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Two-dimensional real symmetric spaces
with maximal projection constant

by BRUCE L. CHALMERS (Riverside, CA) and
GRZEGORZ LEWICKI (Krakéw)

Abstract. Let V be a two-dimensional real symmetric space with unit ball having
8n extreme points. Let A(V') denote the absolute projection constant of V. We show that
AV) < X(Vn) where Vi, is the space whose ball is a regular 8n-polygon. Also we reprove

a result of [1] and [5] which states that 4/7 = )\(l§2)) > A\(V) for any two-dimensional real
symmetric space V.

Introduction. Let X be a normed space and let V' be a linear subspace
of X. Denote by P(X,V) the set of all projections from X onto V, i.e., the
set of all continuous extensions of id : V — V onto X. Let
(1.1) AV, X) =inf{||P| : P e P(X,V)},

(1.2) AV) =sup{\(V,X):V C X}.

We call \(V, X) the relative projection constant of V in X and A(V') the ab-
solute projection constant of V. A projection P € P(X,V) is called minimal
if |P|| = A(V, X). Observe that the problem of finding minimal projections
is related to the Hahn—Banach theorem, since we are looking for a minimal
norm extension of the identity operator on V.

In this note we show that, for any two-dimensional real symmetric space
V' with a polygonal unit ball having 8n extreme points,

(1.3) AV) < A(Va),

where V,, is the space whose unit ball is regular 8n-polygon. As an applica-
tion of (1.3) we reprove a result of [1] and [5] which states that

/7 = A1) = A(V)

for any two-dimensional real symmetric space V.
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Now we introduce some notation which will be of use later. By Sy we will
denote the unit sphere in a normed space V. The symbol ext(Sy ) will stand
for the set of all extreme points of Sy . Note that if V' is a k-dimensional

subspace of I{™ then each P € P(I{", V) has the form

k
(1.4) Px = Zul(@v’,

1

where v!, ... v is a fixed basis of V and u!, ..., uF € léﬁ) satisfy

(1.5) u! (v?) = Zufvf = 0.
=1

A point z € X is called a norming point for f € X* if

(1.6) x€Sx and f(z)=|f]

DEFINITION 1.1. Let V be a finite-dimensional Banach space. It is called
symmetric if there exists a basis v',...,v* in V such that
(17) HZ‘O@‘UZ = HZOJW(Z')’UZH

i=1 i=1

for any aq,...,ar € R and any permutation 7 of the indices.

Now let P =% wi(-)v' € P(I#, V). Define
(1.8) crit(P) = {j € {1,...,n} : | Pe;| = || P||}
and for j =1,...,n,
(1.9) ‘/j:(v;,...,vf), Uj:(ujl-,...,u?).

THEOREM 1.2 [2, Th. 3, p. 204]. Let P = X wi(-)o' € P, V).
Then P is minimal if and only if there exists a nonzero k x k matric M
such that for every j € crit(P),

(1.10) Uj = (uj,...,uf) = | P|d’,

where a’ is a norming point for the functional on V associated with MVj,
i.€.,
k
(1.11) (MV)) (@) = S (MV)) .
i=1
Here x = Zle L
REMARK 1.3 (see e.g. [7]). If V is a symmetric space then M is the
identity matrix.

REMARK 1.4. By [3, Th. 1] it is easy to see that if M is invertible and
Vj#0for j=1,...,n, then crit(P)={1,...,n} for any minimal projection P.
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THEOREM 1.5 [8]. Every two-dimensional real Banach space is linearly
isometric to a subspace of Li|—m/2,7/2].

THEOREM 1.6 [4, 6]. Ly is a mazimal overspace for any two-dimensional
real symmetric Banach space V, which means that

(1.12) A(V) = AV, Ly).

II. Technical lemmas. In the above |lz]| = > 7, [Vj(2)] = 1 de-
termines Sy and the following lemma confirms that the “corners” of Sy
(ext(Sy)) are given by those  such that V;(z) =0 k — 1 times.

