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On CLUR points of Orlicz spaces

by QUANDI WANG (Changchun),
L1IANG ZHAO (Harbin) and TINGFU WANG (Harbin)

Abstract. Criteria for compactly locally uniformly rotund points in Orlicz spaces are
given.

Let [X, ]| - ||] be a Banach space. S(X) and B(X) are the unit sphere
and unit ball of X respectively. A point x on S(X) is said to be a locally
uniformly rotund point (LUR point) provided that {x,} C X, ||z,|| — 1
and ||z, + x| — 2 imply ||z, —z|| — 0. Recently Y. A. Cui, H. Hudzik and
C. Meng [2] introduced the concept of compactly locally uniformly rotund
point (CLUR point for short). = € S(X) is said to be a CLUR point provided
that {z,,} C X, ||lz,]| — 1 and ||z, + z|| — 2 imply that {z,} is a compact
set. Obviously, if every point on S(X) is LUR (CLUR) then X is a LUR
(CLUR) space. In 1975, B. B. Panda and O. P. Kapoor [4] proved that
CLUR implies the Kadec—Klee property and X is LUR iff X is CLUR and
strictly rotund. In 1984, J. Y. Fu and W. Y. Zhang [3] showed that if X**
is CLUR and K is a non-null closed, convex Chebyshev set in X then the
projection on K is continuous. Y. A. Cui et al. [2] obtained a criterion for a
point to be CLUR in Orlicz sequence spaces equipped with the Luxemburg
norm.

In this paper we will discuss the CLUR points in Orlicz sequence spaces
equipped with the Orlicz norm and in Orlicz function spaces equipped with
both the Luxemburg and Orlicz norm.

A mapping M : (—o0,00) — [0,00) is said to be an N-function if it
is even, convex, vanishing only at zero and such that lim, o M(u)/u = 0
and lim, oo M(u)/u = oo. An interval [a,b] is called a structurally affine
interval (SAI for short) of M provided that M is affine on [a,b] and it is
not affine on [a — s,b] or [a,b + s] for any s > 0. For an N-function M we
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define its complementary function by

N(v) = sup{ulv| = M{u)} (v € (~00,00)).

This is again an N-function (see [1]). Denote by p(u), p— (u) the right and left
derivative of M (u) respectively. We have [1] the so-called Young inequality

uwv < M(u) + N(v)

for any u,v > 0, and uv = M(u) + N(v) iff p_(u) < v < p(u).

M is said to satisfy the As-condition (M € Ag, for short) provided there
are k > 2 and up > 0 such that M(2u) < kM (u) for u satisfying u > uyg.
M € Vo means that N € As.

Let (T, X, 1) be a nonatomic finite measure space and LY the set of all
XY-measurable functions x : T'— (—o00,00). For a given N-function M, the
modular of x with respect to M is onr(x) =\, M(x(t)) dpu. The linear set

{z € L° : 3\ > 0 such that gp(A\r) < oo}
equipped with the Luzemburg norm
|lz|[ar = inf{\ > 0: ops(z/N) < 1}

or Orlicz norm

I3 = sup { §x(t)y(r) i on(y) < 1} = inf 11 + oar(ka))
T

is a Banach space and is called an Orlicz space denoted by Ly or LY,
respectively.
For 0 # z € LY, define

Ky =inf {k > 0: on(p(kla]) = | N(p(kl2(t)))) di = 1},

!

kEr* =sup{k > 0: on(p(k|z])) < 1}.
It is known that ||z||%, = k=1 (1+on (kx)) iff k € [kZ, k2*] (see [1], Th. 1.31).

Similarly we denote by Ip; and I3, the Orlicz sequence spaces equipped
with the Luxemburg norm and Orlicz norm respectively. We only need to
notice that M € Ay in the sequence case means that there exist k£ > 2 and
ug > 0 such that M (2u) < kM (u) for all u satisfying |u| < wug.

