F is

indF (Φ,U) := indF (Φ,U),

where Φ = [(p, q)] and (p, q) is a compact cotriad associated with (p, q) ∈ Φ.

The correctness of this definition follows from Theorems 2.3 and 2.4 (the
index does not depend on the choice of (p, q) and its associated cotriad).
Obviously, [(p, q)] ∈Mc(clU,E

′, F |cl U ).

Observe that if (Φ,U) ∈ MF (E,E′) and U ′ is an open subset of E
such that clU ′ ⊂ U , then also (Φ|cl U ′ , U ′) ∈MF (E,E′). Indeed, any F -
fundamental set for Φ is an F -fundamental set for Φ|U ′ . This allows us to
state the following theorem.

Theorem 3.9. Let (Φ,U) ∈ MF (E,E′), ϕΦ be the multivalued map

determined by Φ and assume that ϕΦ has no coincidence points with F on

the boundary of U . Then the index indF from Definition 3.8 has all the

properties 3.2(i)–(v).
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P r o o f. As above, we denote by Φ the morphism containing the compact
cotriad associated with (p, q) ∈ Φ.

(i) If indF (Φ,U) 6= 0, then indF (Φ,U) 6= 0. Hence there exists x0 ∈ U
such that F (x0)∈Φ(x0). But the sets of coincidence points are identical for
Φ and Φ, so F (x0) ∈ Φ(x0).

(ii) Observe that if (p, q) is a compact cotriad associated with (p, q) ∈ Φ,
then (p, q)|cl U ′ is a compact cotriad associated with (p, q)|cl U ′ , and (p, q)|cl U ′

∈ Φ|cl U ′ . Hence

indF (Φ,U) = indF (Φ,U) = indF (Φ,U ′) = indF (Φ,U ′).

(iii) Similar to the above:

indF (Φ,U) = indF (Φ,U) = indF (Φ,U1) + indF (Φ,U2)

= indF (Φ,U1) + indF (Φ,U2).

(iv) Without loss of generality we can assume that there exists a mor-
phism Ψ ∈ M(clU × I,E′, v) (v : clU × I → E′, v(·, t) = F |cl U ) with an
F -fundamental set K (cf. 1.18) and such that Ψ ◦ i0 = Φ and Ψ ◦ i1 = Φ1.
Let (P,Q) ∈ Ψ . Of course,

(p0, q0) = (P |P−1(cl U×{0}), Q|P−1(cl U×{0})) ∈ Φ,

(p1, q1) = (P |P−1(cl U×{1}), Q|P−1(cl U×{1})) ∈ Φ1.

Consider

Q|P−1(F−1(K)∩cl U) : P−1(F−1(K) ∩ clU)→ K

and its extension Q : W → K. Then (P,Q) ∈M(clU×I,E′, v) is a compact
homotopy between

(p0, q0) = (P |P−1(cl U×{0}), Q|P−1(cl U×{0}))

and

(p1, q1) = (P |P−1(cl U×{1}), Q|P−1(cl U×{1})).

It is easily seen that (p0, q0) and (p1, q1) are compact pairs associated with
(p0, q0) and (p1, q1), respectively. Hence

indF (Φ,U) = indF ([(p0, q0)], U) = indF ([(p1, q1)], U) = indF (Φ1, U).

(v) First, observe that (Φ′, clU ∩ T ′) ∈ MF ′

(T ′, T ) and if K is an
F -fundamental set for Φ, then K ∩ T is an F ′-fundamental set for Φ′.
Next, let (p, q) ∈ Φ and (p, q) be its associated compact cotriad (with
an F -fundamental set K). Observe that if p′ = p|p−1(cl U∩T ′) and q′ =
q|p−1(cl U∩T ′), then (p′, q′) ∈ Φ′. Consider the cotriad (p′, r) such that r =
q|p−1(cl U∩T ′). Observe that it is a compact cotriad associated with (p′, q′).
Indeed, r is a compact extension of

q′|p−1(F ′−1(K∩T )∩cl U∩T ′) : p−1(F ′−1(K ∩ T ) ∩ clU ∩ T ′)→ K ∩ T.
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Hence,

indF (Φ,U) = indF ([(p, q)], U), indF ([(p′, r)], U) = indF (Φ′, U).

