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The Conley index for decompositions
of isolated invariant sets

by

Andrzej S z y m c z a k (Gdańsk)

Abstract. Let f be a continuous map of a locally compact metric space X into itself.
Suppose that S is an isolated invariant set for f and a disjoint union of a fixed finite
number of compact sets. We define an index of Conley type for isolated invariant sets
admitting such a decomposition and prove some of its properties, which appear to be
similar to that of the ordinary Conley index for maps. Our index takes into account the
existence of the decomposition of S and therefore carries more information about the
structure of the invariant set. In particular, it seems to be a more accurate tool for the
detection of periodic trajectories and chaos of the Smale horseshoe type than the ordinary
Conley index.

0. Introduction. The Conley index has become an important tool in the
study of the qualitative behavior of dynamical systems, with both discrete
and continuous time. The results concerning attractor-repeller decomposi-
tions ([1], [15], [18]), the connection matrix theory ([3], [4], [5]) as well as
recent papers by Ch. McCord, K. Mischaikow and M. Mrozek [7] and the
last two authors [9] (see also [20]) show that the Conley index reflects the
structure of an isolated invariant set. In this paper we are mainly interested
in the Conley index as a tool for the detection of chaos and periodic orbits.
Comparing the results of [9] and [20] with the criterions for chaos based on
the fixed point index in [19] or [23] shows that the ones based on the Conley
index are, in some sense, weak. They only guarantee that some iteration of
the map restricted to the isolated invariant set is semiconjugate to the shift
map. Thus, they provide information about the dynamics of some iteration
of the map rather than the map itself. The information about the number
of periodic orbits is also not as accurate as that provided by the methods
based on the fixed point index. The aim of this paper is to define an index
of Conley type which fills this gap. Our index is defined for a decomposition
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of an isolated invariant set into a fixed number of disjoint compact sets.
The knowledge of the decomposition allows us to equip the index with an
additional structure, which carries more information than the ordinary Con-
ley index. The main potential application of our index is for the detection
of chaos. The Conley index for decompositions can also be used to state
topological analogues of some results in the theory of smooth dynamical
systems (e. g. the Poincaré–Birkhoff theorem). This topic will be discussed
in a separate paper.

1. Preliminaries. We denote by Z+ and R the sets of nonnegative
integer and real numbers (respectively). If X is a metric space and Q =
(Q1, Q0) is a pair of its compact subsets then by Q1/Q0 we denote the
pointed space resulting from Q1 when the points of Q0 are identified to
a single distinguished point, denoted by [Q0]. Htop, M and MG stand
for the homotopy category of pointed topological spaces, the category of
modules and the category of graded modules over a fixed ring Ξ with unity.
For a basepoint preserving map g its homotopy class is also denoted by g.
This should not cause misunderstanding. For an object O in a category K
we denote by [O] the class of all objects in K isomorphic to O. A functor
F : K → L induces the map sending an isomorphism class [O] into [F (O)]
for each object O ∈ Ob(K). We denote this map by the same letter F .

Let us now recall the basic concepts of the Conley index theory. Our
presentation is based mainly on [21] and [20] (see also [11], [13], [16], [17]).
We begin with the definition of the category of objects equipped with a
morphism over a given category K, denoted by Km. Put

Ob(Km) = {(X,α) : X ∈ Ob(K) and α ∈ MorK(X,X)}
and

MorKm((X,α), (X ′, α′)) = M((X,α), (X ′, α′))/≡,
where

M((X,α), (X ′, α′)) = {β ∈ MorK(X,X ′) : β ◦ α = α′ ◦ β} × Z+

and ≡ is the equivalence relation in the above set defined by

(β, n) ≡ (β, n)⇔ ∃k∈Z+ β ◦ αn̄+k = β ◦ αn+k.

The morphism represented by (β, n) ∈ M((X,α), (X ′, α′)) will be denoted
by [β, n]. The composition of morphisms in Km is defined by

[β′, n′] ◦ [β, n] = [β′ ◦ β, n′ + n].

Given a functor F : K → L one can define the induced functor Fm : Km →
Lm in the following way. For an object (X,α) and a morphism [β, n] in Km

we put
Fm(X,α) = (F (X), F (α)), Fm([β, n]) = [F (β), n].
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We write [X,α] for the class of all objects in Km isomorphic to an object
(X,α).

In each of the categories Htop, M, MG for each object X there exists
the zero morphism of X into itself (i.e. the homotopy class of the constant
map or the zero homomorphism, according to the case). We denote this
morphism by 0. In the same way we denote the trivial isomorphism classes
in the categories of objects equipped with a morphism over each of the three
categories, i.e. we put 0 = [C, 0] where C is any pointed space or (graded)
Ξ-module. This class is independent of the choice of C. This notation is
ambiguous, but it will always be clear from the context what is meant by 0.
We note that [X,α] = 0 if and only if αn = 0 for some n ∈ Z+.

For the rest of this section, fix a locally compact metric space X and a
continuous map f of X into itself. Let S be an isolated invariant set with
respect to f . A pair Q = (Q1, Q0) of compact subsets of X is called an index
pair for S with respect to f if and only if S = Invfcl(Q1\Q0) ⊂ int(Q1\Q0),
Q0 is positively invariant in Q1 (i.e. f(Q0) ∩ Q1 ⊂ Q0) and Q0 is an exit
set for Q1 (which means that f(Q1 \ Q0) ⊂ Q1). For such Q, f induces
a continuous map fQ : Q1/Q0 → Q1/Q0 which will be called the index
map. The (homotopy) Conley index of S, denoted by h(S, f,X), is defined
as the class of all objects in Htopm isomorphic to (Q1/Q0, fQ). We define
the cohomological and the q-dimensional cohomological Conley indices by

h∗(S, f,X) = (H∗)m(h(S, f,X))

and

hq(S, f,X) = (Hq)m(h(S, f,X)),

where H∗ : Htop → MG is a fixed cohomology functor with coefficients
in Ξ.