The following is known ([2], Th. 6): « € S(Ip) is a CLUR point iff
(a) M € Ag, (b) M € Vyor {i: |z(i)] € (a,b]} = 0 for any SAT [a,b] of M.

A criterion for CLUR points in Y, is different.

THEOREM 1. Let x € S(IY;). Then z is a CLUR point iff (a) M € Ag,
(b) M € V.
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Proof. Necessity. Suppose that 1 = ||z||%, = k=1 (1+ on(kz)). Assume
M ¢ As. If lim, . ||z — [2]0]|%; = 0, we take
0

> 0;
M

s B(y), lim |Z=E

n—oo

if lim, o0 ||z — [2]0]|%; > 0, we take z = 0. Then we always have

(=)=l
where [2]n = (2(1), .., 2(n),0,0,...). Let
- <x(1),...,x(n),2(n]:_ 1>,Z("Ij2>,...> (n=1,2.).

Then

lim > 0,

n—oo

M

—_

”an(J)\/I < —(1+ om(kzy))

k
= (14 M) + 3 M(0)
i=1 i>n
— %(1 +onm(kx)) =1

and
20 + 23 = 2M[x]n % — 2l2llf = 2.

Clearly if {z,,} has a convergent subsequence {x, }, then (z,,) has to con-

verge to x. But
A T P
TER) IR,

which is a contradiction. Thus (a) is true.
If M & Vs, then there exist

vn<N1< Jlr1> N(<1+%>vn>>(n+l)N(vn) (n=1,2,...).

n

0
>0,

lim |z —z,, || = lim '
—00 Jj—o0 M

Take the positive integer m,, satisfying

1 1
<muN(v,) < — =1,2,
< maN@) - (n )
Let
mi+...+mn_1 M
—— A
Yyn=1_ 0,...,0 ,0u,...,0,,0,0,...) (n=1,2,...).

Then supp y, Nsuppy; = 0 (n # j). Since oy (yn) = mpN(v,) < 1 and
on((L+1/n)y,) = m, N((1 4+ 1/n)v,) > (n+ 1)my,N(v,) > 1,
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we have

1> ||lyn (n=1,2,...).

Iy > =
N=1%1/n
From [1], Prop. 1.83, y,, has a supporting function x,, on S(IY,), i.e. [|,|%,
=1,

(@) = Eijxnu)yn(z') = lvallx > 1547

and supp z,, = suppy, (n=1,2,...).
From [1], Th. 1.45, there is y € S(Ly) with (z,y) = ||z]|%, = 1. Let

1 Mn n
o i (0 () TR (S

k=1
Then
1
<7
1
< 1+1 =1 =1,2....).
_1+1/n(+/n) (n=1,2,...)
Hence

e+ @alldy = (@ + 20, 20)

1 —
= T (o)
mi+...+my
- Y @@y~ 2o — wali)ya ()
i=mi+...+mp_1+1
> s () + @)
mi+...+my
- Y (2@ + @)

i=mi+...+mp_1+1

1 1
> (14—
_1+1/n<+1+1/n

mi+...+my

S <2M<:c<z'>>+N<y<z'>>>—mnN<vn>)

i=mi+...+my—1+1
—1 (n—o0).

But since supp z,, Nsuppz; = 0 (n # j), we have ||z, — ;% > ||lz.|% = 1.
This means {z,} is not a compact set. Thus (b) is true.
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Sufficiency. Assume
1
1=zl = E(HQM(M)) = laallar = =+ on(knzn)) (R =1,2,...)

and ||z, + z||3; — 2. Firstly we will prove that

(1) lim sup Z M (knpxn(j)) = 0.