But from the restriction property of the generalized coincidence index for
compact maps, indF ([(p, q)], U) = indF ([(p′, r)], U), which ends the proof.

4. Applications. In this section we present conditions sufficient for the
existence of solutions to an abstract inclusion

(6) A(x) ∈ ψ(x),

where A : E → E′ is a Fredholm linear operator of nonnegative index k (E,
E′ are Banach spaces) and ψ is a multivalued map. Next, we apply this
result to a concrete boundary value problem in Banach spaces.

Of course, if ψ is determined by an A-fundamentally contractible mor-
phism (Ψ,U) such that indA(Ψ,U) is not a trivial element of Πk, then the
inclusion (6) has a solution. But it is not simple to verify it when E is not
finite-dimensional.

Now we reformulate (6). Since A is a Fredholm operator, there are
two bounded linear projections P : E → E and Q : E′ → E′ such that
R(P ) = Ker(A) and Ker(Q) = R(A). Observe that Ker(P ) ⊕ Ker(A) =E
and R(Q)⊕R(A) = E′. Moreover, dimR(P ),dimR(Q)<∞ and dimR(P )−
dimR(Q) = k.

The restriction of A to Ker(P ) is a linear homeomorphism onto R(A),
hence it admits a right inverse KP : R(A) → E defined by KP (y) = x if
and only if x ∈ Ker(P ) and A(x) = y. KP is a continuous linear map. Let
KPQ : E′ → E be the generalized inverse of A, i.e. KPQ = KP ◦ (I − Q).
Clearly,

R(KPQ) = Ker(P ), A ◦KPQ = idE′ −Q, KPQ ◦ A = idE −P.

Denote by J an arbitrary (but fixed) injective linear map from R(Q) to
R(P ). Of course, J is continuous. Observe that x ∈ clU is a solution to the
inclusion (6) if and only if

F (x) ∈ φ(x),

where
F = idE −P : E → Ker(P )⊕R(J)

and
φ = (KPQ + J ◦Q) ◦ ψ(x) : clU ⊸ Ker(P )⊕R(J).

Indeed, if y = A(x) ∈ ψ(x), then Q(y) = Q ◦ A(x) = 0 and F (x) =
KPQ ◦A(x) = (KPQ +J ◦Q)(y) ∈ φ(x). On the other hand, if F (x) ∈ φ(x),
then F (x) = (KPQ +J ◦Q)(y), where y∈ψ(x). It follows that Q(y) = 0 and
hence A(x) = A ◦KPQ(y) = y ∈ ψ(x). Moreover, F is a Fredholm operator
of index k (equal to the index of A).
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Theorem 4.1. Assume that U = E and

(i) indA = k ≥ 0;

(ii) there exists a metric space W and a cotriad E
p
← W

q
→ E′ such

that ψ(x) = q(p−1(x)), ([(p|p−1(cl V ), q|p−1(cl V ))], V ) ∈MA(E,E′) for every

open bounded V , and some A-fundamental set for (p|p−1(cl V ), q|p−1(cl V ))
contains 0;

(iii) there exists a constant M > 0 such that for any x ∈ E, if y ∈
(idE′ −Q) ◦ ψ(x), then ‖y‖E′ < M .

Additionally , if R(Q) 6= 0, assume that there exists a constant R > 0
such that

(iv) if ‖P (x)‖E ≥ R and ‖x− P (x)‖E ≤ ‖KP ‖M , then 0 6∈ Q ◦ ψ(x);

(v) indO(−Q◦ψ|BE(0,R)∩R(P ), BE(0, R)∩R(P )) ∈ Πk is nontrivial (here
O : R(P )→ R(Q) is the zero operator).

Then the inclusion (6) has a solution.

P r o o f. First, suppose that R(Q) 6= 0. If x ∈ E is a solution to (6),
then there is y ∈ ψ(x) such that Q(y) = 0 and x − P (x) = KPQ(y).
Therefore, by (iii), ‖x − P (x)‖E < ‖KP ‖M and, by (iv), ‖P (x)‖E < R.
Hence each solution x is contained in the open bounded set V = {x ∈
E : ‖x − P (x)‖E < ‖KP ‖M, ‖P (x)‖E < R} and the map determined by
[(p|p−1(cl V ), q|p−1(cl V ))] has no coincidence points with A on bdV .