Until the end of this section, let Ξ be the field of rational numbers. Then
M and MG are the categories of vector spaces and graded vector spaces
over Ξ. An object (V, ϕ) in Mm is called of finite asymptotic dimension
(cf. [20], Definition 2.1 and Proposition 2.2) if there exists an object (W,ψ)
isomorphic to (V, ϕ) with W finite-dimensional. In this case, we define the
trace of (V, ϕ), denoted by tr(V, ϕ) as the ordinary trace of ψ. Using the
methods of [20] (see Theorem 1.1, Definition 4.1 and Remark 4.1) one proves
easily that it is independent of the choice of (W,ψ).

Now, let (V ∗, ϕ∗) be an object in (MG)m. It is said to be of finite type
if there exists an object (W ∗, ψ∗) isomorphic to (V ∗, ϕ∗) with W ∗ of finite
type. In this case, we define the Lefschetz number of (V ∗, ϕ∗), denoted by
Λ(V ∗, ϕ∗), as the ordinary Lefschetz number of ψ∗. Clearly,

Λ(V ∗, ϕ∗) =
∞∑

q=−∞
(−1)q tr(V q, ϕq).
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An isomorphism class I of objects in (MG)m is said to be of finite type if it
admits a representative of finite type. In this case, all its representatives are
of finite type and they have the same Lefschetz number, which we call the
Lefschetz number of I, and denote by Λ(I). The following theorem is taken
from [20] (see Lemma 5.2). For related results, see [10], [12], [14].

Theorem 1.1. If X is a Euclidean neighborhood retract (ENR), then
the cohomological Conley index of any isolated invariant set for f is of finite
type. If the Lefschetz number of the Conley index of an isolated invariant
set S is nonzero then f has a fixed point in S.

2. Categorical constructions. There are many Conley-type indices
for isolated invariant sets (see [1], [11], [13], [17], [18], [21]), but all of them
take the form of an isomorphism class of objects in a certain category. In the
classical, continuous-time case, the homotopy category of pointed topolog-
ical spaces is used and therefore the Conley index is simply the homotopy
class of a pointed space. In the discrete-time case the situation is much more
complicated: in order to give a good definition one has to use more sophis-
ticated categorical constructions. The shape category ([13], [17]), the Leray
functor ([11], [13]), the direct and inverse limit functors ([13]) and the cate-
gory of objects equipped with a morphism ([21]) can serve as examples here.
Below we define a generalization of the latter concept, which is suitable for
the definition of the Conley index for decompositions of isolated invariant
sets.

Let K be a category and A a finite set. In the sequel, we often deal with
finite sequences of elements of A. We denote by ∗ the concatenation of such
sequences, defined by

(Z1, . . . , Zn) ∗ (Z ′1, . . . , Z
′
m) = (Z1, . . . , Zn, Z

′
1, . . . , Z

′
m) ∈ An+m

for all (Z1, . . . , Zn) ∈ An and (Z ′1, . . . , Z
′
m) ∈ Am. For Z being a sequence

of members of A we denote by Zk the concatenation of k copies of Z. By
ι(Z) we denote the sequence Z with entries in reverse order.

Let us now define the category K(A). For n ∈ Z+ and X,X ′ ∈ Ob(K)
put

Ob(K(A)) = Ob(K),

MornK(A)
(X,X ′) = (MorK(X,X ′))A

n

,

MorK(A)(X,X
′) =

⋃

n∈Z+

MornK(A)
(X,X ′).

The composition of morphisms

α = {αZ̄}Z̄∈An ∈ MornK(A)
(X,X ′)
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and

α′ = {α′Z̄}Z̄∈Am ∈ MormK(A)
(X ′, X ′′)

is defined as follows:

α′ ◦ α = {(α′ ◦ α)Z̄}Z̄∈Am+n ∈ Morm+n
K(A)

(X,X ′′),

where

(α′ ◦ α)Ȳ
′∗Ȳ = α′Ȳ

′
◦ αȲ

for all Y ∈ An and Y ′ ∈ Am. Since A0 consists of exactly one element, we
identify Mor0

K(A)
(X,X ′) with MorK(X,X ′) in the obvious way. Similarly,

there is an obvious bijection of Mor1
K(X,X ′) onto (MorK(X,X ′))A. There-

fore, we treat morphisms in the former set as families of morphisms of X
into X ′ in K, indexed by members of A. It is straightforward to verify that
K(A) is indeed a category. Notice that its identity morphism over an object
X is idX ∈ Mor0

K(A)
(X,X).

The category K(A) is only an intermediate step in the definition of the
category K[A], which we are going to use in the definition of the Conley
index for decompositions of isolated invariant sets. Put

Ob(K[A]) = {(X,α) : X ∈ Ob(K(A)) = Ob(K), α ∈ Mor1
K(A)

(X,X)}.
In order to define morphisms in K[A], for objects (X,α) and (X ′, α′) put

M((X,α), (X ′, α′)) = {(β, n) : β ∈ MornK(A)
(X,X ′), n ∈ Z+, β◦α = α′◦β}.

In this set we introduce an equivalence relation ≡ in the following way.

(β, n) ≡ (β, n)⇔ ∃k∈Z+ β ◦ αn̄+k = β ◦ αn+k (in K(A)).

Now, define

MorK[A]((X,α), (X ′, α′)) = M((X,α), (X ′, α′))/≡.
The morphism represented by (β, n) will be denoted by [β, n]. The com-
position of morphisms [β, n] : (X,α) → (X ′, α′) and [β′, n′] : (X ′, α′) →
(X ′′, α′′) is defined as follows:

[β′, n′] ◦ [β, n] = [β′ ◦ β, n′ + n].

One can easily verify that this definition is correct, i.e. independent of the
choice of the representatives for [β, n] and [β′, n′] and that K[A] is indeed a
category. Note that the identity morphism over (X,α) is [idX , 0].

Proposition 2.1. For each [β, n] ∈ MorK[A]((X,α), (X ′, α′)) and
k ∈ Z+,

[β, n] = [α′k ◦ β, n+ k] = [β ◦ αk, n+ k].