Jo—00
J>Jjo

Otherwise there exist j, — oo and € > 0 such that } . . M(k,z,(j)) > €

(n=1,2,...). From M € V5 and [1], Th. 1.35, k = max{k,sup,, k,} < oo.
Again from M € V5 and [1], Th. 1.13, there exists § € (0,1) such that

@) MOw) < (1 - 5)AM(u) ()\ < % ul <EM(1 )>

From M € Ay and [1], Th. 1.40, there exists n > 0 such that for ops(z) < k
and o (y) <,

(3) lom (z +y) — om ()] < ek

Since kk,, /(k + k) < k/2 and M € A,,

@ S () < ¥ oui(5e0) <

J>in J>in

for n large enough. Hence for n large enough, by (2)—(4),

0 — flzalliy + llas — 2+ 2nlly,

F»—\

> (Ut o (knn)) + 3 (1+ o (ko)

n

b+ ko -
" Tk <1+9M<k+kn(“x”)>>

Jﬁj’fﬂz( b Mk (5) + f M (ka(j))
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k:+k:
( k:+l<: M (knan (7))

- <ZM (F59) *715m))
> Bt b (m Mk ()

- gj:n(l O M) - 2(16i E))
- kl;fn (‘:; ﬁM(k”x”(j)) - 2(15—i E))

g( de e > e
TE\1+k  21+k) k(1+Fk)
which is a contradiction. So (1) is true.

Since k, > 1, we have

lim supZM:En j)) =0.

Jo—00
J>Jo

Again from M € A, and [3], Th. 1.23,

(5) Jim_suplen — [2a]soll3 = 0.

For arbitrary € > 0, take jo such that
sup [|zn — [@n]oll3s < /3.
n

Since {[z,]j, )2 is a bounded set in a jo-dimensional space, there exist
{Z:};2, C {z,} such that for any n, there is i, 1 < i < iy, satisfying
llnlio = [Filjoll3, < €/3. Hence

lzn = Zillhs < Nlznlio — iliollas + llon = [@nliollys + 17 — Filsollas <,
that is, {F;}'° | is an e-net of {x,,}. Thus {z,,} is a compact set.

For Orlicz function spaces, criteria for CLUR points are more compli-
cated.

THEOREM 2. Let xz € S(LY,). Then z is a CLUR point iff

(a) M € Ao,

(b) M € Va;

(¢) p{t € T : klz(t)| € (a,b)} = 0, where k € [k}, kX*] and [a,b] is an
arbitrary SAI of M,
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(d) p{t € T : klz(t)| = o’ or k|lx(t)| =V} = 0, where o’ (resp. ') is the
left (resp. right) endpoint of an arbitrary SAI of M satisfying p—(a’) = p(a’)
(resp. p—(¥') = p(V));

(e) If p{t € T : klz(t)| = a} > 0, where a is the left endpoint of some
SAI of M satisfying p—(a) < p(a), then on(p—(klz|)) = 1;

(f) If p{t € T : klz(t)| = b} > 0, where b is the right endpoint of some
SAI of M satisfying p—(b) < p(b), then on(p(k|z|)) = 1.

Proof. Without loss of generality, assume x(t) >0 (t € T).

Necessity. The proof of (a), (b) is similar to (a), (b) of Theorem 1.

If (c) is not true then there is an SAI [a,b] of M such that u{t € T :
kx(t) € (a,b)} > 0. Take € > 0 so small that the set £ = {t € T :
kx(t) € [a + €,b — €]} has positive measure. Divide F into two disjoint
measurable subsets E{ and EJ such that uFE{ = pE}; divide E} and E}
into disjoint measurable subsets E?, E3 and E?, EF respectively such that
uE? = pE3 and puE3 = pkE3, ... ; divide Ei"_1 into two disjoint measurable
subsets EX. |, E% such that uEY, | = pE% (i=1,...,2"71). Let

Ln = $|T\E + ($ + 6/(2k))|u221_1 Ep,_,
(= /2R oot gy

It is easy to see on (p—(kzn)) = on(p-(kz)) and on(p(kzn)) = on (p(kz)).
Hence k € [k ,ki*] (n=1,2,...). Therefore

Tp? "Tn

1
”an(J)\/I = E(l + onr (kzn))