LEMMA 2.1. Let V = span[v',...,v*] be a k-dimensional subspace of
lgn). Then x = Zle ziv' € ext(Sy) if and only if the matriz W consisting
of all vectors V; (see (1.9)) orthogonal to x has rank k—1 and ||z|| = 1. We
understand that Vj is orthogonal to x if

k k
(2.1) Vix) = (Vj)izi = Y _viz; =0,
i=1 i=1
Proof. If &k = 1, the result is obvious. So suppose that £k > 2. Let
x € ext(Sy). Note that there is j € {1,...,n} such that z is orthogonal
to Vj, i.e., the jth coordinate of x with respect to the canonical basis of
R™ is 0: if not, modifying slightly x1,...,xr, we can construct y,z € Sy
different from x such that =z = (y + z)/2.
Now suppose that rank(W) < k — 1 and k£ > 2. Put

S ={je{l,...,n}:x is orthogonal to V;}
and let [ = card(S). Set Z =V N ﬂjes

subspace of lgn_l)). Since rank(W) < k — 1, dim(Z) > 2. Since = € ext(Sy)
and z € Z, x € ext(Sz). But, by the previous part of the proof, V;(z) =0
for some j € S, contrary to the definition of W.

Now take x € Sy and suppose that rank(W) = k — 1. If = & ext(Sy),
then

ker(V;) (we can consider Z as a

(2.2) r= (2! +27%)/2

for some x!, 2?2 € Sy different from z. Fix 0 < ¢ < 1 and define a norm || - ||.
on V by

(2.3) lylle =X Vi)l + > Vi)l

JES JES
(see (2.1)). Since rank(W) = k—1, 2! and 2? are not perpendicular to all V;
for j € S. Hence ||z|l. = 1 and ||z?||. < 1 for i = 1,2, contrary to (2.2).
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COROLLARY 2.2. Let V = span[v!,v?] be a 2-dimensional subspace of
lgn). Then x = zv' + 22v? € ext(Sy) if and only if there exists V; # 0
which is orthogonal to x and ||x||; = 1.

DEFINITION 2.3. Given two nonnegative numbers a, b, a > b, we denote

l %4) spanned by

by V. the two-dimensional subspace of
o' = (a,b,—a,—b), v*=(b,a,b,a).

Let Wy, be the 2 x 4 matrix with rows vl 02,

Analogously, let a = (aq,...,a,) and b = (b1,...,b,) be two vectors
with nonnegative coordinates and with a; > b; for any ¢ € {1,...,n}. Let
Wia,p be the 2 x 4n matrix consisting of Wy, p,, ..., Wy, b, . Then we denote

by V{4, the subspace of l§4n) spanned by the rows of W, ;). We write Vi, y
for the space generated by a, b. Observe that V|, ) is a symmetric space with
respect to the basis v', v2, where v!, v? denote the rows of Wiap)-

REMARK 2.4. It is a simple consequence of [1, Lemma 1] that each
two-dimensional real symmetric space with a polygonal unit ball having
8n extreme points is linearly isometric to Vi, for some a,b € R™ with
nonnegative coordinates.

LEMMA 2.5. Let Vigp C l§4n) be the space generated by a,b € R’ . Put

(2.4) I, )|l = llav* +yo? |1
Forj=1,...,4n define
(2.5) Ui = (Vi/1Vi DA,
where

1
(2.6) A= =7

> i1 2(af + 67)/[I(as, bi)|
and V; are given by (1.9). Fori=1,2 let u' € R* be the vector associated
with Uy, ..., Usn by (1.9). Then the operator P,y defined by

(2.7) Pz =u' (2)v" +u?(2)0?
belongs to P(zg‘*"),v[a,b]) and HP[a,b]H =\
Proof. Note that by the definition of v! and v?, u!(v?) = u?(v!) = 0.
Observe that by symmetry,
ul (') = w?(0%) = XY 2(af + 57/ (ai bi)|| = 1.
i=1

Hence the orthonormality conditions (1.5) are satisfied and consequently,
Play) € P, Viayy).
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To show that || Py, 5]| = A, observe that for any j € {1,...,4n},

| Prasiesll = qu o+ ude?

= )\H(ai, bi)/|(a;, )|l = A (by symmetry),

which completes the proof. (Here i is so chosen that j = 4i — k, where
ke€{0,1,2,3})

1

LEMMA 2.6. Let Vi, y be the space generated by a,b € R™. Suppose that

(2.8) 0<b;<a;, bi/a; <bit1/ait1.

Then

(2.9) l(ai, b \—2(2@1 (a; + b;) —1—2% a; + b; )
j<i j>i

where 3., =0 by definition.

Proof. Note that, by (2.8), if j <4, then
|aiaj + ble’ + |— aia; + blb]’ + |biaj + aibj] + |— biaj + aibj] = 2aj(ai + bl)
Hence the result follows from the definition of v!,v? and (2.4).