P r o o f. This follows immediately from the definition of ≡.
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The Conley index for decompositions of isolated invariant sets will “con-
tain” information about ordinary Conley indices of some sets which are
important for understanding the dynamics of the map. Below we give the
definition of functors which will enable us to extract this information.

Let k be a positive integer and Y = (Y1, . . . , Yk) ∈ Ak. The functor
PȲ : K[A] → Km is defined as follows. For an object (X,α) in K[A] with
α = {αZ}Z∈A put

PȲ (X,α) = (X,αY1 ◦ . . . ◦ αYk).

Now, let [β, n] be a morphism of (X,α) into (X ′, α′). By Proposition 2.1,
without loss of generality we can assume that n = mk for some m ∈ Z+.
Suppose that β = {βZ̄}Z̄∈An . Put

PȲ ([β, n]) = [βȲ
m

,m].

A routine check that PȲ is a well-defined functor is left to the reader.

R e m a r k 2.1. An important property of the construction given above is
the naturality with respect to functors. Let F : K → L be a functor. Then
we have the induced functors F(A) : K(A) → L(A) and F[A] : K[A] → L[A]
defined as follows:

F(A)(X) = F (X),

F(A)({αZ̄}Z̄∈Ak) =
{ {F (αZ̄)}Z̄∈Ak if F is covariant,
{F (αι(Z̄))}Z̄∈Ak if F is contravariant,

for all objects X and morphisms {αZ̄}Z̄∈Ak in K(A) and

F[A](X,α) = (F(A)(X), F(A)(α)), F[A]([β, n]) = [F(A)(β), n]

for all objects (X,α) and morphisms [β, n] in K[A]. Furthermore, the follow-
ing diagram of categories and functors commutes for each Y ∈ Ak:

K[A]
F[A]−−−−−→ L[A]yPȲ

yPιF (Ȳ )

Km
Fm−−−−−→ Lm

where

ιF (Y ) =
{
ι(Y ) if F is contravariant,
Y if F is covariant.

As in the case of categories equipped with a morphism, we denote by
0 the isomorphism classes of the trivial (zero) objects in Htop[A], (MG)[A]
and M[A], defined in the obvious way.
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3. The index. This section contains the basic definitions of the Conley
index theory for decompositions of isolated invariant sets. In what follows,
B, X and f will denote a fixed finite set, a locally compact metric space
and a continuous map of X into itself. We shall make use of the categories
of K[A] type with A = 2B . If {Nb} is a family of sets indexed by members
of B then for each set Z ⊂ B we denote by NZ the union of Nb over b ∈ Z.

Definition 3.1. Let N be a compact subset of X. A family {Nb} =
{Nb}b∈B of pairwise disjoint compact sets is called a decomposition of N if
N =

⋃
b∈B Nb.

Until the end of this section, we denote by S a fixed isolated invariant
set for f and by {Sb} its decomposition.

Definition 3.2. An index pair Q = (Q1, Q0) for S is said to be compat-
ible with the decomposition {Sb} of S if there exists a decomposition {Db}
of cl(Q1 \Q0) such that Sb = S ∩Db for each b ∈ B.

Let us emphasize that, in general, the decomposition {Db} is not unique-
ly determined by Q and {Sb}.

Definition 3.3. Let Q = (Q1, Q0) be an index pair for S compatible
with the decomposition {Sb} of S and {Db} be the corresponding decom-
position of cl(Q1 \ Q0). Then for any Z ∈ A we can define a continuous
map

rZ = rZ(Q,{Db}) : Q1/Q0 → Q1/Q0

by the formula

rZ([x]) =
{

[x] if x ∈ DZ ,
[Q0] otherwise.

The index object, denoted by I(Q, {Db}, f), is the object in Htop[A] given
by

I(Q, {Db}, f) = (Q1/Q0, {fZ}Z∈A),

where fZ = fZ(Q,{Db}) = fQ ◦ rZ (recall that fQ is the index map).

In order to simplify the notation, we often write briefly I(Q, {Db}) in-
stead of I(Q, {Db}, f) whenever the map f is clear from the context. For
each Z ∈ A and x ∈ Q1 we have the formula

fZ([x]) =
{

[f(x)] if x ∈ DZ ∩ (Q1 \Q0),
[Q0] otherwise.

For further reference, let us note the following formula for compositions of
the maps fZ . Let Z = (Z0, Z1, . . . , ZT−1) ∈ AT . For all x ∈ Q1,
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(3.1) fZT−1 ◦ fZT−2 ◦ . . . ◦ fZ0([x])

=
{

[fT (x)] if f i(x) ∈ DZi ∩ (Q1 \Q0) for each i ∈ {0, 1, . . . , T − 1},
[Q0] otherwise.

Let N be a compact neighborhood of S admitting a decomposition {Nb}
such that Sb = Nb ∩ S for each b ∈ B. By the existence theorems for index
pairs (see [6], [10], [11], [13], [16]) there is an index pair Q = (Q1, Q0) for S
with Q1 contained in N (Q may even be assumed regular in the sense of [10]
or [20]). Obviously, such an index pair is compatible with the decomposition
{Sb}. We have proved the following

Proposition 3.1. There exist index pairs for S compatible with the de-
composition {Sb}, arbitrarily close to S.

The following theorem is of fundamental importance in our construction.

Theorem 3.1. If Q = (Q1, Q0) and Q = (Q1, Q0) are index pairs for
S compatible with the decomposition {Sb} of S, and {Db} and {Db} are
decompositions of cl(Q1 \ Q0) and cl(Q1 \ Q0) satisfying the conditions of
Definition 3.2 then the index objects I(Q, {Db}) and I(Q, {Db}) are isomor-
phic in Htop[A].

P r o o f. We proceed in several steps.

S t e p 1. There exists T ∈ Z+ such that for each sequence (Z0, Z1, . . .
. . . , Z2T−1) of members of A and x ∈ X,

(3.2) (∀i∈{0,...,2T−1} f i(x) ∈ DZi)⇒ fT (x) ∈ DZT ∩ (Q1 \Q0)

and

(3.3) (∀i∈{0,...,2T−1} f i(x) ∈ DZi)⇒ fT (x) ∈ DZT ∩ (Q1 \Q0).