1

k(l—i—QM(kx\T\E)—i- S M (kx(t) +¢/2)du

2n—1 55y
Ui:l EQ’i—l

+ |\ Mka(t)+ e/2)d,u>

oan—1

i=1 E;L
1 e puk e uk
= %<1 + om (k) +P(a)§ o —P(a)§ : 7) = |lzll} = 1.
Obviously &k € [k{, . /2 K{ais,y2l (n=1,2,...). We have
0
T+ x, 1 T+ x, 0
| (e (K552 ) = el

That is, ||z + 2,8, = 2. But for m # n,

0 e puk (2

(see [1], Ex. 1.22). Thus {z,} is not a compact set.
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If (d) is not true then there is a SAI [a/,0'] of M with p_(a’) = p(a’)
and E ={t € T : kx(t) = a'} of positive measure. Take ¢’ with o’ < ¢ < V.
Divide E as above and put

a/
Ty = ZE|T\E + —

A +

C/
U E, Rlumr e
We have oy (p—(kz,)) = on(p—(kx)) and oy (p(kzy)) = on(p(kx)). So k€
(ks k3] (n=1,2,...). Since M € Ay thereis y € S(Iy) such that (z,y) =
|z]|%9; = 1. From [1], Th. 1.80, we have oy (y) = 1 and p_(kz(t)) < y(t) <
p(kx(t)) (ae. teT). Now p_(kz,(t)) < y(t) < plkz,(t)) (n =1,2,...) too.
Again by [1], Th. 1.80, y is a supporting functional of z, (n = 1,2,...).
Thus

(n=1,2,...).

0
Tn

2> —_n
Hxn”(])w

T+

> § (s + 28 Yo =2 =120,

Mg [

ie. ||z +xn/|zn%1% = 2. Clearly ||lz,]% = A < oo (n=1,2,...) and for

m #n,
i i (3)
o A 2 uwk )’

Hence {z,/||z.]|%;} is not a compact set.

Similarly we can prove that p{t € T : kz(t) =b'} = 0.

If (e) is not true then there is a SAI [a,b] of M with p_(a) < p(a),
Ey ={t € T : kx(t) = a} of positive measure and gy (p_(kz)) < 1 (notice
that we always have on(p—_(kz)) < 1 by the definition of k). Take E C Ej
with pFE > 0 such that

| Np—(kz(t)) du+ | N(p(ka(t))) dp
T\E E

lznlfs  lmllS

— | Np_(k2(t))) du + N(p(a))uE < 1.
T\E

Divide E as above. Take ¢ with a < ¢ < b and put

Tp = |\ g+ % P + % N (n=1,2,...).
Then
on(p—(kz,)) = | N(p_(kx(t))) dp+ N(p(a))pE < 1
T\E
and

on(p(kz,)) = on(p(kx)) > 1.
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So ke [kX k] (n=1,2,...). Since

[ N (k) du + N(p(a)uk <1,
T\E
| N(kx(t) du + N(p(a)nE = on (p(kx(1)) > 1,
T\E
there is y € Ly such that
y(t) =pla) (teE), p-_(kz(t)) <y(t) <p(kz(t)) (teT\E)

and oy (y) = 1. By [1], Th. 1.80, y is a supporting functional of z. Obviously
p_(kxn(t)) < y(t) < plkx,(t)) (ae. t €T, n=1,2,...),s0yis asupporting
functional of x,, (n =1,2,...) too. Thus

0
x +

In > | (x(t)+ Zn(?) >y(t)d,u:2 (n=12,...).

i llar ~ 5, [E

Assume ||z, |9, = A4 (n=1,2,...). Then for m # n,
0 _c—a ,uEN_1 2
v A 2 uwk )’

which means {z,,/[|x,]|%} is not a compact set.
The proof of (f) is similar to (e).
Sufficiency. By [6], x is a LUR point. Then of course it is a CLUR point.