Now we recall the well known fact that a (weighted) harmonic mean of
n nonnegative numbers is no greater than the (weighted) arithmetic mean
of these numbers:

LEMMA 2.7 Let aq,...,a, € Ry \ {0}. Then
(2.10) Zf ST T S ZA ai,
where 0 < X\; <1 and Zi:l A =1.

Proof. By cross-multiplying, (2.10) follows easily from the facts that

ai/aj—i—aj/ai >2 and 1 :Z)\?+2Z)\ZAJ

i=1 j<i
LEMMA 2.8. The following trigonometric identities are satisfied:
(cos 2a — sin 2a) sin((a + b)/2)
cosacos((a—b)/2)
_ 2sina(cosa+sina —cosb—sinb) _ sin((b—3a)/2)
sin(a — b) ~ cosacos((a—b)/2)’

(2.11)
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2(cosb — sinb) sin((a + b)/2)
cos((a —b)/2)
(cos2b — sin 2b)(cosa + sina — cosb — sin b)
sin (a — b)(cos b + sin b)
_ sin((a — 3b)/2) + cos((a — 3b)/2)
cos((a —b)/2)(sinb+ cosb) '
(2.13)  2cos((b—c¢)/2)(cosb —sinb)(sin((a +b)/2)
— (cos 2b — sin 2b) sin((a — ¢)/2)

— 2sinbcos((a — b)/2)(cos((b+ ¢)/2) —sin((b+ ¢)/2))
=sin((a + ¢ —2b)/2);
2sina (cosb + sin b)(sin(b — ¢) + sin(c — a) + sin(a — b))
sin(a — b) sin(b — ¢)
2sina(cosb + sinb — cosc — sinc)
sin(b — ¢)

2sina (cosb+sinb — cosa — sina)

(2.12)

(2.14)

sin(a — b) ;
(2.15)  cos((b—c)/2)sin((a + b)/2) + cosbsin((c — a)/2)
= cos((a —b)/2)sin((b+ ¢)/2);

! :
(25— 1 25 —1
(2.16) 1 =2sin 1 E < cos ———= ‘7 ) +sin7r<‘gl)>;

OO

and
(2.17)  sin(b — a) + sin(a — ¢) + sin(c — b)
= —4sin((b — a)/2) sin((c — a)/2) sin((b — ¢)/2).

Proof. Since to prove (2.11)—(2.17) we only use the basic trigonometric
formulas and routine calculations, we restrict ourselves to indicating only
the main steps.

To show (2.11) observe that

(cos2a — sin2a)sin((a 4+ b)/2)  2sina(cosa + sina — cosb — sinb)

cosacos((a —b)/2) sin(a — b)
_ (cos2a—sin2a)sin((a +b)/2)  sin2a(cos((a +b)/2) —sin((a + b)/2))
cosacos((a—b)/2) cosacos((a —b)/2)