For the proof, notice that the set U given by

U =
⋃

b∈B
(Db ∩Db ∩ (Q1 \Q0) ∩ (Q1 \Q0))

is a neighborhood of S. As a consequence of Lemma 4.2 of [21] (cf. also
Lemma 6.2 of [17]) we obtain the existence of a nonnegative integer T such
that for each x ∈ X,

(3.4)
(∀i∈{0,...,2T−1} f i(x) ∈ cl(Q1 \Q0))⇒ fT (x) ∈ U,
(∀i∈{0,...,2T−1} f i(x) ∈ cl(Q1 \Q0))⇒ fT (x) ∈ U.

Now, suppose that ∀i∈{0,...,2T−1} f i(x) ∈ DZi . Then, by (3.4), fT (x) ∈ U .
Since simultaneously fT (x) ∈ DZT ,

fT (x) ∈ U ∩DZT ⊂ DZT ∩ (Q1 \Q0).

We have proved (3.3). In a similar way one proves (3.2).
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S t e p 2. Let T ∈ Z+ be such that (3.2) and (3.3) hold. For a sequence
Z = (Z1, . . . , Z3T ) of members of A we define

f Z̄ = f Z̄(Q,{Db}),(Q̄,{D̄b}) : Q1/Q0 → Q1/Q0

by

f Z̄([x]) =





[f3T (x)] if ∀i∈{0,...,2T−1} f i(x) ∈ DZ3T−i ∩ (Q1 \Q0)
and fT+i(x) ∈ DZ2T−i ∩ (Q1 \Q0),

[Q0] otherwise.

Our task is to prove the continuity of f Z̄ .
The proof goes along the lines of other continuity proofs in the Conley

index theory (cf. [17], [18], [21]). Let f Z̄0 : Q1 → Q1/Q0 be defined by the
same formula as f Z̄ . Clearly, it is enough to show that f Z̄0 is continuous.
Put

O1 = {x ∈ Q1 : ∀i∈{0,...,2T−1} f i(x) ∈ DZ3T−i ∩ (Q1 \Q0)

and fT+i(x) ∈ DZ2T−i ∩ (Q1 \Q0)},
O2 = {x ∈ Q1 : ∃i∈{0,...,2T−1} f i(x) 6∈ DZ3T−i or fT+i(x) 6∈ DZ2T−i}.

Clearly, O2 is open in Q1 and f Z̄0 is constant on O2 and therefore continuous
at each point of this set. Since f Z̄0 (x) = [f3T (x)] for each x ∈ O1, in order
to prove the continuity of f Z̄0 at each point of O1 it is enough to show that
this set is open in Q1. Take x ∈ O1. There exists an open neighborhood U
of x in X such that

(3.5) f i(U) ∩ (Q0 ∪DB\Z3T−i) = ∅ = fT+i(U) ∩ (Q0 ∪DB\Z2T−i)

for each i ∈ {0, 1, . . . , 2T−1}. Let us show that U∩Q1 ⊂ O1. Let y ∈ U∩Q1.
Our assumptions about U imply y ∈ Q1 \ Q0 and f i(y) 6∈ Q0 for each
i ∈ {0, 1, . . . , 2T − 1}. Since Q0 is an exit set for Q1, f i(y) ∈ Q1 \ Q0. By
(3.5), f i(y) ∈ (Q1 \Q0) ∩DZ3T−i . Hence, by (3.3),

fT (y) ∈ DZ2T ∩ (Q1 \Q0) ⊂ Q1 \Q0.

By the previous argument,

fT+i(y) ∈ DZ2T−i ∩ (Q1 \Q0) for all i ∈ {0, 1, . . . 2T − 1}
so that y ∈ O1.

We conclude that, in order to prove the continuity of f Z̄0 , it is enough to
show that it is continuous at each point of Q1 \ (O1 ∪O2). Let x be in this
set. Then, in particular,

(3.6) ∀i∈{0,...,2T−1} f i(x) ∈ DZ3T−i and fT+i(x) ∈ DZ2T−i

and f Z̄0 (x) = [Q0]. By (3.2) with x replaced with fT (x), f2T (x) ∈ DZT ∩
(Q1\Q0). Since f i(x) ∈ DZ3T−i ⊂ Q1 for each i ∈ {0, 1, . . . , 2T−1}, positive
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invariance ofQ0 inQ1 implies f i(x) ∈ DZ3T−i∩(Q1\Q0). Thus, since x 6∈ O1,
for some j ∈ {0, 1, . . . , 2T −1} we must have fT+j(x) 6∈ DZ2T−j ∩ (Q1 \Q0).
By (3.6), fT+j(x) ∈ Q0. By (3.6) and positive invariance of Q0 in Q1,
f3T−1(x) ∈ Q0. Let V ′ be an open neighborhood of [Q0] in Q1/Q0. Denote
by π the projection map of Q1 into Q1/Q0. Put M = π−1((Q1/Q0) \ V ′).
Clearly, M is a compact subset of Q1 \ Q0. By positive invariance of Q0
in Q1, f3T (x) 6∈ M . Let V be an open neighborhood of x in Q1 such that
f3T (V ) ∩M = ∅. Notice that for all y ∈ V , f Z̄0 (y) is equal to either [Q0]
or [f3T (y)] (the second possibility can occur only if f3T (y) ∈ Q1). Hence,
f Z̄0 (y) ∈ V ′. In this way we have proved that f Z̄0 is continuous at x.

S t e p 3. If (Z1, . . . , Z3T+1) ∈ A3T+1 then

f (Z1,...,Z3T ) ◦ fZ3T+1

(Q,{Db}) = fZ1
(Q̄,{D̄b}) ◦ f

(Z2,...,Z3T+1).