In Im

lznlRy  lzmllS

Finally, we discuss a criterion for CLUR points in Orlicz function spaces
with Luxemburg norm.

THEOREM 3. Let € S(Lys). Then x is a CLUR point iff

(a) M € Ao,

(b) u{t € T : |x(t)| € (a,b)} = 0, where [a,b] is an arbitrary SAI of M,

(c) u{t € T : |x(t)] = b} = 0 for the right endpoint b of any SAI of M,
or p{t € T : |z(t)] = a} = 0 for the left endpoint a of any SAI of M, and
M € Vs.

Proof. Still assume z(t) >0 (t € T').

Sufficiency. By [5], « is a LUR point. Then certainly it is a CLUR point.

Necessity. The proofs of (a) and (b) are similar to (a) and (c) in Theo-
rem 2, respectively.

If (c) is not true, we consider the following two cases:

I. Both B = {t € T : z(t) = b} and FF = {t € T : z(t) = ¢} have

positive measure, where (a,b) and (¢, d) are two SAI of M. Take s € (a,b)
and r € (c,d) satisfying (M (b) — M(s))uE = (M(r) — M(c))puF. Divide E
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and F' as above and put

n = 2lr\@or) 0l gy A sl gy

+ T'Ufﬁ‘l o+ C'U?ZII . (n=1,2,...).

=1 T3
We have
uE uF
on1(2) = oar el coum) + (M(E) + M()ED + (M () + D(e)) S
= om (@|m\(BuF)) + M(D)pE + M(c)uF = on(x) = 1.
So ||znllar =1 (n=1,2,...). Moreover
Ty + T b+ s r4c
QM< 5 > = QM($|T\(EUF))+M<T>ME+M< 5 >MF
M(b) + M(s M(r)+ M(c
= om (Z|7\(BUF)) + ®) 5 ( )ME+ ( )2 ( )qul.
So ||z 4+ znllm =2 (n=1,2,...). But for m # n,

E F
om(xy — ) = M(c— a)% —I—M(b—d)%.

Therefore {z,} is not a compact set.

II. E={t € T : z(t) = b} has positive measure, where [a, ] is a SAT of
M and M ¢ V.
By [1], Th. 1.13, there exist u,, — oo such that

M<“2—”> > <1—%>M2(”) (n=1,2,...).

Since onr(z|m\g) + M (b)pE = op(x) = 1, we can take E, C E such that
om(zlm\g) + M(up —b)pEy + M(a)u(E\ E,) =1 (n=1,2,...).

It is easy to see that uFE, — 0 (n — o). Without loss of generality we can
assume that E, N E,, =0 (m # n). Put

$n:3§‘|T\E+CL|E\En+(un—b)|En (n:1,2,)
Then op(x,) =1 and

o (225 ) = aualrn) + 3 (52 B\ B + 31 (5 )

2 2
> our(aelre) + O g B (1_ ! > Vi)

_1 [QM@:\T\E) + MO)WE\ E,)

pwEy

2

—1 (n—o0).
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Hence Ha;;HM =1(mn=12..), |zn+2z|m — 2 (n — o0). But for any
oM (Tn — Tm) > o ((Tn — o) |E,)
= M(u, —b—a)uE, = M(u, — b)uE, —o(1/n)
= (1 —om(zlr\p)) — M(a)u(E\ Eyn) — o(1/n)
— MOUE - M(a)u(B \ Ey) - o{1/n)
(M(b) = M(a))uE — o(1/n)

> (M) - M(a)uE

v

for n large enough. This means {z,} is not a compact set.

Combining Theorems 1-3 of this paper and Theorem 6 of [2] we see that
being a CLUR point is equivalent to being a LUR point in Orlicz function
spaces, while in Orlicz sequence spaces a CLUR point does not even have
to be an extreme point. Furthermore we can get

COROLLARY 1. LY, (and Lyy) is CLUR iff it is LUR.
COROLLARY 2. I3, is CLUR iff it is reflexive.
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