To simplify the notation put p′ = p|p−1(cl V ) and q′ = q|p−1(cl V ). Let
(p′, q′) be a compact cotriad associated with (p′, q′). Observe that

KPQ + J ◦Q : E′ → Ker(P )⊕R(J)

is a continuous linear isomorphism. By Remark 1.4 and Theorem 2.2, the
morphisms [(p′, (KPQ + J ◦ Q) ◦ q′)] and [(p′, (KPQ + J ◦ Q) ◦ q′)] are F -
homotopic without coincidence points on bdV . Moreover, the morphisms
[(p′, (KPQ + J ◦ Q) ◦ q′)] and [(p′, J ◦ Q ◦ q′)] are compactly F -homotopic
(hence F -homotopic) without coincidence points on bdV . Indeed, consider

the following homotopy clV × I
R
←W × I

S
→ Ker(P )⊕R(J):

R(w, λ) = (p′(w), λ), S(w, λ) = (λKPQ + J ◦Q) ◦ q′(w).

Of course, it has no coincidence points with F on bdV .

Hence, by the homotopy property of the index,

indF ([(p′, (KPQ + J ◦Q) ◦ q′)], V ) = indF ([(p′, J ◦Q ◦ q′)], V ).

But if we put Φ = [(p′, J ◦Q ◦ q′)], T = R(J), T ′ = F−1(R(J)) = R(P ),
F ′ = F |T ′ ≡ 0 and Φ′ = Φ|T ′∩V , then, by the restriction property of the
index and assumption (v), indF ([(p′, J ◦Q ◦ q′)], V ) is a nontrivial element
of Πk, because q′|cl V ∩R(P ) = q|cl V ∩R(P ). Hence the inclusion F (x) ∈ φ(x)
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has a solution, which implies the existence of a solution to the inclusion
A(x) ∈ ψ(x).

If Q ≡ 0, then KPQ = KP : E′ → Ker(P ) is a continuous linear isomor-
phism and by assumption (iii) for all y ∈ ψ(E), ‖y‖E′ ≤M .

Let V = {x ∈ E : ‖x‖E < ‖KP ‖M}. Observe that, by Remark 1.4,
([(p|p−1(cl V ),KP ◦ q|p−1(cl V ))], V ) ∈ MF (E,E), because, as is easily seen,

([(p|p−1(cl V ), q|p−1(cl V ))], V ) ∈ MA(E,E′). Without loss of generality we
can assume that a compact F -fundamental set of the multivalued map η,
determined by the cotriad (p|p−1(cl V ),KP ◦ q|p−1(cl V )), is contained in the
convex set V . Hence, its associated cotriad (p|p−1(V ), q) determines a com-
pact map η from V to V and by the Schauder Fixed Point Theorem there is
x ∈ V such that x ∈ η(x). Of course, then x ∈ η(x) and hence F (x) ∈ η(x).
Finally, the inclusion F (x) ∈ φ(x) has a solution and the proof is complete.

Remark 4.2. Observe that if Q 6≡ 0 then instead of (iii) and (iv) in the
above theorem we can assume that there is an open bounded V ⊂ E such
that there exists a compact A-fundamental set K ⊂ E′ for ψ|V , Q(ψ(V )) ⊂
K and F has no coincidence point with (λKPQ + J ◦Q) ◦ψ|cl V on bdV for
every λ ∈ [0, 1].

Indeed, it is easy to verify that then K ′ = (KPQ + J ◦ Q)(K) ⊃ J ◦
Q(ψ(V )) and K ′ is an F -fundamental set for (λKPQ + J ◦ Q) ◦ ψ for any
λ ∈ [0, 1]. Hence the morphisms [(p′, (KPQ +J ◦Q)◦q′)] and [(p′, J ◦Q◦q′)]
are F -homotopic with an F -fundamental set K ′. The rest of the proof is
identical.

If Q ≡ 0, instead of (iii) we can assume that there exists a bounded
convex set Z ⊂ Ker(P ) such that KP ◦ ψ(Z) ⊂ Z.