Therefore, we have the following morphism in Htop[A]:

f(Q,{Db}),(Q̄,{D̄b}) = [{f Z̄}Z̄∈A3T , 3T ] : I(Q, {Db})→ I(Q, {Db}).
To prove this, consider the following two conditions:

∀i∈{0,...,2T} f i(x) ∈ DZ3T+1−i ∩ (Q1 \Q0) and(3.7)

∀i∈{1,...,2T} fT+i(x) ∈ DZ2T+1−i ∩ (Q1 \Q0)

and

∀i∈{0,...,2T−1} f i(x) ∈ DZ3T+1−i ∩ (Q1 \Q0) and(3.8)

∀i∈{0,...,2T} fT+i(x) ∈ DZ2T+1−i ∩ (Q1 \Q0).

Notice that if (3.7) holds for some x ∈ X then applying (3.3) gives
fT (x) ∈ DZ2T+1 ∩ (Q1 \ Q0). Therefore, (3.8) holds. We have proved that
(3.7) ⇒ (3.8). Since the reverse implication can be proved in a similar way
using (3.2) with x replaced with fT (x), (3.7) and (3.8) are equivalent. To
finish the proof apply the formulas for fZ and f Z̄ to conclude that, for all
x ∈ Q1,

f (Z1,...,Z3T ) ◦ fZ3T+1

(Q,{Db})([x]) =
{

[f3T+1(x)] if (3.7) holds,
[Q0] otherwise,

and

fZ1
(Q̄,{D̄b}) ◦ f

(Z2,...,Z3T+1) =
{

[f3T+1(x)] if (3.8) holds,
[Q0] otherwise.

S t e p 4. The morphism f(Q,{Db}),(Q̄,{D̄b}) defined in Step 3 is an iso-
morphism in Htop[A].

Notice that Steps 1 through 3 remain valid if we replace Q by Q and
vice versa. Hence we have the morphism
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f(Q̄,{D̄b}),(Q,{Db})

= [{f Z̄(Q̄,{D̄b}),(Q,{Db})}Z̄∈A3T , 3T ] : I(Q, {Db})→ I(Q, {Db}).
Now, consider the composition

g = f Ȳ(Q̄,{D̄b}),(Q,{Db}) ◦ f Z̄(Q,{Db}),(Q̄,{D̄b})
for given Z = (Z1, . . . , Z3T ) ∈ A3T and Y = (Y1, . . . , Y3T ) ∈ A3T . Using the
formula defining the maps in Step 2 we get

g([x]) =
{

[f6T (x)] if the condition (3.9) below holds,
[Q0] otherwise,

where

∀i∈{0,...,2T−1} f i(x) ∈ DZ3T−i ∩ (Q1 \Q0),(3.9)

fT+i(x) ∈ DZ2T−i ∩ (Q1 \Q0),

f3T+i(x) ∈ DY3T−i ∩ (Q1 \Q0),

f4T+i(x) ∈ DY2T−i ∩ (Q1 \Q0).

Using the implications (3.2) and (3.3) one can easily prove that (3.9) is
equivalent to

∀i∈{0,...,3T−1} f i(x) ∈ DZ3T−i ∩ (Q1 \Q0),

f3T+i(x) ∈ DY3T−i ∩ (Q1 \Q0).

Hence, by (3.1),

g = fY1
(Q,{Db}) ◦ . . . ◦ f

Y3T
(Q,{Db}) ◦ f

Z1
(Q,{Db}) ◦ . . . ◦ f

Z3T
(Q,{Db}).

This means that

{f Z̄(Q̄,{D̄b}),(Q,{Db})}Z̄∈A3T ◦{f Z̄(Q,{Db}),(Q̄,{D̄b})}Z̄∈A3T =[({fZ(Q,{Db})}Z∈A)6T ]

in Htop(A) and therefore, by Proposition 2.1,

f(Q̄,{D̄b}),(Q,{Db}) ◦ f(Q,{Db}),(Q̄,{D̄b})
= [({fZ(Q,{Db})}Z∈A)6T , 6T ] = idI(Q,{Db}).

In a similar way one proves that

f(Q,{Db}),(Q̄,{D̄b}) ◦ f(Q̄,{D̄b}),(Q,{Db}) = idI(Q̄,{D̄b}).

The theorem just proved justifies the following definition.

Definition 3.4. Let f : X → X be a continuous map, S an iso-
lated invariant set for f and {Sb} a decomposition of S. The Conley index
of {Sb}, denoted by h({Sb}, f,X), is defined as the class of all objects in
Htop[A] isomorphic to the index object I(Q, {Db}) for any index pair Q for
S compatible with the decomposition {Sb} and any decomposition {Db} of
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cl(Q1 \ Q0) such that Db ∩ S = Sb for each b ∈ B. The cohomological and
the q-dimensional cohomological indices of {Sb} are defined by

h∗({Sb}, f,X) = (H∗)[A](h({Sb}, f,X))

and

hq({Sb}, f,X) = (Hq)[A](h({Sb}, f,X)),

respectively.

4. Properties. We begin this section with proving the continuation
property of the Conley index for decompositions of isolated invariant sets.

Theorem 4.1 (Continuation property). Suppose that X is a locally com-
pact metric space and a continuous map f : X × [0, 1] → X × [0, 1] is
parameter-preserving , i.e. f(X × λ) ⊂ X × λ for each λ ∈ [0, 1]. For each
set A ⊂ X × [0, 1] and λ ∈ [0, 1] put Aλ = {x ∈ X : (x, λ) ∈ A}. Define
fλ : X → X by f(x, λ) = (fλ(x), λ). If S is an isolated invariant set for
f and {Sb} is a decomposition of S then, for each λ ∈ [0, 1], Sλ is an
isolated invariant set for fλ, {Sbλ} = {Sbλ}b∈B is a decomposition of Sλ
and h({Sbλ}, fλ, X) does not depend on λ.