_ sin((b — 3a)/2)
cosacos((a—b)/2)
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To show (2.12) observe that
2(cosb — sinb) sin((a + b)/2)
cos((a —b)/2)
(cos 2b — sin 2b)(cosa + sina — cos b — sin b)
sin(a — b)(cos b + sin b)
_ 2cos2bsin((a + b)/2)
~ cos((a —b)/2)(cosb + sinb)
(cos2b — sin 2b)(cos((a + b)/2) —sin((a + 1) /2))
2cos((a — b)/2)(cosb + sinb)
sin((a — 3b)/2) + cos((a — 3b)/2)
cos((a —b)/2)(sinb + cosb)
To prove (2.13) note that
2cos((b—¢)/2)(cosb —sinb) sin((a + b)/2) — (cos 2b — sin 2b) sin((a — ¢)/2)
— 2sinbcos((a — b)/2)[cos((b+ ¢)/2) —sin((b + ¢)/2)]
= 2cos((b—¢)/2)(cosb — sinb)[sin((a — b)/2) cosb + cos((a — b)/2) sin ]
— (cos 2b — sin 2b) sin((a — ¢)/2)
—2sinbcos((a — b)/2)[cos((c — b)/2) cosb — sin((c — b)/2) sinb
—sin((¢ — b)/2) cosb — cos((c — b)/2) sin b]
= 2cos? b cos((b — ¢)/2)sin((a — b)/2)
—2sin? b cos((b — ¢)/2) sin((a — b)/2)
+ sin 2b [cos((b — ¢)/2) cos((a — b)/2) — cos((b — ¢)/2) sin((a — b)/2)]
— (cos2b — sin 2b) sin((a — ¢)/2)
— 2sin? beos((a — b)/2)[—sin((c — b)/2) — cos((c — b)/2)]
—sin2bcos((a — b)/2)[cos((c — b)/2) — sin((c — b)/2)]
= 2cos?beos((b — ¢)/2) sin((a — b)/2) — cos 2bsin((a — ¢)/2)
— 2sin? beos((a — b)/2) sin((b — ¢)/2)
= 2(cos? b — sin? b)[cos((b — ¢)/2) sin((a — b) /2) — cos 2bsin((a — ¢)/2)]
+ (sin® b — cos? b) sinf(a — b) /2 + (b — ¢)/2)]
= cos? beos((b— ¢)/2)sin((a — b)/2) — sin? beos((a — b)/2) sin((b — ¢)/2)
+ sin? beos((b — ¢)/2) sin((a — b)/2)
— cos®beos((a — b)/2)sin((b — ¢)/2)
= cos? bcos((b — ¢)/2)sin((a — b)/2) — cos((a — b)/2)sin((b — ¢)/2)]
+sin? b [~ cos((a — b)/2) sin((b — ¢)/2) + cos((b — ¢)/2) sin((a — b)/2)]
= sin((a + ¢ — 2b)/2).
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To show (2.14), note that
2sina (cosb + sinb)(sin(b — ¢) + sin(c — a) + sin(a — b))
sin(a — b) sin(b — ¢)

2sina (cosb + sinb — cos ¢ — sin ¢)

sin(b — ¢)
_ 2sina(cosb+sinb —sina — cosa)
N sin(a — b)

2sinasin(b — ¢)(cosa + sina)
sin(a — b) sin(b — ¢)
2sina (cosb+sinb)sin(c —a)  2sina(cosc+ sinc)
sin(a — b) sin(b — ¢) sin(b — ¢)
To finish the proof we have to show that the sum of the second and third
terms from the above formula is

2sina(cosc + sinc)
sin(b — ¢)
But this follows immediately from the fact that

sin(b — ¢)(cosa + sina) + sin(c — a)(cos b + sinb) = sin(b — a)(cos ¢ + sin c).
To show (2.15) note that
cos((b —c¢)/2)sin((a + b)/2) + cosbsin((c — a)/2)
=cos((b+¢)/2 —¢)sin((a + b)/2) + cosbsin((b+¢)/2 — (a+b)/2)
= sin((b+ ¢)/2)(cos b cos((a + b)/2) + sinb sin((a + b)/2))
= cos((a —b)/2)sin((b+ ¢)/2).
To prove (2.16), observe that for odd I,

LT m(2j—1) . 7w(2j—-1)
2sin Z(cos < + sin Y

1 (1-1)/2 j
= 4sin — — +sin — — 4+ E —
S1n 3l <COS 3 Sin 8> <2 p COS I >

T ( T 7r> sin —((lfl)/jlﬂ/z)ﬂ

COs — -+ sin — -
8 8 sin %
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If [ is even then

LT m2j—-1) . 7w(2j—1)
QSlng ‘ ((30881 +SIHT
Jj=1
1/2 . .
o T T2 —-1) . 7w(2j—1)
= 2sin 1 2 <cos Al + sin o )

which reduces the proof to the previous case.
The proof of (2.17) is an easy calculation, so we omit it.

LEMMA 2.9. Let A, = (a;5); ;=1 be an n X n symmetric matriz given by
a;j = cosd; (cosdj + sind;) for 1 < i < j. Let Al be the matriz obtained
from A,, by replacing the ith column by (1,...,1). Then for any dy,...,d, €
(0,7/2),

n—1
(2.18)  det(A,,) = cosd; (cosd, + sind,) H sin(dj — dj41);
j=1
n—1
(2.19)  det(Al) = (cosd,, +sind,,) H sin(d; — dj41)(cosdg — cosdy );
j=2

(2.20)  det(A}) = cosd; (cosd,—1 + sind,_1 — cosd,, —sind,,)
n—2
x || sin(dj — dj1a);
J

Il
=

1—2
(2.21)  det(A}) = —4cosd; (cosdy +sindy,) [ [ sin(d; — dj41)
j=1
n—1
X H sin(dj — dj+1) sin((di_l — dl)/2)
Jj=i+1

X Sil’l((di_l — d1+1)/2) sm((dZ — di+1)/2),
fori=2,...,n—1. Here Hz:l =114f I > j, by definition.