Below we illustrate the above result by a boundary value problem.

Let E, E′ be Banach spaces, J = [0, T ] ⊂ R, χ, χ′ be the Hausdorff
measures of noncompactness on E and E′ respectively, and let ξ be the
Hausdorff measure of noncompactness on the space C = C(J,E) of contin-
uous functions from J to E.

Recall that if B is the family of all bounded subsets of E, then the
Hausdorff measure of noncompactness χ : B → [0,∞) is given by the formula
χ(B) = inf{r > 0 : B has a finite r-net (4)}.

Let Z be the set of all positive numbers k such that the Fredholm linear
operator D : E → E′ is a (k, χ, χ′)-set contraction (5). Following [1] we
define

(4) That is, a finite number of points x1, . . . , xk ∈ E such that B ⊂
⋃k
i=1 BE(xi, r).

(5) That is, for any bounded set B ⊂ E, the set D(B) is bounded and χ′(D(B)) ≤
kχ(B).
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‖D‖(χ,χ′) := inf Z.

Observe that ‖D‖(χ,χ′) ≤ ‖D‖.
Let g : J ×E → E and h : J ×E ×E → E be continuous (singlevalued)

maps such that

(f1) g is completely continuous and uniformly continuous on bounded
sets,

(f2) there exists a continuous function ̺ : J → [0, 1) such that

‖h(t, u1, v1)− h(t, u2, v2)‖E ≤ ̺(t)(‖u1 − u2‖E + ‖v1 − v2‖E)

for any t ∈ J , u1, u2, v1, v2 ∈ E.

Suppose that g, h have sublinear growth, i.e.

(f3) there exist continuous functions m,n : J → [0,∞) such that

‖g(t, u) + h(t, u, v)‖E ≤ m(t) +n(t)‖u‖E for (t, u, v) ∈ J ×E ×E.

Consider the following boundary value problem:

(7)

{
u′(t) = f(t, u(t), u′(t))),
L1(u(0)) + L2(u(T )) = b(u(0)),

where f(t, u, v) = g(t, u) + h(t, u, v), b : E → E′ is a compact continuous
map and L1, L2 : E → E′ are linear operators such that L = L1 + L2 is a
Fredholm operator of nonnegative index.

We can rewrite problem (7) as follows:

(8) A(z, y) = ψ(z, y),

where A,ψ : E × C → E′ × C and

A(z, y) = (L(z), y),

ψ(z, y) =
(
b(z)− L2

( T\
0

y(s) ds
)
, f

(
·, z +

.\
0

y(s) ds, y(·)
))
.

It is easily seen that if (z, y) is a solution of (8), then u defined by u(t) =

z +
Tt
0
y(s) ds is a solution of (7).

As usual we equip the spaces E × C and E′ × C with the max-norms,
i.e. for z ∈ E, c ∈ E′ and y ∈ C, ‖(z, y)‖1 = max(‖z‖E , ‖y‖C ), ‖(c, y)‖2 =
max(‖c‖E′ , ‖y‖C). Denote the Hausdorff measures of noncompactness in
E × C and E′ × C by µ and µ′, respectively. Let πE , πC (resp. πE′ , π′

C)
be projections of E × C (resp. E′ × C) onto E and C (resp. onto E′

and C). Observe that if S is a bounded subset of E × C, then µ(S) =
max(χ(πE(S)), ξ(πC (S))).

Denote by PL, QL, KPL
the respective projections and the right inverse

for L. Moreover, let M = supt∈J m(t), N = supt∈J n(t), N1 = supt∈J tn(t).
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Theorem 4.3. Assume that f , b, L are as above, R(L2) ⊂ R(L), QL 6≡ 0
and additionally :

(f4) sup
t∈J

(̺(t)(t + 1)) < 1 and ‖KPL
‖(χ,χ′) <

1− supt∈J ̺(t)(t+ 1)

supt∈J (̺(t))
,

(f5) ‖L2‖ · T < 1,

(f6) NeN1 < 1,

(f7) there exists R > 0 such that for all z if ‖P (z)‖E > R, then QL(b(z))
6= 0 and indO(QL ◦b,B(0, R)∩R(P )) is a nontrivial element of Πk.