P r o o f. It is enough to show that each λ ∈ [0, 1] admits a neighborhood
U such that h({Sbµ}, fµ, X) is constant in µ ∈ U . Let N be an isolating
neighborhood for Sλ with respect to fλ which admits a decomposition {Nb}
such that Nb ∩ Sλ = Sbλ for each b ∈ B. As a consequence of the exis-
tence theorem for index pairs for multivalued upper semicontinuous maps
(see [6], Theorem 2.6) we obtain the existence of a stable index pair, i.e.
a pair Q = (Q1, Q0) which is an index pair for Sµ with respect to fµ for
each µ in an interval J which is a neighborhood of λ in [0, 1], such that
Q1 ⊂ N . Let Db = cl(Q1 \ Q0) ∩ Nb for each b ∈ B. Since Db ∩ Sλ = Sbλ,
by making J smaller if necessary we may assume that Db ∩ Sµ = Sbµ for
each µ ∈ J . This means that Q is compatible with the decomposition {Sbµ}
of Sµ. Furthermore, since J is an interval, the homotopy class of the index
map (fµ)Q : Q1/Q0 → Q1/Q0 does not depend on µ ∈ J . By Definition 3.3,
the index object I(Q, {Db}, fµ) is independent of µ ∈ J .

The next theorem shows that the Conley index for a decomposition {Sb}
carries information about ordinary Conley indices of some subsets of S.

Theorem 4.2. Let {Sb} be a decomposition of an isolated invariant set S
for a continuous map f : X → X. For each sequence Y = (Y0, Y1, . . . , Yn−1)
of members of A put S̃Ȳ =

⋂n−1
i=0 f

−i(SYi) and SȲ = Invfn(S̃Ȳ ). Then SȲ
is an isolated invariant set for fn contained in S and

h(SȲ , f
n, X) = Pι(Ȳ )(h({Sb}, f,X)).
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P r o o f. Let N be an isolating neighborhood for S with respect to f
admitting a decomposition {Nb} such that Nb ∩ S = Sb for each b ∈ B.
By Proposition 2.1 of [20], NȲ =

⋂n−1
i=0 f

−i(NYi) is an isolating neighbor-
hood with respect to fn and its invariant part is contained in S. Therefore,
Invfn(NȲ ) = Invfn(S̃Ȳ ) = SȲ , which means that NȲ is an isolating neigh-
borhood for SȲ with respect to fn. We have thus proved the first part of
the theorem. In order to show the formula for the Conley index of SȲ we
make use of the following fact (see [20], Lemma 3.1).

If Q = (Q1, Q0) is a regular index pair for S such that Q1 ⊂ N then

h(SȲ , f
n, X) = [Q1/Q0, f

Yn−1

(Q,{Db}) ◦ f
Yn−2

(Q,{Db}) ◦ . . . ◦ f
Y0
(Q,{Db})],

where Db = cl(Q1 \Q0) ∩Nb for each b ∈ B.
Since such index pairs exist, this formula together with the definition of

P-type functors proves the theorem.

Theorem 4.3 (Locality). If f : X → X and g : X → X are continuous
maps, S is an isolated invariant set for f , and f and g are equal on a
neighborhood of S, then S is an isolated invariant set for g, and for any
decomposition {Sb} of S,

h({Sb}, f,X) = h({Sb}, g,X).

P r o o f. By Proposition 3.1, there exists an index pair Q = (Q1, Q0) for
S compatible with the decomposition {Sb} such that f and g restricted to
Q1 are equal. Since the corresponding index objects only depend on these
restrictions, they are the same.

The rest of this section is devoted to the formulation and proof of the
Ważewski property of the Conley index for decompositions of isolated in-
variant sets, and to giving a bound for the number of periodic points of f in
terms of the Conley index for decompositions. Fix a locally compact metric
space X, a continuous map f of X into itself, an isolated invariant set S for
f and a decomposition {Sb} of S. Let N be a fixed isolating neighborhood
for S admitting a decomposition {Nb} such that Nb ∩ S = Sb. Let

S+ = Inv+N = {x ∈ N : ∀i∈Z+ f i(x) ∈ N}.
The map p : S+ → Π =

∏
i∈Z+ B is defined by

(4.1) p(x) = (η(f i(x)))∞i=0,

where η : S+ → B is defined by

η(x) = b if and only if x ∈ Nb.
Clearly, both p and η are continuous if we endow B with the discrete topol-
ogy. Furthermore, p ◦ f = σ ◦ p, where σ : Π → Π is the shift map. This
means that p is a semiconjugacy onto its image. In what follows, we shall
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give lower bounds for the image of p and the image of the set of periodic
points of f under p in terms of the Conley index for decompositions.

Definition 4.1. Let (Y, {gZ}Z∈A) be an object in a category K[A] (K =
Htop, M or MG). We put

Π0(Y, {gZ}Z∈A) = {(bi)∞i=0 ∈ Π : ∀n∈Z+ g{bn} ◦ g{bn−1} ◦ . . . ◦ g{b0} 6= 0},
Π(Y, {gZ}Z∈A) =

⋂

n∈Z+

σn(Π0(Y, {gZ}Z∈A)),

Π∗0 (Y, {gZ}Z∈A) = {(bi)∞i=0 ∈ Π : ∀n∈Z+ g{b0} ◦ g{b1} ◦ . . . ◦ g{bn} 6= 0},
Π∗(Y, {gZ}Z∈A) =

⋂

n∈Z+

σn(Π∗0 (Y, {gZ}Z∈A)).

Proposition 4.1. Let (Y, {gZ}Z∈A) and (Y , {gZ}Z∈A) be objects
in K[A].

(i) Π0(Y, {gZ}Z∈A) and Π∗0 (Y, {gZ}Z∈A) are compact.
(ii) σ(Π0(Y, {gZ}Z∈A)) ⊂ Π0(Y, {gZ}Z∈A) and σ(Π∗0 (Y, {gZ}Z∈A)) ⊂

Π∗0 (Y, {gZ}Z∈A).
(iii) If (Y, {gZ}Z∈A) and (Y , {gZ}Z∈A) are isomorphic in K[A] then

∃n∈Z+ σn(Π0(Y, {gZ}Z∈A)) ⊂ Π0(Y , {gZ}Z∈A)

and
∃m∈Z+ σm(Π∗0 (Y, {gZ}Z∈A)) ⊂ Π∗0 (Y , {gZ}Z∈A).

Therefore,
Π(Y, {gZ}Z∈A) = Π(Y , {gZ}Z∈A)

and
Π∗(Y, {gZ}Z∈A) = Π∗(Y , {gZ}Z∈A).