Proof. We prove the lemma by induction on n. If n = 2, then easy
calculations show that (2.18)—(2.20) hold true. To prove (2.18) for any n€N,
add the second column of A,, multiplied by — cosd; /cosds to the first one,
apply the induction hypothesis to the (n — 1) x (n — 1) matrix given by
ds,...,d, and the standard formula for calculating determinants.

To show (2.19) for any n € N, add the second column of Al multiplied
by — cosd;/cosds to the first one and proceed as in the previous case. The
same reasoning applies to (2.20). To show (2.21), we first consider the case
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n = 3. Note that
det(A2) = cosd, (cosds + sinds)
X (sin(d2 — dl) + sin(d1 — d3> + sin(d3 — dg))
= —4cosd; (cosds +sinds) sin((d; — dz2)/2)
x sin((dy — ds)/2)sin(dy — d3)/2)  (by (2.17)),
as required.

To prove (2.21) for n >4, for i = 3,...,n — 1 add the second column of
At multiplied by — cosd;/cosds to the first one, and apply the induction
hypothesis for da,...,d, and ¢ — 1. For ¢ = 2, add the (n — 1)th column
of A multiplied by —(cosd,, + sind,)/(cosd,,_1 + sind,_1) and apply the
induction hypothesis for dy,...,d,_1 and i.

We also need the following obvious fact:

REMARK 2.10. Let f, g be real-valued functions defined on a set A, with
f<g Mt g(x) = maxyea g(y) and g(z) = f(z), then f(z) = maxyea f(y).

IT1I. The main results

THEOREM 3.1. Let V be a two-dimensional real symmetric space with
unit ball having exactly 8n extreme points. Then

(3.1) AV) < AV,

where V,, is the space whose unit ball s a regular polyhedron having exactly
8n wvertices. Moreover, if \(V') = X(V,,), then V is linearly isometric to V,,.

Proof. First we consider the case V' = V| ), where a = (a1, ...,a,),
b= (bl,...,bn) eR™ 0<b; <ajy, bz/al < bi+1/ai+1, fori=1,...,n—1.
For i = 1,...,n, put 7; = \/a? +b?, and let d; € (0,7/4) be so chosen
that a; = r; cosd; and b; = r; sind;. Without loss, dividing a; and b; by a
constant, we can assume that

(3.2) En:ri =1.

Put r = (r1,...,m), d=(d1,...,d,) and let

n n

(3.3) gnld,r) =) 1Y rjai(d),
i=1

Jj=1

where a;;(d) = cosd; (cosd;j+sind;) for i < j and a;; = a;; for i > j. Define

(3.4) D, = {(d,r) ER™:0<r, Y ri=1,0<di<...<d, §7r/4}.
=1
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First we will show that for any n > 2, max(4,yep, gn(d,r) is achieved
forr=(1/n,...,1/n) and d = ( s Qn*l)”). To do this, we apply

8n’ 8n’ 8n
the Lagrange multiplier method. Consider in int(D,,) the function

wp(d, ) = gn(d,r) + /\<1 — z”:m>

Note that
(3.5) agif‘ (d,r) =2 Zn: aij(d)r; — A
* i=1
for i =1,...,n. By Cramer’s rule and Lemma 2.9, the system of equations
(3.6) %1;’7 (d,r) =2 zn: aij(d)r; — A =0
' i=1

for i = 1,...,n has, in int(D,,), for fixed A and d, the solution r(d,\) =
(ri(d,\),...,r(d, \)) given by

A(cosdy — cosdy)
2 cosdy sin(dy — da)’

)\Sin((di+1 - dl_l)/Z)
2COS((dZ‘_1 — dl)/2) COS((di — di+1)/2)7
i=2,...n—1,
—-A A(cosdy—1 +sind,—1)

. n(d,\) = — y : )

(3.9)  7a(d,A) 2sin(d,—1 — dy) + 2sin(d,—1 — dy,)(cosd,, + sind,,)

Now we prove by induction on n that the system of equations

(3.7  ri(d,N) =

(3.8)  ri(d,\) =

(3.10) ‘?;Z‘ (dr(d2\) =0, i=1,.. . n,
reduces to the system

(3.11) sin((3dy — dz2)/2) =0,

(3.12) sin((di_y + digr —2d;)/2) =0, i=2,...,n—1,
(3.13) cos((dnp—1 — 3dy,)/2) + sin((d,—1 — 3d,)/2) = 0.