Then problem (7) has a solution.

P r o o f. We prove that problem (8), equivalent to (7), has a solution.

Observe that A is a Fredholm linear operator and its index is equal to
the index of L.

Step 1. We prove that if V is an open bounded subset of E × C,
then ψ(V ) is a bounded set and ψ|cl V is an A|cl V -condensing (so A|cl V -
fundamentally contractible) map.

Take an arbitrary subset S of V . We have to prove that µ′(ψ(S)) <
µ′(A(S)). Let χ(πE(S)) = ε and ξ(πC(S)) = δ. Then

µ′(A(S)) = max(χ′(πE′ (A(S))), ξ(πC (A(S)))) = max(χ′(πE′(A(S))), δ).

Observe that, since Ker(L) = R(PL) is of finite dimension,

χ(πE(S)) = χ((idE −PL) ◦ πE(S)) = χ(KPL
◦ L ◦ πE(S)).

But

χ(KPL
◦ L ◦ πE(S)) ≤ ‖KPL

‖(χ,χ′)χ′(L ◦ πE(S))

and L(πE(S)) = πE′(A(S)), hence

χ′(πE′(A(S))) ≥
χ(πE(S))

‖KPL
‖(χ,χ′)

=
ε

‖KPL
‖(χ,χ′)

.

Finally we get

µ′(A(S)) ≥ max

(
χ(πE(S))

‖KPL
‖(χ,χ′)

, δ

)
.

Now we estimate µ(ψ(S)). Obviously,

µ′(ψ(S)) = max
(
χ′

({
b(z)− L2

( T\
0

y(s) ds
)

: (z, y) ∈ S
})
,

ξ
({
f
(
·, z +

.\
0

y(s) ds, y(·)
)

: (z, y) ∈ S
}))

.
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Observe that

χ′
({
b(z)− L2

( T\
0

y(s) ds
)

: (z, y) ∈ S
})

≤ χ′
({
L2

( T\
0

y(s) ds
)

: y ∈ πC(S)
})
,

because χ′({b(z) : z ∈ πE(S)}) = 0. Now, for arbitrary δ1 > 0, take an
element y from a (δ + δ1)-net of πC(S). If ‖y − y‖C < δ + δ1, then

∥∥∥L2

( T\
0

y(s) ds
)
− L2

( T\
0

y(s) ds
)∥∥∥

E

≤ ‖L2‖
T\
0

‖y(s)− y(s)‖E ds < ‖L2‖T (δ + δ1).

Hence χ′({L2(
TT
0
y(s) ds) : y ∈ πL(S)}) ≤ ‖L2‖Tδ < δ.

Consider the family of functions

F1(S) =
{
gz,y ∈ C : gz,y(t) = g

(
t, z +

t\
0

y(s) ds
)
, (z, y) ∈ S

}
.

Since S is bounded and g is completely continuous, the sets {gz,y(t) : (z, y)
∈ S} are compact for any t ∈ J . Moreover, the family F1(S) is uniformly
equicontinuous. Hence, by Ascoli’s Theorem (cf. [11]), ξ(F1(S)) = 0. This
gives

ξ
({
f
(
·, z +

.\
0

y(s) ds, y(·)
)

: (z, y) ∈ S
})

≤ ξ
({
h
(
·, z +

.\
0

y(s) ds, y(·)
)

: (z, y) ∈ S
})
.

If we take arbitrary ε1 > 0 and δ1 > 0, z from an (ε + ε1)-net of πE(S), y
from a (δ+ δ1)-net of πC(S) and if ‖z− z‖E < ε+ ε1 and ‖y−y‖C < δ+ δ1,
then

∥∥∥h
(
t, z +

t\
0

y(s) ds, y(t)
)
− h

(
t, z +

t\
0

y(s) ds, y(t)
)∥∥∥

E

≤ ̺(t)
(
‖z − z‖E +

t\
0

‖y(s)− y(s)‖E ds + ‖y(t) − y(t)‖E
)

< ̺(t)(ε + ε1 + t(δ + δ1) + δ + δ1) ≤ sup
t∈J

̺(t)(ε + ε1 + (t+ 1)(δ + δ1)).