In particular , the sets Π(I) and Π∗(I) can be defined in the obvious way
for isomorphism classes I in K[A].

(iv) Suppose that K and L are categories, each of them equal to Htop,
M or MG, and F : K → L is a functor mapping zero morphisms into zero
morphisms. If F is covariant then

Π0(F[A](Y, {gZ}Z∈A)) ⊂ Π0(Y, {gZ}Z∈A)

and
Π∗0 (F[A](Y, {gZ}Z∈A)) ⊂ Π∗0 (Y, {gZ}Z∈A).

If F is contravariant then

Π∗0 (F[A](Y, {gZ}Z∈A)) ⊂ Π0(Y, {gZ}Z∈A)
and

Π0(F[A](Y, {gZ}Z∈A)) ⊂ Π∗0 (Y, {gZ}Z∈A).

The same inclusions hold for Π0 replaced with Π.
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P r o o f. We only prove the parts concerning Π(Y, {gZ}Z∈A) and Π0(Y,
{gZ}Z∈A). The proofs of the other statements are dual.

(i) If (bi)∞i=0 6∈ Π0(Y, {gZ}Z∈A) then, for some n ∈ Z+,

g{bn} ◦ g{bn−1} ◦ . . . ◦ g{b0} = 0.

Hence
n∏

i=0

{bi} ×
∞∏

i=n+1

B ⊂ Π \Π0(Y, {gZ}Z∈A).

Thus, the complement of Π0(Y, {gZ}Z∈A) is open in Π so that this set is
compact.

(ii) If (bi)∞i=0 ∈ Π0(Y, {gZ}Z∈A) then, for each n ∈ Z+,

g{bn+1} ◦ g{bn} ◦ . . . ◦ g{b0} 6= 0.

Hence, g{bn+1}◦g{bn}◦. . .◦g{b1} 6= 0. It follows that (bi+1)∞i=0 = σ((bi)∞i=0) ∈
Π0(Y, {gZ}Z∈A).

(iii) Let

[{hZ̄}Z̄∈An , n] : (Y, {gZ}Z∈A)→ (Y , {gZ}Z∈A)

and
[{lZ̄}Z̄∈Am ,m] : (Y , {gZ}Z∈A)→ (Y, {gZ}Z∈A)

be reciprocal isomorphisms. Then, by the definition of the category K[A]
and Definition 4.1, for each (bi)∞i=0 ∈ Π0(Y, {gZ}Z∈A) and sufficiently large
k ∈ Z+,

0 6= g{bn+m+k−1} ◦ . . . ◦ g{b0}
= l(bn+m+k−1,...,bn+k) ◦ h(bn+k−1,...,bk) ◦ g{bk−1} ◦ . . . ◦ g{b0}
= l(bn+m+k−1,...,bn+k) ◦ g{bn+k−1} ◦ . . . ◦ g{bn} ◦ h(bn−1,...,b0).

Hence, g{bn+k−1} ◦ . . . ◦ g{bn} 6= 0 and therefore σn((bi)∞i=0) ∈ Π0(Y ,
{gZ}Z∈A).

The second part of (iii) follows immediately from the first, Proposition
4.1(ii) and Definition 4.1.

(vi) follows immediately from Definition 4.1.

Theorem 4.4 (Ważewski property). Let (Y, {gZ}Z∈A) be an object in
Htop[A] such that h({Sb}, f,X) = [Y, {gZ}Z∈A]. Then:

(i) There exists n ∈ Z+ such that

σn(Π0(Y, {gZ}Z∈A)) ⊂ p(S+).

(ii) Π(Y, {gZ}Z∈A) ⊂ p(S).

P r o o f. Let Q = (Q1, Q0) be an index pair for S such that Q1 ⊂ N . Let
Db = cl(Q1 \Q0) ∩Nb. Clearly, Db ∩ S = Sb. The index object I(Q, {Db})
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is isomorphic to (Y, {gZ}Z∈A). Hence, by Proposition 4.1(iii),

∃n∈Z+ σn(Π0(Y, {gZ}Z∈A)) ⊂ Π0(I(Q, {Db})).
It follows that to prove (i) it is enough to show that the set on the right-hand
side is contained in p(S+). Take (bi)∞i=0 ∈ Π0(I(Q, {Db})). Then for each
k ∈ Z+ there exists an xk ∈ Q1 such that

f
{bk}
(Q,{Db}) ◦ . . . ◦ f

{b0}
(Q,{Db})([xk]) 6= [Q0].

The formula (3.1) proves that

∀i∈{0,...k} f i(xk) ∈ Dbi ∩ (Q1 \Q0).

Now, let x∗ be an accumulation point of the sequence {xk}. Clearly, f i(x∗) ∈
Dbi ⊂ N for all i ∈ Z+. Thus, x∗ ∈ S+ and p(x∗) = (bi)∞i=0. The proof of
(i) is complete.

To prove (ii), notice that

σk+n(Π0(Y, {gZ}Z∈A)) ⊂ σk(p(S+)) = p(fk(S+))

for each k ∈ Z+. Hence,

Π(Y, {gZ}Z∈A) =
⋂

k∈Z+

σk+n(Π0(Y, {gZ}Z∈A)) ⊂
⋂

k∈Z+

p(fk(S+)).

Since {fk(S+)} is a decreasing sequence of compact sets intersecting in S,
the set on the right-hand side is equal to p(S).

Theorem 4.5 (Detection of periodic points). Let (bi)∞i=0 ∈ Π be T -perio-
dic. Put Y = ({b0}, {b1}, . . . , {bT−1}) ∈ AT . If , for some positive integer n,

(4.2) Λ(PȲ n(h∗({Sb}, f,X))) 6= 0

then there exists an nT -periodic point x ∈ S of f such that p(x) = (bi)∞i=0.
If (4.2) holds for n = 1 and T is the principal period of (bi)∞i=0 then x can
be chosen in such a way that T is its principal period.

P r o o f. By (4.2), Theorem 4.2 and Remark 2.1,

Λ(h∗(SȲ n , f
nT , X)) 6= 0.