Note that for n = 2,

awg 2
a—dl(d,r(d, A)) = N ri(d, A)(

(cos2dy — sin2dy ) sin((dy + d2)/2)
cosdj cos((dy — dz2)/2)
2sind; (cosdy + sindy — cosdy — sindy)

B sin(d; — da) >
sin((de — 3d1)/2)
cosdy cos((dy — d2)/2)

= A?ry(d, \) (by (2.11)).
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Analogously,

8w2
sz (d7 T(d> )‘))

2, 2(cosdy — sinds) sin((dy + d2)/2)
= e (B

N (cos2dy — sin 2dy)(cosdy + sind; — cosds — sinds)
sin(dy; — dg)(cos dy + sinds)

= A°ra(d, ) SinééiZ(glgibl)Q/)g(gs Ez(zdi;o?;ﬁz))p) (by (2.12),

which proves our claim for n = 2.

Now for illustration consider first the case n = 3. Note that
awg

87(d, r(d, \)) = (2X)?r1(d, \)[(cos 2d; — sin 2d;)r1(d, \)
1

— 2ry(d, \) sind; (cosds + sindy)

— 2r3(d, \) sind; (cosds + sinds)].

By (3.7)—(3.9), (2.17) and (2.14) applied to dy,ds, d3 and the second and
third terms of the above equality, we get

6w3 8w2

le(d, T(d, )\)) = le(dl, d2, T(dl, d2, )\)),
which proves the result for ‘?91513 (d,r(d, \)).
Observe that by (3.7)-(3.9),
awg
—(d,r(d, A
o, r(d, V)

2, 2 cos((dy — d3)/2)(cosdy — sindg) sin((dy + d3)/2)
= Arald, A)( cos((dy — da)/2) cos((dz — d5)/2)
_ (cos2dy —sin2dy) sin((d1 — d3)/2)
cos((dy — dz)/2) cos((de — d3)/2)

cos((dy — dz2)/2) cos((da — d3)/2)

2, sin((dy + dz — 2d3)/2)
=Ar2(d A) os((dy — d2)/2) cos((dy — d3)/2) (by (2.13)),

which proves our claim.

_ 2sindy [cos((dz + d3)/2) — sin((dy + d3)/2)] cos((dy — dz)/2))
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Note that
%(d, r(d,\)) = (22)?r3(d, \)[2 cos d (cos dz — sinds)ry(d, \)
3
+ 2ra(d, \) cos da (cos ds — sinds)

+ r3(d, A)(cos 2d3 — sin 2d3)].
By (3.7)—(3.9), (2.17) and (2.15) applied to d1, da, d3 and the first and second
terms of the above equality, we get
0T,U3 8’(02

T@(d’ T(d) )‘)) — %(d27 d37 T(dg, d3) )‘))7

which proves the result for %(d’ r(d, \)).
Now fix n € N, n > 4. Observe that

ow,,
od;

i—1
(d,7(d,\)) = 4X%r;(d, \) ( Z 2r;(d, X) cosd; (cosd; — sind;)
j=1

+ 7i(d, \)(cos 2d; — sin 2d;)
- Z rj(d, X\)2sind; (cosd; + sin dj)) .

J>i
Hence to prove (3.11) and (3.12) for i = 2,...,n—2, apply (2.14) to d,,_; and
d,, in the last two terms of the sum in (3.14) and the induction hypothesis for
n—1anddy,...,d,—1. To prove (3.12) for i = n—1 and (3.13), apply (2.15)
to dy, ds in the first and second terms of Z;;ll 2r;(d, \) cosd; (cosd; —sind;)
and the induction hypothesis for n — 1 and da, ..., d,.
Now note that, since we consider dy,...,d, belonging to (0,7/4), by
(3.7)—(3.13) the system of equations

(3.14)

ow,, B ow,, B n o
Tm(dﬂr(ch )‘)) - 07 Tdi(d7r(d7 )‘)) - 0, ;Tz - 17

has for n = 1,2,... in int(D,,) the only solution

o_ (™ (2n — 1)m 0o l l
(3.15) d _<8n,...,8n cort= ()