Therefore ξ(π′
C(ψ(S))) ≤ supt∈J ̺(t)(ε + (t+ 1)δ).
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Now, it is easy to check that assumptions (f4)−(f5) imply that µ′(ψ(S))
< µ′(A(S)).

Step 2. Since b is a compact map, there exists Z > 0 such that b(E) ⊂
BE′(0, Z). Denote by P , Q, KP and KPQ the respective projections, the
right inverse and the generalized inverse for A (see the beginning of this
section).

Now, we introduce a set V satisfying the assumptions of Remark 4.2.
Let

V = {(z, y) ∈ E × C : z = z0 + z1, z0 ∈ BE(0, R) ∩R(PL),

z1 ∈ BE(0, R1) ∩Ker(PL), y ∈ BC(0, R2)},

where R is as in assumption (f7),

R1 >
‖KPL

‖(Z +MeN1 +NReN1)

1−NeN1

, R2 = (M +N(R+R1))e
N1 .

We can find a compact A-fundamental set for ψ|cl V containing Q ◦ ψ(V )
(since it is a bounded subset of the finite-dimensional space R(Q), see Ex-
ample 1.10).

We will show that there is no solution of the problem F (z, y) = (λKPQ+
J ◦Q) ◦ ψ(z, y) on the boundary of the set V for every λ ∈ [0, 1].

Assume that (z, y) ∈ clV is such a solution for some λ ∈ [0, 1]. Let
z = z0 + z1 where z0 ∈ R(PL), z1 ∈ Ker(PL). Then

(z1, y) =
(
λKPL

◦ (idE′ −QL) ◦ b(z) − λKPL
◦ L2

( T\
0

y(s) ds
)
,

f
(
·, z +

.\
0

y(s) ds, y(·)
))

+ J(QL ◦ b(z), 0).

Hence

(9) Q(b(z)) = 0,

(10) z1 = λKPL
(idE′ −Q)(b(z)) − λKPL

(
L2

( T\
0

y(s) ds
))
,

(11) y =
(
·, z +

.\
0

y(s) ds, y(·)
)
.

Equality (9) and assumption (f7) imply at once ‖z0‖ < R. Moreover,
by (11),

‖y(t)‖E =
∥∥∥f

(
t, z0 + z1 +

t\
0

y(s) ds, y(t)
)∥∥∥

E

≤ m(t) + n(t)
(
‖z0‖E + ‖z1‖E +

t\
0

‖y(s)‖E ds
)
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and by the Gronwall inequality

‖y(t)‖E ≤ (m(t) + n(t)(‖z0‖E + ‖z1‖E))eN1 .

Hence assumption (f6) gives

‖y‖C =sup
t∈J

‖y(t)‖E≤(M +N(‖z0‖E +R1))e
N1<(M +N(R+R1))e

N1 =R2.

Finally, if λ = 0, then (10) gives ‖z1‖E = 0 < R1. If λ ∈ (0, 1], then by
(10) and assumption (f5),

‖z1‖E ≤ λ‖KPL
‖(Z + ‖y‖C) < ‖KPL

‖(Z + (M +N(R+R1))e
N1) < R1.

Step 3. Observe that assumption (v) of Theorem 4.1 is also satisfied.
Indeed, assumption (f7) implies the nontriviality of the index, because

Q ◦ ψ|B(0,R)∩R(P )(z, y) = Q(b(z), 0) = QL(b(z)).

Now, by Theorem 4.1 with Remark 4.2 the proof is complete.

Remark 4.4. If QL ≡ 0 then we also get an existence result for problem
(7) if we replace assumptions (f6) and (f7) by

‖KPL
‖ · ‖L2‖+ TN < 1.

Indeed, one can easily verify that the set

Z =
{
(z, y) :

∥∥∥z +

t\
0

y(s) ds
∥∥∥ < R′, ∀t

}
∩ {(z, y) : ‖y‖C < R′′} ∩Ker(P ),

where

R′ >
‖KPL

‖S + TM

1− ‖KPL
‖ · ‖L2‖ − TN

and R′′ > M +NR′,

satisfies Remark 4.2.
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