By Theorem 1.1, there exists an x ∈ SȲ n such that fnT (x) = x. Since
p(SȲ n) = {(bi)∞i=0}, this proves the first part of the theorem. Since p ◦ f =
σ ◦ p, the principal period of p(x) cannot exceed the principal period of x
with respect to f . Thus, if n = 1 then the principal period of x equals T .

5. Horseshoes. In many chaotic dynamical systems arising from dif-
ferential equations, behavior resembling that of Smale’s horseshoe map is
observed (see [8], [22]). In this section we provide an example of a criterion
for chaos based on the index defined in Section 3 and compute the indices
of decompositions of invariant sets of Smale’s horseshoe (U-horseshoe) and
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G-horseshoe maps. In the sequel, we only deal with decompositions of iso-
lated invariant sets into two disjoint subsets, i.e. we set B = {1, 2}. By




a1,1 a1,2 . . . a1,n

. . . . . . . . . . . . . . . . . . . . . . . . . .
ak,1 ak,2 . . . ak,n

ak+1,1 ak+1,2 . . . ak+1,n

. . . . . . . . . . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an,n




we denote the class of all objects in M[A] isomorphic to the object (Ξn,
{ψZ}Z∈A) such that the matrices of ψ{1} and ψ{2} in the standard basis are




a1,1 a1,2 . . . a1,n

. . . . . . . . . . . . . . . . . . . .
ak,1 ak,2 . . . ak,n

0 0 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . 0




and




0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0

ak+1,1 ak+1,2 . . . ak+1,n

. . . . . . . . . . . . . . . . . . . . . . . . . .
an,1 an,2 . . . an,n




(respectively) and ψZ =
∑
b∈Z ψ

{b} for each Z ∈ A. Let us note the following

Corollary 5.1 Let f be a continuous map of a locally compact metric
space X into itself , S an isolated invariant set for f and {Sb} a decompo-
sition of S. Suppose that , for some q ∈ Z+,

hq({Sb}, f,X) =
[
a1,1 a1,2

a2,1 a2,2

]
.

where ai,j ∈ Ξ are nonzero. If Ξ is a domain then the map p : S → Π
defined by (4.1) is a surjection. If , in addition,

hr({Sb}, f,X) = 0

for each r 6= q, Ξ is the field of rational numbers and X is an ENR then
each periodic sequence in Π is the image (under p) of a periodic point of f
in S of the same principal period.

P r o o f. Let ψ1, ψ2 : Ξ2 → Ξ2 have matrices
[
a1,1 a1,2

0 0

]
and

[
0 0
a2,1 a2,2

]

in the standard basis. For each sequence (b0, b1, . . . , bT−1) of members of B,

ψbT−1 ◦ ψbT−2 ◦ . . . ◦ ψb0 6= 0.

More precisely, the matrix of the composition on the left-hand side has one
row of zeros and one row of nonzero members of Ξ (in particular, its trace
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is nonzero if Ξ is a field: we shall use this fact later). Thus,

Π∗
([

a1,1 a1,2

a2,1 a2,2

])
= Π.

Applying Proposition 4.1(iv) for F being the q-dimensional cohomology
functor gives

Π(h({Sb}, f,X)) = Π.

To finish the proof of the first part, apply Theorem 4.4(ii).
In order to prove the remaining part, take a sequence (bi)∞i=0 ∈ Π

of principal period T . Let Y = ({b0}, {b1}, . . . , {bT−1}). By assumptions,
tr(PȲ (hr({Sb}, f,X))) = 0 for all r 6= q. Since the trace is nonzero for
r = q, the Lefschetz number of PȲ (h∗({Sb}, f,X)) is nonzero. Theorem
4.5 implies that (bi)∞i=0 is the image of a periodic point of f of principal
period T .

In a moment we shall show that the assumptions of the above corol-
lary are satisfied by the G-horseshoe and the U-horseshoe maps. We note
that, by the continuation property of the Conley index for decompositions,
Corollary 6.1 generalizes Theorem 2.4 of [9] and Theorem 2.1 of [23].

Example (cf. [11]). Let G : R2 → R2 be a G-horseshoe map, i.e. a map
of R2 into itself which is affine on each of the rectangles AiBiCiDi (i = 1, 2).
The rectangles and their images under G are depicted in Figure 1.

We are interested in the Conley index of the decomposition {Sb} of
the maximal invariant set S in A1B1C1D1 ∪ A2B2C2D2, where Sb = S ∩
AiBiCiDi for each b ∈ B = {1, 2}. By Theorem 4.3 we can assume that G
maps the rectangle A2B2C1D1 outside the rectangle A1B1C2D2. Let Q0 be
the set of all points in the rectangle A1B1C2D2 mapped by G outside its
interior (it is the shadowed region, a disjoint union of three rectangles—see
Fig. 1). One can easily see that if we put Q1 = A1B1C2D2 then the pair
Q = (Q1, Q0) is an index pair for S, compatible with the decomposition
{Sb} of S. Clearly, the quotient space Q1/Q0 has the homotopy type of the
wedge sum of two pointed circles. Thus,

Hq(Q1/Q0) =
{
Ξ2 if q = 1,
0 otherwise.

In H1(Q1/Q0) we can choose a basis consisting of vectors eb (b ∈ B) which
are the images of the generators of H1(A1B1C2D2/(A1−bB1−bC1−bD1−b
∪Q0)) under the inclusion-induced homomorphism. Then H1(GQ) maps eb
into e1 + e2 or e1 + e2 − 2e1−b according to the choice of the generators.
Hence (notice that H1(rZ) is the natural projection onto the submodule
generated by {eb : b ∈ Z}),
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Fig. 1. G-horseshoe

h1({Sb}, G,R2) =

[
1 1

1 1

]
=

[
1 −1

−1 1

]
.

Clearly, the cohomological indices in other dimensions are trivial. In the
same way, one can prove that if U is the U-horseshoe map (cf. [11]) and
{Sb} is the decomposition of its invariant set obtained in the analogous way
then

h1({Sb}, U,R2) =

[
1 −1

1 −1

]

and the cohomological indices in all other dimensions are trivial.
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