Hence if we prove that the function g, does not attain a global maximum
on the boundary of D, then it has to attain it at (d°,r?). This will also
be shown by induction on n. If n = 1, then g1(d) = cosd(cosd + sind).
Hence ¢7(d) = —2(cos2d + sin2d), which shows that ¢g; attains a global
maximum at d° = 7/8. Now take any n > 2. Since D,, is a compact set, gy,
attains a global maximum at some point (d,r) € D,,. If r; > 0 and d; < d;11
fori =1,...,n—1, and dy = 0 or d,, = /4, then, by easy calculations,
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gn(d,r) = max{g,(w, 2) : (w,2z) € D;}, where

DZ:{(d,r)eR2”:ri>0, Zrizl, —€<d1<...<dn<7r/4—|—5}

and 0 < ¢ < min{ds — di,d,, — dp,—1}. But D is an open set and by (3.7)—
(3.13) the maximum on this set can be attained at (d°,r°) given by (3.15);

a contradiction. So suppose that d; = d; 1 for some i € {1,...,n—1}. Then
gn(d, T) = gn—1(d1, - 7di—1,di+1, .. .,dn,’l"l, ey i1, T T, ,rn)
T (2n — 3)m 1 1
<gn71 PR ) PRI
8(n—1) 8n—1) " n-1 n—1

(by the induction hypothesis)
Zn:l (cos @j=Dm | G (2j—1))

— cos ™ ) j=1 8(n—1) 8(n—1)
8(n—1) n—1
cos 78(71”_1)
= by (2.16)).
2(n —1)sin ) (by (2.16))

Note that the function f(z) = (4/x) cos(n/x)/sin(m/x) is strictly increasing
for x > 0. Hence
cos 78(,?_1) Cos 87

2(n —1)sin = gn(d”, ") (by (2.16)),

s
3= 2nsin g~

8(n
which shows that g,, does not attain its maximum on the boundary of D,,.
The same reasoning applies to the case r; = 0 for some i € {1,...,n}. Hence

(316) (dm)ax gn(d T) - gn(do )7

as required.
Observe that the unit ball of the space generated by (d°,r°) is a regular
8n-polygon, so this space is isometric to V,,. To finish the proof of our the-

orem we apply the idea given in Remark 2.10 twice. Note that by Lemma
2.7,

gnld,7) > frld,r) = <ZZ TJ%()>_1.

By Lemma 2.5, f,,(d,r) is the norm of the projection Py, ;) defined in Lemma
2.5 (we use polar coordinates). Note that, by (3.6),

fn(d07 TO) = gn(doﬂ TO)'
Now we show that the projection Py, associated with (d°,7°) is a min-

imal projection. To do this, by Theorem 1.2, Remarks 1.3 and 1.4, we have
to show that for i =1,...,n,

(ai, b:)/||(ai, b)| = (rcosd?, 9 sind?)/||(r? cos d?, 79 sin d?)||

191 194
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is the only norming point for the functional associated with (a;,b;) (see
Th. 1.2). But by Lemma 2.6,

0
[(ai, b;)]| E rYa;;(d°).

By (3.6) and Corollary 2.2, all the extreme points of the unit ball of Vi, j lie
on the same Euclidean sphere. This shows that (a;, b;)/||(ai,b;)|| is the only
norming point for the functional (a;,b;). To finish the proof of the theorem,
note that, by Theorems 1.5 and 1.6 and Remark 2.4, for any two-dimensional
real symmetric Banach space with 8n extreme points,

AV) = AViap)) = AVia, 1) < [Pl < AVa, 1) = A(Va).

Moreover, by Remark 2.4 and the above reasoning, if A(V') = A(V},), then
V' has to be linearly isometric to V,,.
The proof of Theorem 3.1 is complete.

Now we apply Theorem 3.1 to reprove in a simple way a result of [1] and
[5] concerning arbitrary two-dimensional real symmetric spaces.

THEOREM 3.2 [1, 5]. For any two-dimensional symmetric real Banach
space V,
AV) < A057).
Proof. By Theorem 1.6, we can assume that V' C L,[—7/2,7/2]. Hence
we can approximate V| in the sense of the Banach-Mazur distance, by sub-
spaces Vign yn) C I whose unit balls have exactly 8n extreme points. Since

the function V' +— A(V) is continuous with respect to the Banach-Mazur
distance, by Theorems 1.5 and 1.6,

CcoS &
=1 OS5 2.1
lvrzn 2n sin 81” (by (2.17))

as required.
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